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Superconducting T, enhancement due to negative-U impurities:
Monte Carlo study of a local exciton model
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The enhancement of superconductivity by a small concentration of excitonic negative-U centers is
studied by a new method which combines diagrammatic perturbation theory and Monte Carlo
simulation. Results are given which show how the impurity parameters should be selected in order
to obtain the maximum increase in the superconducting transition temperature T, . We also discuss
the underlying physics of these results.

I. INTRODUCTION

It has been suggested some time igo' that supercon-
ducting transition temperatures of metallic films or alloys
can be enhanced by the presence of negative-U centers.
Such a center consists of a localized electronic orbital
which exhibits an attractive on-site interaction, mediated
by a coupling to a phonon or excitonic degree of freedom.
Due to hybridization with the conduction band of the
metallic host material, conduction-electron pairs can tun-
nel into these centers and participate in the on-site attrac-
tion, which, under favorable conditions, may increase the
superconducting T, of the host. It has been suggested
that superconductivity in Tl-doped PbTe may be due to
an impurity-induced pairing mechanism. . More recent-
ly, it has been proposed that negative-U impurities
could even be responsible for the high-T, values found in
the perovskite superconductors.

Previous theoretical studies' of this effect have em-
ployed various perturbative weak-coupling methods to
treat the internal dynamics of the negative-U impurity.
However, there is by now considerable evidence " that
these systems are quite strongly correlated and exhibit
properties very much akin to a Kondo impurity (in pa-
rameter regimes of physical interest).

Therefore, nonperturbative methods are needed for
their theoretical investigation. We have recently pro-
posed a novel approach to this problem which combines
Monte Carlo simulation techniques with a more standard
diagrammatic analysis. ' ' It allows us to treat such
dynamical impurity systems, in principle, exactly, and ex-
tract experimentally observable quantities from the mod-
el Hamiltonian. Here, we present a more detailed ac-
count of this method and results that we have obtained
with it for a simple model of a double-valence fluctuating
impurity' with an exciton-mediated on-site interaction.
Specifically, we will discuss the following: (i) the possibil-
ity of induced superconductivity due to a small but finite
concentration of these impurities in an intrinsically non-
superconducting host; (ii) the change of the transition
temperature (dT, /dc), o of a superconducting host ma-
terial in the limit of very small impurity concentrations c;

and (iii) the impurity spin susceptibility.
The plan of the paper is as follows. In Sec. II we intro-

duce the model Hamiltonian and discuss in simple physi-
cal terms the basic mechanism of the exciton-mediated
on-site attraction. In Sec. III we outline the diagrammat-
ic formalism that is used to compute superconducting
transition temperatures from the Monte Carlo data for
certain single-impurity electronic Green s functions. In
Sec. IV we describe brie Ay the Monte Carlo algo-
rithm' ' and its adaption to the present problem. In
Sec. V we present our results for the induced transition
temperature (Sec. VA) the T, -enhancement coefficient
(dT, /dc), o (Sec. V B), and the impurity spin susceptibil-
ity y, (Sec. V C). We discuss in detail the dependence of
these quantities on the various model parameters and the
underlying physics of these results. A summary and con-
cluding remarks are given in Sec. VI.

II. THE EXCITONIC NEGATIVE- U CENTER

A. Model Hamiltonian

The negative-U system that we are considering here is
a double-valence Auctuating impurity' in a metallic host
material. Its Hamiltonian is given by

H =Ho+H, ,

where

(2.l)

Ho = g a~c~, c~, + g N '~
( V d,~c, + H. c. ) (2.2)

and

P~S p, s

H; =e„n„+Ao(n„—l, )+go +—,'Qo, (2.3)

The first part of Ho describes the host lattice conduction
band, consisting of Bloch states with momentum p, spin
s = f, J, , and energy s, measured relative to the Fermi
energy p. The Bloch states are hybridized with a local-
ized impurity orbital, denoted by d in the following. The
hybridization matrix elements are given by Vp and X is
the number of host lattice sites. The Fermion operators
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ct, and dt create electrons in a Bloch state (p, s) and in
the impurity orbital (d, s), respectively. In the following,
these will be referred to as "c electrons" and "d elec-
trons. " The internal structure of the impurity is de-
scribed by H, . cd is the on-site energy of the d orbital,
again measured from the Fermi level p, and nd denotes
the on-site occupation number

nd =ndy+nd$, nd, =d, d, . (2.4)

The d electrons are coupled with a strength A, to a two-
level excitonic degree of freedom which is here described
by a set of Pauli operators

cr =(o„,cr, cr, ), (2.5)

each with eigenvalues + 1 and —1 and the usual commu-
tation relations

[0 ~, cr
y ]=2l cr ~ (2.6)

etc. The cr-operators commute with all c and d fermion
operators. The two parameters 0 and g in (2.3) deter-
mine both the energy splitting and the polarizability of
the two-level system. We shall refer to 0 and g as the ex-
citon frequancy and the exciton asymmetry energy, re-
spectively.

As discussed in Ref. 16, such a two-level system could
be realized, for example, by a set of two localized elec-
tronic orbitals, a and b, say, that are located in a polariz-
able side group surrounding the central d orbital. For
simplicity, one restricts the Hilbert space to those states
where this two-orbital side group contains exactly one
electron (or one hole). Physically, such a constraint
could arise, for example, if there are strong on-site and
intersite Coulomb correlations on and between the two
orbitals a and b. We introduce it here primarily to sim-
plify our model somewhat without changing its essential
physics. Under this constraint, the a-b systems is then
described by a two-state Hilbert space: The two eigen-
states of the o „operator in (2.3), I

cr„=+ 1 & and
Icr„=—1&, are identified with In, =I, n& =0& and
In, =O, nb =1 &, respectively, where n, and nb denote the
occupation numbers of the corresponding orbitals a and
b. The term gcr„ in (2.3) describes the difference between
the a and b on-site energies —,'(s, Eb)—:g at—A, =O. The
term —,Qo., gives rise to a hybridization between the a
and b orbital. The coupling term Ao (nd —1) describes
the effect of Coulomb repulsions between the d and the
a belectron wi-th A, =Ud, —Udb. Here, Ud, is the (in-
terorbital) repulsion between d and a, and Udb is the
repulsion between d and b. Assume, for example, that
the a orbital is in closer proximity to the d site than the b
orbital so that Ud, & Udb. If we then introduce a single
electron into the d site, it will polarize the a-b two-level
system by partially displacing charge from the a to the b
orbital. This polarization lowers the effective on-site en-
ergy that is needed for a second electron with opposite
spin to enter the d orbital. In this way, an effective at-
traction between the two d electrons is mediated.

Another possible realization of the model (2.3) could
'arise in certain defect structures in strongly disordered

metals. In such systems, it is possible that some atoms or
groups of atoms (i.e., a collective lattice coordinate) ex-
hibit two nearly degenerate minima in their potential en-
ergy which can lead to a set of two low-lying energy lev-
els. Let us assume further that the same defect structure
also gives rise to a localized electronic orbital in its vicini-
ty. The coupling between this localized "d orbital" and
the strongly anharmonic two-level lattice mode could
then be appropriately described by the model Hamiltoni-
an (2.3).

Indt, nd), l &= Indt, ndt &,e Il, nd & (2.6a)

The state of the two-level system Il, nd & can be expand-
ed in terms of the eigenstates of o„, say. In the context
of the polarizable two-orbital (a b) interpret-ation of H;,
the squares of the corresponding two amplitudes
represent the relative charge densities at the a and the b
sites in the presence of nd electrons at the d site. They
are hence a direct measure of the a-b polarization due to
the d electrons. Without giving a detailed derivation, we
note that, as expected, in the case A, = Ud, —

Udb & 0, the a
site density in the two-orbital ground state (l =0) de-
creases whereas the b-site density increases with increas-
ing d-site occupation nd.

To estimate the effective d-d interaction that results
from this polarization, let us turn to the eigenenergies
E&(ndt, nd&) of the states (2.6), which again depend only
on the total d-site occupation nd and are given by

E,(nd t, nd ) ) =E((nd )

=Ed nd —( —I )'t [A(nd —I )+g]
(2.7)

Since nd takes on only the values 0, 1, or 2, we can write
the ground-state energy (l =0) as a function of nz in the
form

EQ(nd ) =EQ(0)+ed Qnd + Undtndg (2.8)

The renormalized on-site energy ed 0 is the energy needed
to introduce one electron into the empty d site,

Ed Q=EQ(1) —EQ(0)

=E + [(A,—g) +0 /4]'~

(2.9)

B. Attractive on-site interaction and pair tunneling
processes

To get a more detailed physical picture of the excitonic
mechanism, it is instructive to discuss a particularly sim-
ple, exactly solvable case: the isolated, nonhybridized im-
purity. For V =0, H,. is decoupled from the conduction
band and can be straightforwardly diagonalized. The oc-
cupation numbers nd& and nd~ are conserved. For each
electronic eigenfunction

I nd t, nd& &, there are two exci-
tonic (cr) eigenstates Il, nd & labeled by l =0, 1, which de-
pend only on the total d-site occupation nd =nd ~

+nd &.

The total eigenfunction or H, is then given by the prod-
uct state



39 SUPERCONDUCTING T, ENHANCEMENT DUE TO NEGATIVE-U. . . 6503

U = [E()(2)—ED(1)]—[E()(1)—E()(0)]

=2(i) +Q /4)' —[(A, +g) +Q /4]'
—[(X—q)'+ Q'/4]'"

(0 (2.10)

As expected, we find that U is always negative, i.e., it
costs less energy to introduce the second d electron than
to introduce the first. With increasing A, , ~ U~ increases
monotonically, like 2A, /Q for ~A, ~, ~i) && )Q~ and like 2~A,

~

If we now turn on the hybridization term V, electrons
will tunnel between the conduction band and the d orbit-
al, thereby taking advantage of the attractive on-site
correlations. The enhanced superconducting pairing
arises then from the following pair-exchange process:
Two conduction electrons with antiparallel spin tunnel
into the center, interact via the polarization (i.e., virtual
excitation and deexcitation) of the two-level system, and
finally tunnel back into the conduction band. This tun-
neling process is favored very strongly, if the model pa-
rameters are such that the initial and final states are al-
most degenerate, i.e. , if E~(0)—=ED(2) (assuming
conduction-electron states with Ez near the Fermi level).
The intermediate state (n& =1) of this second-order (in

V„) process has a higher energy that Eii(0), namely,
Eii(1)=Eii(0)+ —,

'
~ U~, if ED(0) =Ec(2). We will discuss

the significance of the degeneracy condition further in
Sec. II C.

It is interesting to note that, formally, according to
(2.10), one can still have a finite on-site interaction U & 0
even if the exciton frequency Q vanishes (as long as
~q~ & (A, ~). This is surprising, since, according to (2.3), the
total Hamiltonian (2.1) (including hybridization V &0)
reduces essentially to a noninteracting single-particle
problem if Q=O. o is a conserved quantity in this case
and after setting either o. = —1 or o. =+1, the A, term
in (2.3) reduces simply to a shift of the d electron on-site
energy. In the language of our two-orbital model, there is
no hybridization between a and b if 0=0. Hence, the a-b
system cannot be polarized since no charge can be dis-
placed from a to b.

To resolve this paradox, let us assume again V =0 and
consider the eigenstates of H;, (2.6), (2.7) for Q=0. Tak-
ing A, )g&0, say, we have U &0 in (2.10). The ground
state (I =0} for n&=0 corresponds to a two-level state
~l =o, n&=0& with o„=+1. It has an energy E'(0)
= —(X—i))—=Eii(0). If we now insert one or two elec-
trons into the d orbital, keeping o. =+ 1 fixed, we end up
in states with energies E'(1)=E&+i)=E,(1) and
E'(2) 2ez+A+g—:Ei(2), respectively Thus, for n. z

) 1

the o „=+ 1 state is not the ground state anymore (as for
n&=0}, but rather, according to (2.7), the excited state.
From the difference of the respective energies, we find

The effective on-site interaction U is the difference of the
energy needed to introduce a second electron into an al-
ready singly occupied d site minus the energy for intro-
ducing the first electron,

U'=[E'(2) —E'(1}]—[E'(1)—E'(0)]=0, (2.11)

f(i= &O, ohio, 1 & &0, li0, 2&

f, =.&O, oil, 1 &..& 1, 110,2&. .
(2.13)

M~ and M, correspond to transitions between n& =0,
l =0 and n&=2, l =0 via the intermediate states n& =1,
l =0 or nz =1, l =1, respectively. In the case Q=O, the
overlap factors f~ and f i (and hence, Mii and M, ) van-
ish. In the strong-coupling limit, k »Q, fii and f, be-
come very small, 0 (Q /A, ), whereas for A, « Q there is
almost perfect ground-state overlap with f~ approaching
unity. Thus, the enhancement of the superconducting
pairing strength (as quantified in Sec. III) should refiect
two competing effects as a function of increasing coupling
strength A, : For small A, (A, «Q), the r, enhancement
should increase with X, since there is almost perfect over-
lap (fbi=-1) and U, (2.10), increases with A, . For A, »Q,
on the other hand, the enhancement should decrease
again, because the overlaps disappear as f~,f, -Q /A.

and, in addition, the energy denominators in {2.12} be-
come large [of order U, assuming Ep(0) =Eg(2)].

The overlap factors fbi, f; entering into (2.12) are a
very general feature of an attraction that is mediated by a
strong coupling X to a bosonic degree of freedom with a
finite response frequency Q. In the case of a phonon-
mediated attraction, ' ' these factors are usually referred
to as Franck-Condon factors. In that case, " they become
exponentially small, fz,f, —exp( —A. /MQ ), in the
strong-coupling limit A, ))Q (where A, is the electron-
phonon coupling strength, Q is the phonon frequency,
and M the mass). This is in contrast to the excitonic sys-
tem, ' ' where f~ and f, vanish only algebraically
(-Q /A, ). These important effects are, of course,

i.e., indeed no attraction is mediated in this process with
fixed o„=+1. The attraction (2.10) will manifest itself
only, if the transition n& =O~nz =1~n& =2 occurs be-
tween the ground-state (l =0) configurations of the im-
purity system. In the present case (Q=0), this would re-
quire a transition of the two-level system from a o.„=+1

state to a o.= —1 state which cannot happen since these
two states are orthogonal.

This example points out an important dynamical as-
pect of the excitonic mechanism: The actual strength of
the pairing correlations mediated by the two-level system
depends not only on the strength of the static on-site at-
traction (2.10), but also on the ability of the two-level sys-
tem to respond dynamically to the pair fluctuations of the
d-site occupancy, once the hybridization V is turned on.
This response requires transitions between the n& =0 and
n&=2 impurity ground states (1 =0). The matrix ele-
ments for such transitions are therefore governed by the
products of the overlaps of the corresponding two-level
states involved. To second order in V, they have the
form (assuming E~ and E„near the Fermi level)

Vp Vp
M, {n„)— f, , I =0, 1, n„=0,2, (2.12)

ED(n& ) Ei(1)—
where, for states ~l, nz &
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neglected if one replaces the retarded, boson-mediated in-
teraction by an instantaneous negative U, as was done in
earlier treatments of this problem.

C. Particle-hole symmetry and degeneracy

that, to lowest order in c, X, and U, can be simply ex-
pressed in terms of the corresponding d-electron Green's
functions of a single impurity embedded in a pure host
lattice as described by the Hamiltonian (2.1). Namely, as
shown in Fig. 1, we have

Cps ~C p', s & Ep
= Ep, (2.14)

(2.15)

In the following, we will focus primarily on the case of
a particle-hole symmetric system for which H is invariant
under a transformation of the form

X,(p, i v) =c
I V~ I Gd(i v)+0 (c ),

U, (p'iv'Ipiv)= —cT—
I
V.

l I
V

I
I'd(iv'liv)+0(c )

=c
I V, , l'I V, I'IG„(zv') I'IGd9iv) I'

X [ Ud(i v' fi v) 5,—I Gd(i v )
f /T],

(3.2)

~z~~z ~

x~ ~x ~

(2.16)

(2.17)

(3.3)

where Gd and I d are the single-impurity d-electron
Green's functions

and hence

old ~2 nd

For H; this symmetry holds if and only if

(2.18)

(2 19) and

Gd(i v) = —f dr e'"'( T,d t (r)d t (0) )
P

0

p iv'(~& —~2)—i v(v 3 T4)I d(i v'liv) = d~, . de e
0

(3.4)

g=O,
Ed=0 .

(2.20)

(2.21)

X ( T,d t (r1 )d t (r2)d g (rq)d t (w3) ) .

(3.5)

The ground-state energies (2.8) of the unoccupied and the
doubly occupied impurity are degenerate,

Eo(0)=ED(2) (2.22)

(2.23)

if Ed =g=O.
Actually, (2.22) can be satisfied under conditions that

are less restrictive than (2.20) and (2.21). Namely, from
(2.7), it follows that (2.22) is valid if and only if the bare
on-site energy Ed satisfies

—i [(g+~)2+Il2/4]1/2 i [(g ~)2+II2/4]1/2

Here, v and v' denote odd Matsubara frequencies, and
P= 1/T is the inverse temperature. In the second line of
(3.3), we have decomposed I'd into a "connected" and a
"disconnected" part by introducing the (reducible) d
electron four-vertex function

(a)

dI X= 11Pt
Vp Vp

We shall make use of this relation later on (Sec. V).

III. PAIRING INTERACTIONS AND
SUPERCONDUCTIVITY

Vpi

I I/ Pt~ Vp

M '&Pt

A. Low-concentration expansion of the
conduction-electron interaction and self-energy

c =X;/X, (3.1)

where X; is the total number of randomly distributed
negative-U impurities. The crucial observation here is

Let us now consider a host lattice doped with a small
but finite impurity concentration. By tunneling into the
negative-U centers, c electrons participate in the attrac-
tive on-site interactions. Formally, this leads to a self-
energy X, and an (irreducible) retarded interaction inser-
tion U, in the c electron one- and two-particle Green's
functions, respectively. Our basic approach is now to
take disorder averages of these c-electron Green's func-
tions and then expand X, and U, in powers of the impur-
ity concentration

-(~'-P'~ = DC
Vpi

M= -~~-P&

P

Uc, i=

Vpi Vp

P t M — -DC 1&P~
I

/
Iq

g

- X= -11-P&I rV~~ s (~ Vp' ~ i]r~ p

—Uc,e

FICx. 1. Conduction electron (a) self-energy (X,), {b) elastic
(U, ,), and (c) inelastic (U, ;) interaction, expanded to first order
in c, in terms of the single-impurity Green s functions Gd and

Ada
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Ud(iv'~iv) =

X[r„(iv'liv) —5..IG (tv)l'/T'] . (3.6) cX, ,
=

Vp d~ Vp

Ud (i v'
I
i v ) = Ud ( E v I l v ) (0, (3.7)

Physically speaking, the 5 ~ term in (3.3), arising from
the disconnected part of I d corresponds to elastic
scattering processes from the impurity sit in which no en-
ergy is exchanged between the two electrons. The con-
nected part Ud describes truly inelastic processes. Only
these inelastic processes enhance T„as we will discuss
below. Notice that due to Wicks's theorem Ud vanishes
for the noninteracting (A, =0) system. For A,&0,
Ud(iv'~iv) is real, syminetric, and negative (i.e., attrac-
tive), cX =

I

IV PI

I
d I

-iv-P4

-iv-P4

dt

cX, ,= I[
-IV-O'I d4

I VP t . - IVPC

-iv-p4
d4

as we will show in Sec. IV.
X, and U, are the basic input for our calculation of su-

perconducting transition temperatures. Notice that,
whereas X, and U, are obtained from fully reducible,
single-impurity objects (G&, Ud), they represent irreduc-
ible insertions in the disorder-averaged c-electron Green s
functions of the many-impurity system. The single-
impurity Green s functions Gd and I & can be obtained in
principle with arbitrary accuracy from quantum Monte
Carlo simulations. This will be described in Sec. IV.

In the following, we will consider only the simplest
case of a momentum-independent hybridization, i.e.,

FIG. 2. (a) Elastic and (b) inelastic contributions to the su-
perconducting susceptibilities, Eqs. (3.39)-(3.44), expanded to
5rst order in c.

t, (p', iv'~p, i v) = U, (p', i v' ~p, i v)

—T g N 'U, (p', iv'~p", iv")
P EV

X ~G, (p",iv")
~

X t, (p",iv" ~p, i v), (3.13)

where

V = V= const . (3.8) G, (p, iv)= [iv —
e~

—X,(p, iv)] (3.14)

Furthermore, we assume that V is small compared to the
characteristic energy scales of the conduction band (e.g.,
the bandwidth D). Then the only detail of the band
structure entering into our calculations is the density of
states at the Fermi energy p(0), where

is the dressed c-electron Green's function. The supercon-
ducting instability occurs at that temperature where t,
diverges, i.e., where the homogeneous equation cor're-
sponding to (3.13) has a nonzero solution P(p, i v):

P(p', i v') = —T g N 'U, (p', iv'~p, i v)

p(e) =X ' g 5(e—e )

p

(3.9) P, l V

x IG, (p, iv)l'p(p, tv) . (3.15)

and we assume

p(0) '-D» V .

With (3.8), U„X, and P become p-independent and,
upon carrying out the p summation, Eq. (3.15) attains
the form

Then, Gd becomes
~~

Gd(iv) = 1/[t v+ t 5, sgn (v) —ed —Xd (& v)]

with a resonance width

b, =~p(0) V'«D . (3.12)

P(iv') = —T g U, (i v'~i v)F(iv)$(iv),
EV

where, using (3.8)—(3.12),

F(iv) =X 'y lG, (p, i v)I'-
p

=m.p(0)/[~ v~+ ) ImX, (iv)
~ ]

(3.16)

The d-electron self-energy Xd(iv) vanishes in the nonin-
teracting system (A. =O).

=~p(0)/ lvl+
np(0)

B. Induced superconductivity

To calculate the induced superconducting transition
temperature T„we carry out a "ladder" simulation with
the effective interaction U, to obtain the c-electron, two-
particle t matrix, as shown in Fig. 2,

Equation (3.16) is superficially similar to the linearized
Eliashberg equation that arises in conventional electron-
phonon models of superconductivity where the c elec-
trons are dhrectly coupled to host-lattice phonon modes
(in the simplest case, with a dispersionless to~ =coo coil-
stant frequency spectrum, say). ' In that case, one ap-
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+cph&& T Tc (3.19)

It vanishes, roughly, like wcph~T for T(&~0 and is
therefore neglected. As a consequence, F(iv) diverges
like 1/lvl for T 5 lvl~0 and, upon replacing i'(iv) at
low frequencies by a constant, ' the right-hand side of
(3.16) attains its well-known lnT divergence for arbitrari-
ly small coupling strengths in the limit T~o. In the
present problem, however, we find

r, ,
'—=

l ImX, (i)+)l

l G, (io+) l'[a+ l Imx„(io+ ) l]
mp(0)

(3.20)

proximates - the self-energy X, ph at low frequencies
(lvl-T, ((to, ) by""
ImX, „(iv)—= —~, p'„sgnv+(1 —Z, p„)v+O(v ), (3.1&)

where the damping term 1/r, zi, is typically small,

= —T g Uq(iv'liv)P(iv) .
EV

We now de6ne

P(iv)=—P(iv)[1 —clVl lGd(iv)l F(iv)],
F(i v) = [mp(0)] cF(i v)/[1 cV l

—Gd(iv) l
F(iv)]

(3.23)

(3.24)

U, exhibits a "hybridization" contribution given by the
elastic (5, .) term in the second line of (3.3) which, again
arises from our choice of nondiagonal single-particle
states. It does not vanish as A, ~O. The true interaction
(i.e., two-particle energy transfer) processes are contained
in the Ud term in (3.3). Formally, the cancellation of
these two terms becomes apparent, if we subtract the
elastic term on both sides of (3.16) and carry out the i v
summation for this term so that

[1—c I
Vl'I G„(iv') l'F (i v')]P(i v')

and hence, for example, in a weak-coupling system with
particle-hole symmetry

m.p(0)
lvl+ [b, l ImGd(iv)l

mp0

-clmp(0)-cD . (3.21) ~
I Gd(i v) I'] . (3.25)

U, ,(i v'li v) = —c
l Vl l Gd(i v)l 5,„/T . (3.22)

Notice that U, , is negative (i.e., formally attractive).
Hence, it tends to work in favor of the superconducting
instability. As it turns out, it cancels the detrimental
effect of the large 1/r„ term in X,(iv).

To understand this cancellation in simple physical
terms, let us note that, in the electron-phonon system,
1/'r

ph has a quite different physical origin than 1/r, ;,
Eq. (3.20), in our model. 1/r, h describes the damping
of the exact noninteracting (Bloch wave) single-particle
states due to phonon- and particle-hole-pair creation. In
the present model, however, we have formulated our
theory in terms of single-particle states (c and d states)
which (in the presence of hybridization) are not exact
eigenstates of the noninteracting Hamiltonian, but rather
a superposition of such eigenstates with different ener-
gies. This smearing out" of the single-particle states
leads formally to a contribution in 1/r, ; which is given
by the first (b, ) term on the rhs of (3.20). This term is
nonzero for T~O and does not vanish as A, ~O. Only the
second term in (3.20), involving l ImXd(iv)l, describes
true single-particle damping processes (such as particle-
hole pair creation) and can be expected to vanish as iv
and T~O or A, —+0. Similarly, the effective interaction

This is T independent and typically larger than the in-
duced transition temperature T, discussed below. It
would strongly suppress any low-temperature divergence
of (3.16) and superconductivity if U, (iv'liv) were a
smooth function of its arguments for T—+0, as in the case
of an ordinary electron-phonon system where U, is given,
roughly, by the phonon propagator

D (i v' i v )-—[—( v —v' ) + cori)

For our impurity model, however, U, (iv'liv), Eq. (3.3),
contains the highly singular elastic term

Then (3.16) becomes

P(iv')=( —T) g b, lGd(iv')l lGd(iv)l
IV

X Ud(iv'liv)F(iv)P(iv) . (3.26)

in the denominator (aside from constant prefactors). No-
tice that for iv~0 this term is equal but opposite in sign
to the hybridization part of r, ; [the first term in (3.20)].
Thus, using (3.11),F can be written as

F(iv)=
~p 0

1+ '
IG (iv)l' lvl

~p 0

+ l Gd(iv) l l ImXd(iv)
l

op 0

If we expand Xd at low frequencies as

ImX„(iv) =——~d '+(1 —Zd )lvl+O(v )

(3.27)

(3.28)

and assume that the true d-electron damping is small,

«T lvl T O, (3.29)

then, F (3.25) diverges as 1/lvl for lvl, T~o and the lhs
of (3.24) diverges as lnT, provided that Ud(iv'liv) and
Gd(i v) approach finite, nonzero values as T~o.

For a given value of 6, c and p(0) enter into (3.24) only
in the combination c/np(0) In the follow. ing, we choose
the exciton frequency Q as our unit of energy. We will

Here, only the inelastic interaction term Ud(iv l
iv) ap-

pears on the rhs. The elastic contribution has been ab-
sorbed in F(iv) which differs from F(iv) by the extra
term

—[c/~p(0) ]b, l Gd (i v) l
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therefore express our results in terms of the dimension-
less quantity

c:—[op(0}Q] 'c (3.30)

rather than c. Together with the dimensionless parame-
ters T/0„6, /0, sd/0, ri/Q, and A, /0, this determines
our model completely.

For our numerical treatment, it is convenient to
rewrite (3.24) in a symmetrical form

r„=r(c~~, T) (3.35)

C. T, enhancement

at large c. Thus, the solution of (3.34} is umque and ex-
ists if and only if r„&1. In the following, the quantity
1/c, determined in this way serves as a convenient mea-
sure of the strength of the induced superconductivity and
will be discussed as a function of the various model pa-
rameters and T, .

P(i v') = g R (i v' Ii v)P(i v )

by defining

R (iv'I iv) =( —T)b, 'I G, (i v') I'I G, (iv) I'

X [F(iv)]' Ud(i v'I iv)

as a real symmetric matrix of the indices (v', v) and

P(iv)=[F(iv)]'~ P(iv) .

(3.31)

(3.32)

(3.33)

To calculate the effect of a small concentration of
negative- U impurities on the transition temperature of an
intrinsically superconducting host lattice, we follow the
basic approach of Abrikosov and Gor'kov (cf. also Refs.
23 and 24). The Hamiltonian is augmented by a BCS-
type interaction

BCS X 0 p+k't p —k'l p —kg p+kt ~ 0
—1

pkk'

(3.36)
As we lower the temperature or increase the coupling
strength, Eq. (3.31) acquires its first nonzero solution
when the largest eigenvalue of the matrix R becomes uni-
ty. Thus, for fixed impurity parameters (b„sd, r), 0, A,),
the induced superconducting transition temperature T, is
determined as a function of the impurity concentration
by solving

r(c, T, )=1, (3.34)

where r denotes the largest eigenvalue of R (iv'Iiv)
Since our single-impurity Monte Carlo algorithm re-
quires the temperature T, but not the impurity concentra-
tion c, as one of the basic input parameters, we simulate
Gd and I d at a specified T = T„compute r (c, T, ) and a
function of c, and solve for the critical value of c at which
r (c, T, )= 1. This procedure is mathematically equivalent
to but less time consuming than specifing c and varying T
until T=T, . In all cases studied, we have found that
r(c, T) increases monotonically with c and saturates at a
finite value

which models in a simple way the intrinsic electron-
phonon-mediated c-electron attraction. In the usual
mean-field treatment, it leads to a transition temperature
of the pure host lattice given by the BCS formula

2y —&/~U ~p(0)T 0= coDe (3.37)

where coD denotes the intrinsic (Debye) cutoff of the
effective interaction (3.35), and y is Euler's constant. By
extending this mean-field theory in U0 to include a
small concentration of impurities, one obtains the
condition

1 = Uoy„( T =T„c) . (3.38)

To first order in the concentration c, the superconducting
susceptibility y„ is given by the diagrams shown in Fig. 2

y„(T)=go(T)+c [y, (T)+y;(T)]+O(c ), (3.39)

where

(3.40)

(3.41)

y„(T)=TN 'g'+2l V„l Re[G,' '(p, iv)Gd(iv)]IG, ' '(p, iv)l
EV P

X,p(T)=T& 'y'y
I Vpl'IG, '"(p', iv)l',

EV P

X;(T)=T'~ ' g '& IVpl'IG, '"(p'v')I'IGd(iv')I'U, (iv'Iiv)IG, (lv)I IG,' '(p, iv)l',
1V~lV PP

(3.42)

(3.43)

(3.44)

~T, OQ'I Vl '= ln(2ycoD/m. T, O) (3.45)

and G,' '(p, iv) —= (iv —E )
' is the bare c-electron Green's

function. Here, we have cut off all summations (g') over
the frequencies i v, i v' (not the summation over the mo-
menta p,p') by the prescription

so that (3.38) reproduces the BCS result (3.37) in the limit
of the pure host metal (c —+0). This cutoff in frequency
(rather than in momentum p) arises physically from the
retarded nature of the phonon-mediated c-electron in-
teraction. It can be justified rigorously by treating the
host lattice within the framework of an electron-phonon
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model rather than using the BCS Hamiltonian (3.36).
Such a treatment will be presented in a forthcoming pa-
per. ' It gives results that are very similar to those ob-
tained here with the BCS model, and we shall therefore
not pursue it any further in the present paper.

From (3.37)—(3.39), we get the T, -enhancement
coef6cient in the limit of vanishing impurity concentra-
tion as

hr =P/I. .

H =Ho+H(+H2,

where Ho is given by (2.2) and

(4.2)

L is a sufficiently large integer, and the Hamiltonian has
been broken up into three diagonalizable parts

de T~ (i

0 [X,(T,,o)+X;(T,,o)] .
c=o pO

(3.46)

H, =sdnd+Ao„(nd —1)+ger„,

H =
—,'Qo. ,

(4.3)

(4.4)

xo( T) =Pp(0) T y 'lvl (3.47)

x„(T)=—T g'v i((,
l ImGd(iv)l, (3.48)

Upon carrying out the momentum summation, one ob-
tains, using (3.8)—(3.12),

Notice that this breakup preserves particle-hole symme-
try, i.e., H&, Hz, and H3 are each invariant under the
transformations (2.14)—(2.19) if H is invariant. We now
insert complete sets of states in (4.1) which are chosen to
be eigenstates of o.„. Upon tracing out the fermions, one
obtains the usual determinant representation' of ZL,

lV

x„(T)= T g 'v '6'I G„(iv) I',

x;(T)= —T'g 'Ivv'I '~'IGd(iv')I'Ug(iv'Iiv)

(3.49)
Zl = g [det(M{o j)e { }]

=—rz{
IaI

(4.5)

where
(3.50)

Notice that for T~O, both X,i(T) and X,2(T) diverge as
1/T but have opposite signs [assuming, as before, that
Gd(iv) approaches a finite nonzero limit]. Using (3.11),
x, (T) becomes

x, (T)=( —T) g v 6[l vl+ I 1m'„(iv)l]

M{o j =Mt {cr}M({o.j,
Mi{cr j =M({o j

hrHo ——hend( (ilier(+rd )
L

=Tr e 'e
I=i

(4.6)

(4.7)

CV

X IGd(iv)l (3.51)

—S~ —b, vO /2o ('[I~i+ ~(+ i I cosh(~«/2)
1=1

Thus, the same cancellation as in (3.26) and (3.27) also
occurs here, leading to a logarithmic rather than a 1/T
divergence in X,(T) if

I ImXd(iO )I vanishes as T +0. —
Note that y, is always negative and nonzero even for
A, =O. y;, on the other hand, is positive but vanishes for
A, ~O. At low T, y,. diverges as ln T, again assuming that
Ud(iv'liv) becomes a continuous function of both its ar-
guments as T~O. Thus, for A, =O, the impurities will ac-
tually suppress T, . Physically, the negative contribution

y, rejects the fact that c electrons which tunnel into an
impurity d orbital leave the attractive electron-phonon
pairing interaction of the host whole occupying the im-
purity orbital. Consequently, the impurity must have a
certain minimum pairing attraction

I Ul just to maintain
the T, o of the host. Only if

I Ul exceeds this minimal
value, mill impurities enhance T, .

IV. MONTE CARLO SIMULATIONS

To simulate the single-impurity d-electron Green's,
functions Gd(iv) and I d(iv'Iiv), Eqs. (3.4) and (3.5), we
have adapted a version of the determinant algorithm'
that was recently proposed by Hirsch and Fye. ' The
partition function is approximated as

(4.1)

where

—Icr( —o(+il sinh(b«/2)]

(4.8)

and

{oj—:{o(~2) cr(rl )j, r =j b.r, j =1 . I. (4.9)

are the time-dependent pseudospin (cr„) configurations
[with cr(ri)=+1 or —1] to be summed over. In our
Monte Carlo procedure, we generate such configurations
randomly' with a probability

P{oj=ZL, {~j/Zr. .

Notice that, since M
& {(r j =M

& I
o' j,

detM{cr j
=

I detM& {oj I
~0

(4.10)

(4.11)

0~PL {oj ~ 1 . (4.12)

Clearly, M&{o}=M&{cr}holds because in our model
system up-spin and down-spin electrons are coupled to
the same time-dependent (cr ) field with identical cou-

pling strength and sign.
The d-electron Green's functions are then given by the

following Monte Carlo averages:

and hence there are no "minus-sign" problems, i.e., for
all {crj
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Gd(iv)L = T g g'(') (ivliv)P[o )
(a)

=—T&g'('.))(ivliv) &Mc s = 1' or $

and

(4.13)

large as 10—15% for the largest coupling strengths A,

which were studied. We consider this to be the major
source of error in our final results for dT, /dc and c
presented below. In Fig. 3 we show some results compar-
ing data obtained using 6~=0.25 and 6~=0.125.

I'„(iv liv)L = gg'( ')(iv Iiv)g'( ))(iv liv)'P[o )

—= &g(.",(iv'liv)g(."~ (iv li.v)«&„, ,

(4.14}

where

(4.15)

and g'(') (rj lrk } is the single-particle Careen's function for
a d electron moving in the time-dependent 6eld con-
figuration [o J, as defined in Ref. 25,

g'(') (r;, r )=M(, )' to)(r;, ~, ) . (4.16)

Again, because up-spin and down-spin electrons couple
to the same time-dependent (o ) field with identical

coupling strength and sign, we have

g (~) (iv ll v) =g (~) (l v Il v}

Hence,

I'd(iv'Iiv)~ „=&Ig('}(iv'Iiv)l'&Mc) 0

and thus, using (3.6)

Ud(iv'liv)L =( T)IGd(iv)I IGd(iv')I

x & lb,g~(') (iv'liv)l'&Mc

&0,

(4.17)

(4.18}

(4.19)

where

~g [cr) =g(~) &g(o) &Mc
(s) (s) (s) (4.20)

Thus, we have shown that Ud(iv'Iiv) is indeed real and
negative as stated in Eq. (3.7).

Finally, we have simulated the impurity spin suscepti-
bility which is given by

y, = —2 J dr&g~(O, r)gt(r, O)&Mc .P (4.21)
0

For most of our runs we chose Ar=P/L =0,25 (in en-
ergy units where 0= 1). A typical run consisted of 2000
(warm-up) updating sweeps followed by 2000 measure-
ment s~eeps. Each measurement was preceeded by at
least ten further updates of the basic pseudospin
configuration [cr). For a typical chain length of L =80,
such a run took several hours on the University of Cali-
fornia, Santa Barbara, ST-100 array processor. By sam-
pling all measured quantities after every 200 measure-
ments, we have estimated the statistical error of our re-
sults for Gd and I d to be typically a few percent. To test
for systematic breakup errors, due to the 6nite Aw, runs
were repeated with 6~=0.125. The systematic h~ errors
for Gd(i v) were less than a few percent, but these errors
in I d(i v', i v) were typically of order 5% and could be as

V. RESULTS AND DISCUSSION

In Figs. 3—6 we display various results as functions of
the on-site attraction I Ul, (2.10), the resonance width b„
(3.12), the on-site energy ed, and the asymmetry energy g.
The unit of energy for these data was chosen such that
the exciton frequency 0=1. The frequency cuto6; used
in the calculations of (dT, /dc), 0 [Eqs. (3.43)—(3.49)],
corresponds to a host lattice Debye frequency boa =0.25,
and the density of states was p(0) —0. 1.

In Fig. 3(a) we show results for the maximal eigenvalue
r =r(c —+Do, T) of the Eliashberg matrix (3.30) as a
function of the on-site attraction IUI at temperatures
T, =0.025, 0.050, and 0.100, respectively, using a reso-
nance width 5=1 and cd =q=0. The coupling constant
A, was varied according to Eq. (2.10) so as to give the re-
quired attraction strength U. For IUI values ranging
from

I
UI=0. 5 to I Ul =5.0, the corresponding 1, values

are between A, =0.56 and A. =2.96, respectively (for
g=O). r increases with increasing I Ul. As a function
of T, r increases by approximately constant increments
as we lower T by factors of 2 (from 0.100 to 0.050 to
0.025) at fixed IUI ~3. This corresponds roughly to a
ln(1/T) dependence which is what we would expect ac-
cording to the discussion in Sec. III B. If r „(T, ) exceeds
unity, it is possible to find a solution for the concentra-
tion parameter c such that the system becomes supercon-
ducting at the specified temperature T, . When r (as a
function of T, or

I Ul, say) approaches unity from above,
the required c diverges (i.e., 1/c —+0). If r falls below
unity, no solution for c exists, i.e., within the framework
of our formalism, the system cannot be made supercon-
ducting at the speci6ed temperature T, even with the
largest impurity concentration. This can be seen in Fig.
3(b), where 1/V' is plotted as a function of IUI for the
same model parameters and three values of the induced
superconducting T, =0.025, 0.050, and 0.100. Notice
that, as expected, c increases monotonically with increas-
ing T„ i.e., the larger the required T„ the more impuri-
ties are needed to achieve it. Furthermore, a certain
minimum strength of attraction is needed in order to be
able to reach the specified T, at all. For

I Ul is less than
this minimum strength there is no solution c (i.e., r (1).
If

I Ul exceeds the minimum strength, then 1/c first in-
creases with increasing I Ul, but then reaches a maximum
and decrease again for I Ul ~ 3 (both for T, =0.050 and
0.100). This is qualitatively in agreement with the discus-
sion in Sec. II B. For I Ul ~ 3 (corresponding to IA, I

~ 1.9
with 0= 1), we should expect to see the strong-coupling
effects of the reduced overlap factors fo,f, suppressing
the pairing strength (here measured by 1/c). This is
indeed what appears to be happening here. In Fig. 3(c)
we show the T, -enhancement coefficient (dT, /dc),
Eq. (3.46), for the same set of model parameters and
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FICi. 3. (a) r„and (b) 1/c vs IUI for different values of the induced T„(c) dT, /dc vs lUl for different values of the host
T, oco+D =0 25 and p(0) =0.1, (d) y, vs I Ul at T =0 050. Here, sd =q =00 and 6=1.0. The open symbols indicate data obtained
with 8 ~=0 25 and the closed symbols are for 6~=0-125. Here and in all agures to follow energy is measured in units of Q

host-lattice transition temperatures T, 0=0.025, 0.050,
and 0.100. Qualitatively its behavior is very similar to
that of 1/c. As discussed in Sec. III C, (dT, /dc), 0 is ac-
tually negative at small

l Ul and a certain minimum
l Ul

is needed just to maintain the T, o of the host. Like I/O;
(dT, /dc), 0 reaches a maximum at larger coupling
strengths which we again attribute to the onset of
strong-coupling overlap efFects.

The d-electron spin susceptibility g, is shown as a
function of

l Ul in Fig. 3(d) for a temperature T =0.050.
With increasing l Ul, y, is rapidly suppressed. Physical-
ly, this rejects the fact that for large enough IUI (and
Ed=rl=O), the low-lying states of the system are com-
posed primarily of impurity configurations with occupa-
tion numbers nd =0 or nd =2, neither of which carries a
magnetic moment. Thermal and quantum fluctuations
into the moment carrying nd = 1 configurations are
suppressed with increasing I U l since their energy
Eo(1)=ED(0)+ —,

'
l Ul is shifted well above Eo(0)=ED(2).

These results are in agreement with Anderson's original
conjecture about negative-U centers. In Fig. 4, we show
1/c and (dT, /dc), 0 as functions of the hybridization
strength, measured in terms of the resonance width
b. =np(0)V . The two data sets for dT, /dc [Fig. 4(b)]
corresponds to IUl= 1 (k=0.866) and

l Ul =3 (A, =1.94)
and the host material has T, p=0.05. Notice that, for

l Ul = 1, dT, /dc is negative at all values of b„ indicating
that the on-site attraction in the d orbitals is not strong
enough to maintain the T, o of the host. Results for 1/c
[Fig. 4(a)] where obtained only with l Ul =3 assuming an
induced T, =0.050. For lUl= 1, this T, could not be
reached (r ( 1) at any concentration c. The on-site en-

ergy and asymmetry energy were again cd =g=O. Clear-
ly, for

l Ul =3, both I/c and dT, /dc exhibit a maximum
roughly where the resonance width 6 matches the exci-
ton frequency Q= l. We believe that this can be under-
stood in terms of the relevant time scales involved: For
5 &&0, the average time, spent by an electron on the d
site, ra-1/b„ is much shorter than the time rn-1/0
which the polarization of the two-level system needs to
respond to the presence of the d electron. This polariza-
tion response is maximal (of order of the 5 =0 static po-
larization discussed in Sec. IIB) if ra rn. On the other
hand, if we let ra —+ ac (i.e., ra &)rn, I/coD), the tunnel-
ing matrix elements (2.12), and hence, the rate of pair
fluctuations will be more and more suppressed, until at
b, =O (zero hybridization) the impurities are completely
decoupled from the host.

All the foregoing results were obtained under condi-
tions of perfect particle-hole symmetry of the impurity
(i.e., ed=g=O) and hence degeneracy Eo(0)=ED(2), as
discussed in Sec. IIC. In Fig. 5 we have explored what
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FIG. 4. (a) 1/2 vs b, for T, =O 05 and .IUI =3.0, (b) dT, /dc
vs 6 for T, 0=0.05, coD =0.25 p(0) =0. 1 and two different

I Ul;
for a11 data, cd =g =0.0, 6~=0.25.

FIG. 5. (a) 1/2 vs cd for T, =0.050, (b) dT, /dc vs e.d for
T, 0=0.050, roa =0.25, p(0) =0.1; for all data t) =0,

I Ul =3.0,
6=1.0, 6&=0.25.

happens if this degeneracy is destroyed by shifting the
bare on-site energy sd, keeping g=0, I UI =3 (A, =1.94),
and 6=1 fixed. Remember that, for cd &0, we have
Eo(2) &Eo(0) so that it becomes energetically unfavor-
able for a pair electrons near the Fermi energy to tunnel
into the empty center. On the other hand, for cd &0, and
hence Eo(2) (Eo(0), the center is mostly doubly occu-
pied, and it is unfavorable for the pair to tunnel back into
the conduction band. Indeed we find that both 1/c [Fig.
5(a)] and dT, /dc [Fig. 5(b)j are strongly suppressed for
s„&0. Analytical results for related model sys-
tems' ' ' indicate that the width 5c,d of these maxima
is of the order of the resonance width (b, —5c,d}. From
Eq. (2.3), it follows that under a particle-hole transforma-
tion (2.15)—(2.18), any Hamiltonian H; is transformed
into an H of the same form (2.3) with cd and ri replaced
by

(5.1)

(5.2)

1/c and dT, /dc are invariant under such a transforma-
tion. From (5.1) it follows therefore that the data in Figs.
5(a) and 5(b) should be symmetric around ed=0. We
note that, within statistical error, this symmetry is
obeyed by our Monte Carlo results.

As discussed in Sec. IIC, it is possible in the present
model to violate particle-hole symmetry (2.20) and (2.21)
without destroying the degeneracy Eo(0)=Eo(2}, (2.22),
if ed and ri satisfy the condition (2.23). We have explored
this possibility in Fig. 6, where I/O' and dT, /dc are plot-
ted as functions of q. Together with g, we have varied cd

according to (2.23), in order to keep Ep(0) =Ep(2).
Simultaneously, we have adjusted A, according to (2.10) so
as to keep on-site attraction at a fixed value I UI =3. The
suppression of 1/c and dT, /dc that we observe in Fg. 6
for t)&0 is therefore not the result of a weakened attrac-
tion I Ul. Rather, we believe, that it is again a manifesta-
tion of the overlap factors fo,f, discussed in Sec. IIB,
which, under the present conditions, can be shown to be
maximal at the point of particle-hole symmetry
ad=cd=0. Applying again the particle-hole transforma-
tion (2.15)—(2.18), it follows from (5.1), (5.2), and (2.23)
that the data in Fig. 6 should be symmetric around g=0.
%'ithin statistical error, this is satisfied.

To estimate typical orders of magnitude for the T, 's

that can be obtained with this mechanism, let us assume a
host lattice with a bandwidth p(0) '=3 eV, a resonance
width b, =0. 1 eV=Q (corresponding to a hybridization
strength I Vl -0.3 eV), and an attractive I UI =0.3
eV=3XQ. Then according to Fig. 3 with a 2'=(2.3)
=0.43 corresponding to an impurity concentration
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mode. ' ' We 6nd that, for comparable values of the bo-
son frequency Q, the effective on-site attraction U, and
the resonance width 6, the results in both models are
quite similar. Apparently, the crucial difference between
the BCS superconductor and the negative-U system is
that in the former, the virtual boson is exchanged directly
between the conduction electrons, whereas in the latter,
the exchange can take place only after the electrons have
tunneled into the impurity orbital. If one estimates per-
turbatively to lowest order in the coupling the effective
attraction' ' one 6nds that indeed this attraction is
enhanced relative to the on-site U by a factor
[np(0)h] »1.' This is roughly the square of the oc-
cupancy time ratio rz/r where again rz-b, is the
average time span for which an electron remains at an
impurity site after tunneling into the d orbital and
wz-p(0) is the (much shorter) time it spends at any lat-
tice site while propagating in the conduction band. The
foregoing results show that the negative-U center mecha-
nism may well be capable of producing quite large super-
conducting T, s even with a quite small on-site coupling
strength. We should caution, however, that this is
achieved only if the model parameters are carefully tuned
such that b, -Q and, most importantly, ~Ed ~

-0
(is i «b).

O. f

FICx. 6. (a) 1/2 vs q for T, =0.050, (b) dT, /dc vs q for
T, 0=0.050, coD=0. 25, p(0)=0. 1; for all data cd and A, where
varied according to Eqs. (2.23) and (2.10), so that

~ U~ =3 and
Eo(0)=Eo(2), independent of g, b, v.=0.25.

c =mp(0)Qc =4.5%, we would get T, -2 meV=20 K.
It is interesting to compare these parameters with

those of a conventional BCS superconductor such as
aluminum. Al has a T, =1.2 K, a phonon energy
0=0.034 eV, an inverse density of states p(0) '—=2.6 eV
and thus, according to the BCS formula, T, =1.13Q
exp[ —1/[Ufp(0)j, an attractive JU[=0.46 eV, about
50% larger than the 0.3 eV assumed above. If we rescale
these values for p(0), 0 and U to those assumed in our
hypothetical "negative- U material, " p(0) ' =3 eV,
Q=O. 1 eV, and

~
U~ =0.3 eV, the BCS formula gives an

even smaller transition temperature, T, =0.05 K. Thus,
in the BCS superconductor, T, is over two orders of mag-
nitude smaller than in the 4.5% doped negative-U ma-
terial with identical boston frequency A, density of states
p(0), and attraction strength U. The results for the
negative-U material are therefore quite surprising, partic-
ularly in view of the fact that in the BCS superconductor,
all lattice sites contribute to the attractive interaction
whereas, in the negative-U system, only a small fraction
(c) of the sites contributes.

One might suspect that these results are a consequence
of the particular excitonic mechanism that mediates the
attraction. However, we have also studied a model 0;
where the d electron is coupled to a local phonon

VI. SUMMARY AND CONCLUDING REMARKS

In conclusion, we have applied quantum Monte Carlo
techniques to study the effects of a small concentration of
excitonic impurities on the superconducting T, of a me-
tallic host material. Combining a standard many-body
analysis with results from Monte Carlo simulations we
have avoided the lack of adequate analytical approxima-
tions for treating such a strongly interacting dynamic lo-
cal mode embedded in a Fermi sea. Our qualitative
analysis in Sec. II and the results in Sec. V show- that
strong-coupling and retardation effects, such as the over-
lap factors fo,f, and the finite response time rn-1/0 of
the bosonic degree of freedom are dominant factors in
determining the superconducting pairing strengths in
these systems which cannot be adequately described by
perturbative weak-coupling techniques in parameter re-
gions of physical interest.

Specifically, we have demonstrated that excitonic im-
purities can substantially enhance T, if their parameters
are tuned such that (1) there is near degeneracy between
the unoccupied and the doubly occupied con6gurations
of the impurity; (2) the overlap factors for fluctuations be-
tween these con6gurations are maximized by a small
asymmetry energy rl; (3) the hybridization is such that
the resonance width 6 is of order of the exciton frequen-
cy 0; and (4) the coupling strength A, has an optimal
value which is determined by the competition between
the enhancement of the on-site attraction

~
U~ and the

suppression of the overlaps fo,f i with increasing A, . On
the other hand, the T, -enhancement effect may rapidly
disappear as the model parameters deviate from their op-
timal values.

On the technical side, our diagrammatic analysis has
relied on seemingly quite different approaches in calculat-
ing, on the one hand, the T, -enhancement dT, /dc at
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small concentrations c~0 and, on the other, the induced
T, at finite concentration c. A more unified treatment
(which includes a full Eliashberg-type treatment of the
host-lattice electron-phonon coupling, using where neces-
sary realistic phonon spectra) is clearly desirable and will
be presented in a forthcoming paper. ' Therein we will
also address the questions of possible interference e6'ects
between the electron-phonon coupling of the host and the
on-site interaction which are not included in our Monte
Carlo simulation.
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The results for (dT, /dc) shown in Fig. 4(b) were reported ear-
lier in Ref. 12 and were plotted versus A, rather than versus

~
U~ in Fig. 2 of that paper. Unfortunately, the values of A,

that are shown in that plot as well as the k values quoted in
the text (but not the A, values used in the actual simulations)
were obtained from the original

~
U~ values by an incorrect

conversion formula [based on the incorrect Eq. (3) of Ref.
12]. Thus, any discrepancy between the (correct) A, values
presented here and the incorrect values given in Ref. 12
should be ignored. The corresponding values for

~ U~ quoted
here and in Ref. 12 are both correct and in agreement. An
erratum to Ref. 12 will be submitted.
We should caution, of course, that, physically, the va1ue of the
concentration c—:N;/N may not exceed a certain limit of or-
der (or less than) unity, say. More importantly, however, our
basic low-density expansion, Eqs. (3.2) and (3.3), breaks down
when c becomes of order unity. We nevertheless feel that in
this regime (where c 1}, our results are still qualitatively
correct.
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