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A percolation model for the critical current in inhomogeneous superconductors is introduced.
The model is a network of randomly configured superconducting (concentration p) and normal (con-
centration 1—p) bonds on a lattice. Each superconducting bond has a critical current i, above
which it becomes a normal Ohmic resistor. The current distribution in the superconducting regions
is solved using the linearized Landau-Ginzburg equations for a network of wires as proposed by de
Gennes. The current distribution in the normal regions is solved using Kirchoff’s laws. The critical
current and the voltage-current relations are studied numerically in two dimensions on a square lat-
tice, and comparisons are made with recent voltage-current experimental data on high-T, supercon-
ductors. The scaling concepts and statistics of extremes introduced by Duxbury, Leath, and Beale
(DLB) for general breakdown behavior, based on the most critical defect (normal region) in the net-
work, are tested and found to be accurate for the scale-size dependence of the critical current and
for the predicted critical-current distribution of random samples. In particular, it appears that the
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Critical current of an inhomogeneous superconductor as a percolation-breakdown phenomenon

critical current goes to zero logarithmically in the thermodynamic limit, as proposed by DLB.

I. INTRODUCTION

Defects are known to be a dominating factor limiting
the electrical and mechanical strength of materials, and
therefore an enormous effort has gone into the study of
their effect on the breakdown of materials.! ~3> However,
the problem of handling a random distribution of defects
is sufficiently difficult that only recently have percolation
models of breakdown and their computer simulation been
successful in illuminating the general features of break-
down phenomena.*”7 In this paper, we apply essentially
the same percolation approach® to the problem of critical
current in a superconducting network. We use the
pioneering approach of de Gennes® and Alexander® to
formulate the theory of a superconducting network as a
model of an inhomogeneous superconducting system. A
related approach has been used by others to better under-
stand critical magnetic fields,'®!! but this is the first such
calculation for the critical supercurrent and for its
sample-size dependence. The computer simulations re-
ported here are limited to two-dimensional square lattices
for simplicity, but also because of the recent interest in
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FIG. 1. The voltage-current relation of a superconducting

bond n. For current i (n) greater than the critical current i, the
bond is normal with a resistance R =1.

thin films of high-T, superconductors. In fact, we show
that the results here are consistent with recent experi-
ments in superconducting thin films and make sugges-
tions for future experiments to be done.

The results here show that only a few defects will have
a dramatic effect on the critical current and thus defects
probably limit the critical current in many real supercon-
ducting systems. Hence we believe it will soon be possi-
ble to understand the principal limiting factors on super-,
current density in many applications.

The model for our computer simulations is a square
lattice network with a randomly distributed fraction p of
superconducting bonds and a remaining fraction (1—p)
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FIG. 2. A typical, random configuration of superconducting
(solid lines) and normal (open) bonds on a 20 X 20 square lattice
at p =0.90. The current source puts a current [;, into the lat-
tice uniformly across the bottom bus bar and takes it out across
the top bus bar.
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of normal Ohmic conducting resistors. We assume that
each superconducting bond has a critical current i.. For
current i greater than i, the bond becomes normal with a
resistance R. Thus the voltage ¥V (r) across bond n is as
shown in Fig. 1. In reality, the voltage-current curve for
a single bond should be rounded in some way at the tran-
sition, but this rounding is ignored here. The square lat-
tice of bonds (see Fig. 2) is connected to bus bars at the
top and bottom and free boundary conditions applied to
the left and right sides of the lattice. The external ap-
plied current I;, flows into the network through the bot-
tom bus bar and out at the top. The network displays
qualitatively different behavior at different concentrations
p and at different applied currents I;,,. For p <p,, the
critical percolation threshold where the superconducting
path first appears across the sample, the sample is normal
with only isolated islands of superconductivity; we shall
only consider p>p, in this paper. Thus, for I,
sufficiently small, none of the superconducting regions
will have gone normal so that we will have an ordinary
percolation problem for an inhomogeneous superconduc-
tor. But as the current I;, is raised to the first critical
value I, the current carried through some (the most crit-
ical) bond of the sample exceeds i, and that bond goes
normal. As the current is further increased, bond after
bond goes normal until at I;,=I, breakdown occurs,
there is no longer a superconducting path across the sam-
ple, and for the first time there appears a voltage across
the sample. This region of I;, <I, we shall call region I.
As the current I, > I, is further increased, the voltage in-
creases more rapidly than Ohmically as the remaining
isolated superconducting regions go normal until, for
I,,>1I,, the entire sample is normal and the voltage-
current relation becomes Ohmic. The region I, <I <I,
shall be called region II, and I >1, we shall call region
III.

II. THE NETWORK EQUATIONS

We consider the Landau-Ginzburg free energy on a
network of thin wires.® ™10 Following Alexander,’ we find
that this leads to the Landau-Ginzburg (LG) equation on
a wire

1 .0
[_Es—+ [15;—K

where A is the coherent wave function or superconduct-
ing order parameter, s =(1T), # is a unit vector along the
direction of the wire, where k=(2e /hc)u-A) with A
being the vector potential, and & is the coherence length.
This equation is then solved for each bond of the lattice
with appropriate boundary conditions for continuity of A
and current conservation at each node of the lattice. We
assume that the penetration depth is very large, and fol-
lowing Alexander® linearize the LG equation by assuming
b=0 in Eq. (1). Alexander’ has shown that these as-
sumptions lead to the coupled set of linear equations for
the regular square lattice which are

2
+blAl? [A=0, (1)
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where A, is the order parameter at node / of the network,
and the summations are over nearest neighbors. The an-
gle 0 is determined by

0=a/k, 3)

where a is the lattice spacing. The coherence length de-
pends upon temperature according to

1/ «(T,—T)/T, , 4)
and y; is given by

Yij:fj

1

(aij'A)dS . . (5)

2e
hc
The supercurrent I;; between nodes i and j on the lattice
is given by!°

I; = Im(A}A;) . ©)

Therefore, current conservation (Kirchoff rule) at each
node gives the boundary condition of the superconduct-
ing phase:

aSIm(AFA e =1, )
j

where the sum is over nearest neighbors j, a is a con-
stant, and If* is the external current applied at site i.
Since a is a constant its precise value is unimportant as it
simply scales the applied current 1°*. Generally, I will
be zero at all sites on the interior of the superconducting
regions, will equal the applied external current on the
boundaries of the sample, and will equal the boundary
current on the interfaces between superconducting and
normal regions of the sample. For the purposes of this
paper, we shall focus on T'< T, and zero magnetic field,

FIG. 3. The supercurrent component in the y direction,
I,(n), plotted vertically at the site n of a square lattice where
the bus bars are along the x direction (so that the current I}, is
input from left to right in the y direction). A single slit (defect)
has been cut in the lattice from its center along the x direction
to the center of the right-hand edge. No current can flow across
the slit, but instead must go around the left tip of the defect,
causing the large current spike just to the left of the tip of the
defect. This figure was taken from Ref. 12.



39 CRITICAL CURRENT OF AN INHOMOGENEOUS. . .

where the coherence length £ is much larger than the
lattice spacing a so that 6~0 and y;;~0. In this case
both the LG equation (2) and the boundary condition (7)
are linear in the imaginary part of A; and the problem is
numerically equivalent to a resistor network problem
with a constant current source applied across the top and
bottom boundaries. The real part of A; can be considered
a constant throughout the superconducting regions and
hence does not affect these equations except for an overall
scale factor.

These equations have been solved recently!? for the
case of a perfect superconductor (no defects) but with a
single horizontal slit of length n sites cut into the lattice
from the side to simulate a single large defect or weak
link. Then the LG equations give the current distribu-
tion in the lattice with a single defect. The results are
that the supercurrent peaks strongly (see Fig. 3, which is
taken from Ref. 12) at the edge of the slit as the current is
forced to go around the defect. The numerical results!?
indicate that the peak current at the tip of the defect is
proportional, for large n, to

Ij,cn'’?, (8)

and the current decays back to the background current as
one goes away from the defect tip as 1/r? at large dis-
tance.

III. RANDOMLY DISORDERED NETWORKS

Our solution here is for a randomly disordered lattice
with p >p. and we start at small I;, (region I), where
there is still a superconducting path across the sample.
We choose If* to be zero except along the top and bot-
tom bus bars where the external current If*'=(1;, /L) is
applied to each site (see Fig. 2). For a given value of I,
and a given random configuration of the fraction p of su-
perconducting bonds we can find that superconducting
bond in the network which carries the largest super-
current (the most critical bond). This bond will be the
first to go through the superconducting-to-normal transi-
tion when I, is increased to I;,, =I,, which can be found
easily since the equations are linear. This bond is then
transformed to a normal bond and the new distribution
solved to see if one or more superconducting bonds have
currents at or above i, and they are transformed to nor-
mal bonds. This process is repeated until there are no
remaining bonds carrying a current greater than i,. This
procedure gives the equilibrium state for a given value of
I,,. Then the external current is increased and the pro-
cess repeated until the last superconducting path across
the sample is broken, which will eventually happen at
I,,=1,. An example of the steps of a typical procedure
of this breakdown is shown in Fig. 4. In the case shown,
the current required to break the first bond was the
highest so that the cascade which broke the network fol-
lowed the breaking of the first bond and I,=1,. Such
was often case. Only rarely did more than a few bonds
seem to be broken before I, was reached.

The dynamics of the breakdown procedure used here
was like that used by Takayasu? (in the resistor network
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problem) and indeed, just as in Ref. 2, produced fractal
cascades of breakdown path about a critical defect rather
than the more linear paths or cracks seen in Refs. 4 and
5. When only that superconducting bond carrying the
maximum current is removed in each time step (a kind of
adiabatic process), a linear crack results. When all super-
conducting bonds carrying current i > i, are removed in
each time step (a more sudden process), fractal cascades
develop. Nevertheless, as far as we could determine from
our numerical data, the precise form of the breakdown
process did not essentially change the breakdown current
I, or the way it scaled with sample size since the break-
down current I, in both procedures followed closely that
current I, required to break the first bond. Thus, we be-
lieve that the breakdown currents I, quoted here are
essentially independent of the dynamics used, but would
like to see further studies of the various dynamical mod-
els. The single-defect case is discussed in more detail in
Ref. 12.

At the breakdown current I, a normal resistive region
has grown (percolated) across the sample from left to
right, cutting the last vertical superconducting path be-
tween the bus bars. At this point a voltage first appears
across the sample and is supported by the percolating
normal region (or regions).

It is important at this point to describe our handling of
the normal regions. We assume each resistor in the nor-
mal region has a constant resistance R =1. All nodes of
a normal cluster connected to a single superconducting
cluster are at the same voltage, that of the superconduct-
ing cluster. The current flowing in the normal cluster
must obey Kirchoff’s laws, and current must be con-
served at each node on the boundary connecting normal
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FIG. 4. An example of a typical breakdown process at
p =0.90 on a 50X 50 lattice is shown. The current required to
make the mth bond go normal is plotted vs m. After the 39th
bond went normal the superconducting path across the sample
was broken. Since the highest point occurs at m =1, this exam-
ple is one where i, =I,/L=1I,/L =0.415, i.e., the current re-
quired to destroy the first superconducting bond is sufficient to
break the superconducting network.
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FIG. 5. (a)-(c) Voltage-current relations averaged over N 20X20 samples at p =0.90 (N =100 samples), p =0.95 (N =200 sam-‘
ples), and p =0.99 (N =200 samples). (d)-(f) Resistance-current relations obtained from the voltage-current curves above by divid-

ing by the input current.

and superconducting regions. In the mixed region II, as
soon as the superconducting path is broken we search the
lattice to trace out the various normal and superconduct-
ing regions of the sample. Constant values of the poten-
tial are assigned to the top and bottom surfaces of a nor-
mal percolating cluster which horizontally spans the sam-
ple. The uniform external potential of the top and bot-
tom is kept fixed until the relative interior voltage at each
node within the normal cluster can be calculated by
Kirchoff’s law. Then the potentials on top and bottom
are adjusted until the total current flowing across the nor-
mal region is equal to I;;,. By this means the total voltage
across the sample is determined. If there are isolated su-
perconducting regions surrounded by a single normal re-
gion, that superconducting region is shrunk to a single
virtual node for this purpose since it must be at constant
potential. These special virtual nodes are treated as hav-
ing as many neighbors as there were bonds connecting
the isolated superconducting region.

Once the current distributions in the normal-phase re-
gions have been calculated, we then have the appropriate
current inputs and outputs to each node of the supercon-
ducting region so that the current distribution within
these regions can then be calculated via the LG equation,
as was done above for the superconducting phases in re-
gion L.

IV. COMPUTER-SIMULATION RESULTS

We ran computer simulations on 20X 20 square lattices
for several values of the initial superconducting bond

concentration p. The results were averaged over 100 ran-
domly configured samples at each concentration. The re-
sults for the voltage and resistance versus concentration
are shown in Fig. 5 for the entire range of input current
I, as the system goes from superconducting (region I) to
mixed (region II), to entirely normal (region III). For
these samples i, =1 so that in the perfect lattice (p =1.0)
the superconducting-to-normal transition would be sharp
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FIG. 6. The data of Fig. 5(a) for 0.32<i=1I,/L <0.50 re-

L
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plotted as logo(v) vs logo(i —i), for i;=0.30. The solid line
has a slope of 3.0 indicating x =3 in Eq. (9).
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at I, /L =i, =1. For all cases shown here, where p <1,
the transitions I, /L and I, /L occur at values less than 1
and increase as p tends to 1. Also, we notice that the
width of the transition AI=1I,—1I, shrinks toward zero
as p — 1, but nevertheless is quite large. For a single ver-
tical defect in an otherwise perfect infinite lattice, one
would expect a sharp transition from region I to region
IIT at a value of I,,/L presumably equal to
(r/4)i,=0.79i, (see the discussion of a single defect in
Ref. 4). One can see here that at p =0.99 this limit is be-
ing approached but that there is still a considerable width
to the transition. This width at p =0.99 is statistical and
due to the finite sample size (20X 20) since defects near
the edge of the sample will tend to break at lower values
of I, than those in the center, and since we are seeing
here an average over a distribution of random
configurations. As p decreases further for the 20X20
samples, the larger defect clusters and neighboring defect
clusters produce still-lower values of I, and I, and larger
values of the transition width A7

Many experimental voltage-current measuremen
and calculations'® in granular superconductors have been
made over the last several years. These authors report a
voltage-current relation just above I, which behaves ac-
cording to the empirical formula

tl3~15

V/L(X(Iin_Il)x, (9)

where, in two dimensions, x approaches 3.0 as T—T,.
The linearization of the GL equations here corresponds
to neglecting the A3 term which is valid near the critical
point. We have plotted our data in Fig. 6 to test this be-
havior. We treated I, as a parameter to find the best
straight-line fit to the data at p =0.90; the resulting
I,/L=(0.30%0.03)i, gives x =310.5 in close agreement
with our expectation.
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In order to study the sample-size dependence of the
critical current we note that Duxbury, Leath, and Beale®
(DLB) have predicted for a variety of breakdown process-
es that the scaling behavior of the breakdown current
would be given by

I,/L ~1/[1+K(log;oL)°] , (10)

where K is a concentration-dependent constant, and
where a is the exponent in the current enhancement in-
duced by the most critical defect at its tip versus the de-
fect length (or other appropriate dimension). Their for-
mula is

lip~Tin /L)1 +kn?) , (11)

where k is a constant. For the case of linear defects per-
pendicular to the current flow in two dimensions, Eq. (8)
suggests that a=1 although other critical defect
configurations may give a=1. In order to test the DLB
size scaling theory® we have carried out measurements of
I, versus sample size, averaged over an ensemble of 50
L X L samples for each sample size L and each concentra-
tion shown. [In fact we did not actually measure I, the
breakdown current for the superconducting path, but
simply the current I, required to make the first supercon-
ducting bond go normal, which, we find, scales in the
same manner (see Ref. 6) and indeed in the superconduct-
ing case we often found (as in Fig. 4) that the current re-
quired to make normal the first superconducting bond
produced a cascade which then broke the superconduct-
ing path.] The results are shown in Fig. 7(a), where the
value of I, is seen to continuously decrease with increas-
ing sample size. According to Eq. (10), this decrease
should be linear if a=1, and if it is plotted as L /I,
versus log;oL. This linear behavior is seen in Fig. 7(b).
The data obtained are over a sufficiently small range (I,
varies only by, say, a factor of 2) that we cannot distin-
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FIG. 7. (a) The breakdown current I, /L vs sample size (log,,L) averaged over 50 samples at each value of L for p =0.90, 0.95,
0.99. (b) The data of (a) replotted as L /I, vs log;oL to test whether there is a straight line as predicted by Eq. (10), for a=1.
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FIG. 8. The probability F(I,,L) of failure at current I, on
an L X L lattice vs I, /L for L =50, and p =0.90. This distribu-
tion was made from an ensemble of 500 random configurations.

guish clearly between values of . Much larger samples
than the 100X 100 maximum here would be needed to ac-
curately determine «. Nevertheless, log-log plots of
log(L /1) versus logy(log;oL) give varying values of « in
the range + <a < 1.

Finally, we report results for the failure distribution
rate F(I,,L), the probability that a sample of size L will
fail (i.e., the superconducting path will be broken, or the
critical supercurrent exceeded) versus applied current I;,
for 50X 50 samples. This distribution was obtained from
an ensemble of 500 samples. The numerical results for
F(I,,L) are shown in Fig. 8. Previously, Duxbury and
Leath® have shown, from the statistics of extremes, that
for cases where the probability of large critical clusters

15
T

2 23 3 3.5 4

L/l (&Y

FIG. 9. A replot of the data in Fig. 8 in terms of A4 ([,/L) of Eq. (14).

logo(L /1) to test Eq. (16).
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decays exponentially with cluster size (which should ap-
ply here), that the failure distribution is given in d dimen-
sions by the formula

FpL(I,L)=1—exp[—cL%exp(—kL /I,)], (12)

where ¢ and k are constants: They argue that this distri-
bution Fp; provides a better fit to the data in general
than the Weibull form (which indeed should apply at
p =p. or wherever the probability of a large critical clus-

ter only decays algebraically with cluster size). The
Weibull form is
Fy(I,,L)=1—exp[—cL%I,/L)™] . (13)

In order to test the usefulness of these two formula we
plot data for F(I,,L) by forming the quantity

A(I,/L)=—In{—In[1—F(I,,L)]/L%} , (14)
which according to Eq. (12) should behave as

Ap I, /L)Y=—1InC+kL /I, , (15)
and according to Eq. (13) should behave as

Ayl /L)=—InC+mIn(L/I,) . (16)

The same data for F(I,L) as in Fig. 8 are potted versus
L /I, in Fig. 9(a) to test the Duxbury-Leath form [Eq.
(12)], and versus log,o(L/I,) in Fig. 9(b) to test the
Weibull form [Eq. (13)]. The results clearly indicate that
the Duxbury-Leath double-exponential form [Eq. (12)] is
better for the data seen here. The deviation from the
straight line in Fig. 9(b) is at the top of the graph which
corresponds to the low-current toe (bottom of the S-
shaped curve) in Fig. 8, where the samples are generally
reliable, i.e., seldom break down. This is precisely the
most difficult region to measure experimentally because
the statistics of failure are so low, but also is the most im-

0.7

|ng(|_/||)

(a) Plotted vs L/I, to test Eq. (15). (b) Plotted vs
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portant region for commercial applications since one gen-
erally tries to build reliable systems. The difference in
failure rates between the Duxbury-Leath and Weibull
form can be a substantial factor in this high-reliability re-
gion. It seems likely that fitting experimental data to for-
mula (12) will give much more accurate results when ex-
trapolated to high-reliability conditions. It would be nice
to have real experimental verification of these results.
These computer simulations were run on the VAX
8600 at Rutgers and on the Cyber 205 at the John von
Neumann Computer Center. The conjugate gradient
method was used to efficiently converge to the proper
current distribution for each sample configuration. Small
(up to 35X 35) samples were run on a VAX 8600, where
35X 35 samples typically took 350 sec each, and the large
(up to 200X200) samples were run on the Cyber 205,
where 200 X 200 samples typically took 32 sec each.

V. CONCLUSIONS

We have studied the critical current and voltage-
current relations in a mixed superconducting-normal net-
work of wires in two dimensions and found a strong
dependence upon the distribution of defects or normal re-
gions in the superconductor. Our model was to use the
linearized Landau-Ginzburg equations of de Gennes® and
Alexander® for a superconducting network and to treat it
as a breakdown problem on the percolating network by
assuming a critical current i, for each superconducting
bond. The results are consistent with the critical current
going to zero logarithmically in the thermodynamic limit
(as the sample size goes to infinity). The Duxbury-Leath
formula for the failure distribution is found to accurately
describe the data, and the voltage-current relations are in
agreement with recent experimental results’*~1® on real,
thin-film high-temperature superconductors. In fact, it
was somewhat disappointing to us that everything fit so
nicely with the existing breakdown theories which have
been used for brittle fracture, dielectric breakdown, and
electrical network failure, since there are no really new
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breakdown phenomena seen here. Nevertheless, this is
the first breakdown approach to answer the question of
critical current in superconductors, which is of great im-
portance in applications. Thus, we look forward to ex-
perimental verification of the numerical results and
theories outlined here. It would be particularly nice to
see experimental results on sample-size dependence of the
critical current and the failure-distribution curve.

On the other hand, there are many approximations in
the model used here which will surely be possible to avoid
and which indeed may lead to interesting new breakdown
phenomena. First, the effect of varying the coherence
length &, and the temperature 7 should be explored.
Second, the nonlinear terms in the Landau-Ginzburg
equation should be studied. Even the de Gennes
method®® of discretizing the LG equation to a lattice
could be tested here. And, of course, we have neglected
Ohmic heating in the normal regions, which should make
the superconducting-to-normal transition even more pre-
cipitous. Then, there remains the study of three-
dimensional systems, where the most critical defects are
probably disks (or, “penny-shaped’ regions) perpendicu-
lar to the current flow and for which the DLB theory of
breakdown has specific predictions.® In addition, the con-
centration region near percolation threshold should show
critical exponents and a crossover to the Weibull distri-
bution of failure rates. And finally, one should study the
dynamic process as the network fails or goes normal,
where there surely are interesting, measurable effects.
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