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We have fabricated small superconducting tunnel junctions with a large single-electron charging
energy E. and measured the low-temperature current-voltage characteristics of devices having a
wide range of ratios of E. to the Josephson coupling energy E,. For E,~E,, the I-V curve is resis-
tive at all currents and the critical current is greatly reduced relative to that of conventional Joseph-
son junctions. If E; << E_, we find a novel regime in which aspects of the Coulomb blockade of tun-
neling coexist with features typical of Josephson tunneling. We describe a number of models which
appear to explain the salient new features of our observations. In the high-temperature regime,
thermal activation and damping effects are very important, since E, and E; are only of order 1 K,
and the experimental results are fitted by extending well-established classical methods. At low tem-
peratures, however, quantum fluctuations of the phase appear to become much more important, as
thermal fluctuations and quasiparticle damping freeze out. We thus present a number of quantum-
mechanical treatments, based in phase and charge space, which provide a semiquantitative account

of the measurements in the low-temperature regime.

I. INTRODUCTION

In this paper we investigate the dynamics of mesoscop-
ic superconducting tunnel junctions. Our study is based
on measurements of the current-voltage (I-V) charac-
teristics of high-resistance low-capacitance Josephson
junctions, whose single-electron charging energy e2/2C is
comparable to, or greater than, the other relevant ener-
gies.! 73

The dynamics of a Josephson device may be described
by a Hamiltonian H, which is a function of the phase
difference ¢ between the wave functions of the two elec-
trodes, and the charge Q transferred between the elec-
trodes. Ignoring dissipation, we write

H($,Q0)=E_.(Q/e)*—E,cosé . 1)

The effect of a current bias can be incorporated by adding
a term equal to —(#/2e)I¢$, where I is the bias current.
The character of the dynamics describing a Josephson de-
vice thus depends fundamentally on the ratio of two
energies: E;, the Josephson coupling energy
[E;=(h/8e2)(A/R,), for an ideal tunnel junction at low
temperatures], and E_, the charging energy (E, =e?/2C).
A is the superconducting energy gap, R, is the normal
resistance, and C is the capacitance of the device. For
conventional junctions, the dominant energy in the prob-
lem is the Josephson coupling eriergy and the most im-
portant term in H(¢$,Q) is the one associated with E;.
The state of the system at low currents is then simply ob-
tained by the minimization of energy by a classically
well-defined ¢ value at the minimum of a well of the tilted
cosinusoidal potential. The phase ¢ is thus “trapped” in
a potential well until the tilt imposed on the Josephson
potential by the current bias is enough to allow it to es-
cape. This results in the I-V characteristic features
shown in Fig. 1(a); a zero resistance branch at low
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currents, and a very sharp jump to the dissipative voltage
state at a critical current I,.

In recent years, by fabricating very small tunnel junc-
tions,* granular films,*>~ 8 or by using a scanning tunnel-
ing microscope®!® (STM), it has been possible to study
devices in which the charging energy dominates over the
other energies of the system (such as kzT or E;). This
has been achieved in samples with both normal and su-
perconducting electrodes. In normal samples, a typical
low-temperature I-V response is shown in Fig. 1(b). The
transfer of an electron from one electrode to the other in-
volves an energy change of e2/2C. At low voltages
charge is thus trapped, and the resistance is very high,
until the system acquires enough energy from the biasing
source to enable an electron to tunnel to the other elec-
trode. At this point (V' =e/2C) the dynamic resistance
decreases, producing a knee in the I-V curve. This effect
is known as the “Coulomb blockade.”!!

A similar effect is observed in superconducting sam-
ples* in which the charging energy is much larger than
the Josephson coupling energy. As a result the knee at
V =e/2C is superimposed on the superconducting ener-
gy gap, as shown schematically in Fig. 1(c). In a broad
sense, this effect is conjugate to the Josephson effect de-
scribed above. In conventional devices ¢ is a “well-
defined” semiclassical variable. When the charging ener-
gy is dominant and the Josephson coupling energy is
insignificant, quantum fluctuations in ¢ are very large
and the quantum-mechanical conjugate Q (the charge
difference between the electrodes) may now be treated
classically. The resulting dynamics are very different:
the zero-resistance branch up to I =I_ of the Josephson
effect I-V curve is replaced by a very high-resistance
branch with no critical current.

Our study explores the crossover region between the
two extremes described above. By varying the ratio
x=E_/E;, we sweep from a regime in which the Joseph-
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FIG. 1. Schematics of typical tunnel junction I-V charac-
teristics. (a) Underdamped superconductor-insulator-
superconductor tunnel junction with E;>>E kpT. (b)
Normal-insulator-normal tunnel junction with E. >>kpT. (c)
Superconductor-insulator-superconductor tunnel junction with
E.>>E;kgT.

son coupling energy is large, well into the regime in

which the charging energy appears to dominate. Experi-

mentally, we have achieved this in two different ways.

First, we have constructed samples of different areas and

oxide barrier thicknesses, which have allowed us to go
1

from x=~q; to x=~10. Second, we have further de-

creased E; by applying a magnetic field, which has en-
abled us to study the system with x values in principle ap-
proaching infinity, as E; —0.

If the Josephson energy is much larger than e?/2C, we
obtain results typical of conventional Josephson devices
[as sketched in Fig. 1(a)]. As the Josephson and charging
energy become of comparable magnitude, however, we
observe two novel regimes. ! 312 First, we find that as E;
becomes of order E_, the critical current is greatly re-
duced and the I-V curve becomes resistive, even at very
low bias currents, as shown in Fig. 2. Second, if the
Josephson coupling is reduced further by applying a mag-
netic field, we observe the new type of I-V curve shown in
Fig. 3. The striking feature is the coexistence of a plateau
beginning at V,=e/2C, reminiscent of Coulomb
blockade measurements made on samples in which E, is
completely dominant, with other features common to
Josephson tunneling, such as a sharp jump from the pla-
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FIG. 2. I-V curve of a sample with R, =70 kQ and estimated
capacitance C~1 fF, taken at T=0.98 K and H =0, showing
definitions of I, I,, and R,. Parts (a) and (b) have the same hor-
izontal scale but different vertical scales.

teau voltage of the superconducting energy gap voltage at
a “critical current” I,. If the Josephson coupling is re-
duced even further, we recover Coulomb blockade re-
sults: The critical current goes to zero, and if the field is
large enough to destroy the superconductivity, an I-V
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FIG. 3. I-V characteristic of a single Josephson junction
R, =140 kQ and estimated C=1 {F in a magnetic field of 0.2 T
at T =30 mK.



curve analogous to that shown in Fig. 1(b) is observed.

In this paper, we discuss these observations, and ex-
plore their interpretation in some detail. We begin by
providing an account of our experiments in Sec. II. We
cover the methods used in the fabrication and measure-
ment of the samples in Sec. Il A. Next, in Sec. II B, we
summarize our experimental results. Section III contains
a discussion of models used in interpreting our results.
We first define the basic models used in Sec. IITA.
Second, in Sec. III B, we examine the semiclassical mod-
els used in interpreting earlier work to see to what extent
they can explain the new data by simply taking account
of the new parameter regimes involved. This treatment is
partially successful in interpreting our higher-
temperature results, as thermal fluctuations apparently
overwhelm quantum-mechanical fluctuations. Third, in
Secs. III C and III D, we investigate to what extent the
introduction of a more fully quantum-mechanical pic-
ture, including large quantum uncertainties in the phase,
can account for the remaining features. Section III C ap-
proaches the problem in ¢ space, which is a natural ex-
tension of our semiclassical treatment of Sec. III B. Sec-
tion III D approaches the problem in Q space, which is
more appropriate in the large charging energy limit. We
conclude in Sec. IV.

II. THE EXPERIMENT

A. Experimental techniques

The junctions are patterned'®!* using electron-beam
lithography. We begin by coating an oxidized silicon
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substrate with a thick layer of PMMA/MAA
(polymethylmethacrylate/methacrylic  acid) polymer
resist (spun at 3000 rpm) and a thin layer of PMMA
(spun at 8000 rpm). Next, the substrate stencils are ex-
posed using a modified JEOL 31U scanning electron mi-
croscope and developed in methylisobutylketone (MIBK).
We have found that the optimal combination of large un-
dercut (> 1 pum) and small linewidth (~0.2 pm) may be
obtained by the combination of very low beam current
(~4 pA), low beam voltage (10-12 kV), short exposure
time, and long development time (5-15 min). The struc-
tures resulting from this process are of the suspended
bridge type commonly used for resist-aligned junction fa-
brication. The device is then fabricated by thermally eva-
porating the first tin electrode, oxidizing by a dc glow
discharge, and thermally evaporating the second tin elec-
trode. Following the resist-aligned method, the evapora-
tions are performed at different angles with respect to the
substrate normal to insure junction overlap under the
resist bridge. The junction leads are made of tin in the
immediate vicinity of the junction (~20 pm). Their
thickness is about 800 A. The remaining leads, patterned
by photolithography, are made of 400 A of Au evaporat-
ed on top of 50 A of Cr. A scanning electron microscope
photograph of one of our junctions is shown in Fig. 4.
The junctions were measured in a top-loading Oxford
Instruments dilution refrigerator. To avoid shorts
through the oxide barrier, possibly caused by tin whisker
growth, the samples were cooled within a few hours of
the evaporation. Once below liquid-helium temperature,
however, the junctions could be measured without ob-
serving any significant degradation for several weeks.

FIG. 4. Scanning electron microscope photograph of a previously measured sample with area 0.1 (um)?, normal resistance R, =35

kQ, and capacitance C ~2 fF.
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TABLE 1. Sample parameters: R, is the normal resistance of the junction. R, is the low-temperature leakage resistance. T, is
the lowest temperature at which measurements were carried out. Area is the area of the sample, from scanning electron microscope
photographs. C is the capacitance of the sample; C was estimated by Coulomb blockade measurements in samples 4, 5, 8, and 11; for
the other samples, the estimate C was given by the geometrical capacitance. E, is the T=0 Josephson energy and E, is the single
electron charging energy, defined in the text. Njy; is the total number of junctions present in a sample; the junctions were patterned in
a linear array and the quoted measurements correspond to the lowest I, (highest resistance) junction in the array.

Sample R, (kQ) Ry, (kQ) Toin (K) Area [(um)?] C (F) E; (K) E. (K) Ny,
1 0.52 10 1.4 0.1 2 40 0.45 2
2 34 105 1.8 0.15 3 6.2 0.3 1
3 6.5 3000 0.85 0.4 7 32 0.15 2
4 8.5 4000 0.02 0.15 3.5 2.7 0.3 1
5 14.8 2 860 0.02 0.1 2.5 1.4 0.35 1
6 30 2500 1.3 0.025 <1 0.7 >0.9 2
7 ~30 0.02 0.1 2 0.7 0.45 11
8 34 2400 0.02 0.1 2 0.6 0.45 1
9 70 40000 0.02 0.04 1 0.3 0.9 2
10 110 0.02 0.05 1 0.19 0.9 2
11 140 300000 0.02 0.05 1 0.15 0.9 1

The samples were isolated from the environment by RLC
filtering composed of 10-k cold resistors and the exten-
sive distributed inductance and capacitance of the leads.
The measured cutoff frequency of the leads was below 1
kHz. The dilution refrigerator was enclosed in an electri-
cally screened room, to avoid rf pickup. In addition, to
minimize the extrinsic noise fed into the sample by the
measurement setup, the latter was kept very simple: The
current source was composed of a dry battery, whose
voltage was adjusted by a variable voltage divider, and a
500-M(} current-limiting resistor. The voltage was mea-
sured by a PAR 113 preamp and a Hewlett Packard ana-
log XY recorder. The power levels required to measure
R, and I, (defined in the next section) were in general
quite small, in the low-femtowatt range.

An important part of our analysis is the estimation of
the intrinsic capacitance of the junction, defined in this
context as the capacitance due only to the parallel plate
geometry of the superconducting electrodes separated by
the oxide barrier through which the tunneling occurs.
The intrinsic capacitance is given by C;=¢€ye, 4 /d. A is
the junction area, obtained from scanning electron micro-
scope photographs. We use a dielectric constant €, ~6
typical'>'® of Sn oxide barriers grown by glow discharge,
and a barrier thickness d =25%5 A, which is quite
reasonable for our junctions, given their very low current
density (and thick barriers). Table I contains a list of
sample parameters.

B. Experimental results

Our observations can be classified into two regimes.

1. Regime of comparable charging and Josephson energy

A typical I-V curve for a high-resistance, low-
capacitance junction in the first regime is shown in Fig. 2.
Figure 2(a) has the same horizontal scale as 2(b), but a
hundred times more sensitive vertical scale. The estimat-
ed value of x =E_ /E; for this sample is 2.4. Similar I-V

curves were also observed by Ono et al.!’

The I-V curve displays two different measurable critical
currents, I, and I,. I, is the maximum current that can
be carried before the jump into the high-voltage regime.
I1,, the recapture critical current, is the current at which
the system returns to the low-voltage state. The familiar
““zero-voltage state” is not found in this type of junction
at any current level, as is evident from looking at Fig.
2(a). The behavior of the system is always observably dis-
sipative, and can be characterized by the resistances de-
scribed below. Our definitions of critical currents are
thus modified from the standard ones and are motivated
by the need to describe our observations. Our interpreta-
tion of these critical currents is developed in the
remainder of this paper.

In a classic device, neglecting fluctuations, I, is given
by the value I, related to E; by E;=#I_,/2e, where I
monotonically increases with decreasing temperature. '8
In Fig. 5(a) we display the temperature dependence of I,
and I, for the junction with 70 k) normal resistance.
Note the remarkable temperature dependence of I, first
rising, then dropping by a factor of 10, then rising again
by a similar factor as T is reduced. This is very different
from the monotonic rise of I,4(T). Moreover, the mea-
sured value (I,=1.2 nA) at low temperatures is much
less than the theoretical I,o(7 =0)=14 nA. Another im-
portant observation is that the plotted I, values are aver-
ages over a very narrow distribution of switching currents
measured on repeated sweeps, with width AI, of only
~0.05I,~0.0031,,. Finally, note that I,=I, for
T /T, >0.6, where the I-V curve is not hysteretic.

In Fig. 6, we display the temperature dependence of I,
for a number of different samples. The striking non-
monotonic behavior sets in as the sample resistance be-
comes of the order of ~10 k. Our lowest resistance
junctions exhibit a monotonic temperature dependence.
Moreover, the measured critical current depression is not
as marked as in the high resistance samples, and can be
accounted for quite well by conventional premature
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FIG. 5. (a) I, and I, vs T for the sample with R, =70 kQ. (b)
Left: predicted low-temperature I, due to Zener tunneling and
thermal activation. Right: predicted I,(T), described in the
text.

switching arguments.

As mentioned above, the behavior of our device always
appears dissipative; to describe it, we discuss three direct-
ly measurable resistance values. Using the sample in Fig.
2 as an example, we have the normal-state resistance
R, =70 kQ, the low-voltage resistance R, (which ranges
from 70 kQ near the transition temperature 7, down to
~1 kQ as T—0), and the subgap leakage resistance R
(ranging from 70 kQ at T, up to 40 MQ as T—0). The
latter is defined by the slope of the quasilinear part of the
decrease in V from the gap voltage, measured on an ex-
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FIG. 6. I, vs T for seven different samples. The normal resis-
tance of each sample is shown. The solid curve is I, T) for the
sample with R, =550 Q.
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FIG. 7. R, vs T for seven samples. For T below ~0.85T, for
the sample with R, =520 Q, and below 0.607, for the sample
with R, =3.4 kQ, R, was below our experimental resolution.

panded current scale.

In Fig. 7, we display the temperature dependence of
Ry(T), for a number of different samples. While for low
resistance samples R, soon becomes immeasurably small
below T, resembling the behavior of conventional de-
vices, as R, becomes of the order of 10 kQ the behavior
changes, and R is significant over the whole temperature
range. Concentrating on the 140-k{) sample, for exam-
ple, as T is reduced below T,, where R,=R,,, R, drops,
slowly at first, and then more sharply below 0.17,.

Figure 8 shows a plot of the measured R; versus T for
a typical sample. For our samples, the leakage resistance
is found to be well approximated by a shunt combination
of a thermally excited quasiparticle term ~R,e 2
a residual conductance at T =0:

and

—A/kpT

RN T)=R;0)+R, e )

R (kQ)

FIG. 8. R; vs T for the sample with R, =34 kQ. The solid
line is the fit using Eq. (2).
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FIG. 9. Low-temperature leakage resistance vs the normal
resistance for all measured junctions. The solid line has slope 2

and indicates the trend of proportionality between R;(0) and
R2.

In all measured samples, the oxide barriers were found to
be of very high quality, with R; (0)~=~100-10000R,. The
measured low-temperature leakage resistance R;(0) is
plotted in Fig. 9 as a function of R,. The trend is for
R, (0) to be roughly proportional to R?, as discussed fur-
ther in Sec. IIT A.

Summarizing, the novel phenomena to be understood
in this regime are (1) the existence and magnitude of
Ry(T); (2) the reentrant temperature dependence of I,
and 1,; and (3) the reduction of I, by an order of magni-
tude relative to I o, while maintaining a narrow switching
distribution.

2. Regime of very small Josephson energy

To further investigate the crossover from the small-x
to the large-x regime, we have found it very convenient to
use a parallel magnetic field to control the Josephson cou-
pling energy E;. The field reduces the Josephson cou-

1.0

e R, = 140kQ, C= IfF
0.8

1 0.61
—c
1.(H=0)

0.41

0.21

‘.. .8 wg
0.0 T T F—
0.0 0.1 0.2 0.3 0.4

H(T)

FIG. 10. I, vs H for the sample with R, =140 kQ. The criti-
cal currents are normalized to the value in zero magnetic field.
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FIG. 11. Series of I-V curves taken as a function of magnetic
field at fixed temperature, for the sample with R, =140 kQ.

pling between the electrodes by phase modulation and by
reducing the energy gap, both leading to a smaller
effective E;. A typical low-temperature I -versus-H
curve is shown in Fig. 10. In almost all our junctions, the
magnetic field monotonically reduced I,. This absence of
the ideal sinx /x dependence may be ascribed to the
nonuniformity of the device. Since part of the junction
area is on the edge of the electrode and part on top, the
field orientation is different in different parts of the de-
vice. Moreover, in a junction of this sort, fabricated us-
ing very long oxidation times, we expect the distribution
of the current through the barrier to be nonuniform. The
monotonic depression of the energy gap caused by the
large magnetic fields used also contributes to the nonideal
I, -versus-H dependence.

Figure 11 shows a sequence of I-V curves taken on the
sample with 140 kQ normal resistance. While at low
fields the observed I-V curves are only moderately resis-

RNy
U I000)

T=0.1K 02K 04K 05K 06K 07K 08K I1.1IK

(=

I

FIG. 12. Series of I-V curves taken as a function of tempera-
ture at fixed magnetic field, for the sample with R, =140 k().
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FIG. 13. Measured blockade voltage ¥, as a function of
junction area. The three measured samples (from left to right)
had R, =140, 35, and 15 k). The curves correspond to e/2C,
calculated using an oxide barrier thickness of 30 A (top curve)
and 20 A (bottom curve), and €,=6.

tive at I <1, as described in the previous section, beyond
a critical field H, (~0.16 T, in Fig. 11) the whole charac-
ter of the I-V curve changes. The response now becomes
highly resistive at low currents (with dynamic resistance
of order R; ), rising to a plateau at ¥'=V,. If the current
is increased further, the voltage rises on a ramp with
slope R ~10° Q, from which it jumps to the gap voltage
V, at a current value we identify as I,. Once the novel
behavior sets in, the value of ¥V, is found to be insensitive
to magnetic field and temperature. This is shown, for ex-
ample, in Fig. 12: The I-V curves, taken at the intermedi-
ate field of 0.13 T as a function of temperature, undergo a
transition similar to that shown in Fig. 11 as a function of
field. Apart from rounding, the value of ¥}, is the same in
all cases.

By reducing the Josephson coupling energy with mag-
netic field or temperature, we can thus induce a striking
transition in the shape of the I-V curve. The new curves
are highly resistive at low currents, qualitatively reminis-
cent of the Coulomb blockade effect mentioned in the In-
troduction. Moreover, as shown in Fig. 13, to the pre-
cision with which C; is known, the measured ¥V, corre-
sponds to e /2C; in all measured samples, where C; is the
intrinsic capacitance. In this novel regime, features typi-
cal of the Coulomb blockade, such as the knee at
V =e/2C, coexist with a sharp voltage jump at a current
reminiscent of the Josephson critical current 1.

III. THEORETICAL MODELS AND DISCUSSION

We now present our interpretation of the experimental
results. We begin with a simple discussion of the assump-
tions involved in applying the resistively and capacitively
shunted junction (RCSJ) model to our devices. We then
discuss a few familiar examples in which the RCSJ model
has been used in the past to explain the behavior of con-
ventional (high capacitance, high E;) Josephson junc-
tions. This discussion is used as the springboard for the
interpretation of our novel experimental results. Sections
IIIB-III D contain the heart of our theoretical treat-
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ment. Section IIIB considers the implications of the
RCSJ model in the semiclassical limit, when the Joseph-
son and thermal energies are comparable. This treatment
is used to provide estimates for our experimental results
in the higher-temperature regime, when quantum fluctua-
tions are small compared to thermal fluctuations. In
Secs. IIIC and IIID we discuss a quantum-mechanical
treatment of the problem, and for simplicity ignore (for
the most part) thermal fluctuations. This approach is ex-
pected to be relevant at low temperatures, as thermal
effects freeze out.

A. The base model

1. Assumptions

The discussion presented in this article is based on the
usual resistively and capacitively shunted Josephson junc-
tion (RCSJ) model'*?° shown schematically in Fig. 14. A
complete description of the model involves characteriza-
tions of the Josephson coupling channel by a definition of
E;, of the capacitive channel by the definition of C, and
of the dissipative channel by the definition of R (V).

We assume that E; is given by E; =#I_y/2e, where I,
is given by the Ambegaokar-Baratoff relation:'®

__mA A
2eR, 2kyT

1, tanh . 3)

This formula has been found to give excellent agreement
with critical current measurements on large low-
resistance (R, <5 ) Sn-Sn oxide—Sn junctions where
thermal and quantum fluctuations effects are expected to
be negligible.!> These samples are fabricated in this lab
with the same equipment and techniques as those used in
the fabrication of the small high-resistance samples
which are the subject of this study.

We also assume that C can be approximated by the in-
trinsic capacitance C; and that the relevant resistance is
given by R; for |V] <2A /e, and by R,, otherwise. While
it may seem surprising that the extensive distributed ca-
pacitance of the leads does not overwhelm the small in-
trinsic capacitance, there is significant experimental

C X R(V)

FIG. 14. Schematic of the equivalent junction circuit used in
the RCSJ model.
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justification for our assumption. For example, van Ben-
tum et al.’ and Hartmann et al.'° recently performed
Coulomb blockade measurements in a scanning tunneling
microscope (STM) with normal electrodes: Their mea-
sured capacitance values in the neighborhood of 1078 F
were unaffected by the very large distributed capacitance
of the STM apparatus.

To further test the effect of lead impedance on the dy-
namics of our devices, we have fabricated junctions in
single, double, and 11-junction configurations. The be-
havior of the smallest junction in each of the measured
configurations appeared mostly unaffected by the pres-
ence of companion junctions in the leads, whose capaci-
tance and inductance would grossly affect the lead im-
pedance. Thus it appears that the dynamics of our junc-
tions depend mainly on their intrinsic impedance. While
this is in apparent contrast with the observations of Mar-
tinis et al.?! on much larger junctions, we believe that the
different behavior may be due to the importance of
single-electron effects in our devices. As the energy
change due to the tunneling of a single electron becomes
dominant, the problem will become more microscopic in
nature, and the time scale fast. The time scale for the dy-
namics of a conventional semiclassical Josephson junc-
tion (of the kind used by Martinis et al.?!) is given by the
Josephson plasma frequency, typically of order 10°-10!!
Hz. In the opposite regime, when the charging energy is
completely dominant (as is the case in the observation of
van Bentum et al.®), the characteristic frequency is
thought to be the inverse of the electron tunneling time,
typically of order 10'° Hz. The faster the time scale the
higher the impedance of the inductive leads. These argu-
ments do not show that the devices will be completely in-
dependent of the leads; we believe, however, that the
parasitic contributions are small, and that the intrinsic
capacitance C;, in our system, is a reasonable estimate of
the total capacitance of the device. This position will be
further justified a posteriori by comparing the predictions
of this model with our data.

Finally, since we believe that the low-temperature be-
havior of our devices is not dominated by dissipation in
the leads, it is important to consider the nature of the in-
trinsic dissipation R (V). Since dissipation in an ideal
Josephson device is determined by the tunneling of quasi-
particles, the discrete nature of the charge transfer in the
tunneling process will become important. We consider
this especially in the last sections of this paper, when we
analyze the coexistence of the Coulomb blockade with
some features of Josephson tunneling. One interesting as-
pect of our measurements of R, the low-voltage part of
R (V), is that its temperature dependence follows quasi-
particle thermal activation at higher temperatures, but
flattens off at low T, as described by (2). We believe that
the existence of a finite R; as T—0 is not due to metallic
whiskers partially shorting out the barrier, since R; (0) is
very large, typically of order 108 Q. The whisker’s max-
imum length would have to be of order the barrier thick-
ness (=25 A). Therefore, a resistance of 10® Q would re-
quire a resistivity much larger than 1 Q cm, even for a di-
ameter as small as one atomic spacing. This appears un-
likely, and we believe that this temperature-independent
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dissipation term may instead be due to a tunneling mech-
anism.

The apparent proportionality of the residual leakage
resistance to R? (see Fig. 9), suggests that a possible
source of low-T dissipation may reside in the effect of An-
dreev reflections on the tunneling I-¥ response. This was
analyzed by Blonder, Tinkham, and Klapwijk (BTK),??
who showed that the Andreev channel should have a
probability going as the square of the probability of
charge transfer in the normal channel. If we extrapolate
the square-law relationship back, we find that R, =R, (0)
for a resistance of order 100 ). In the BTK theory, the
point at which the normal and leakage resistance are ap-
proximately equal corresponds to a device of ‘“barrier
strength” Z (see Ref. 22) of order one, i.e., a device whose
barrier is very weak, and whose I-V characteristic begins
to resemble a microbridge rather than a tunnel junction.
A resistance of 100 Q appears high for a device with mi-
crobridge characteristics. However, this apparent incon-
sistency can be resolved if we remember that there is evi-
dence (from the magnetic field data, for example) that the
oxide barrier may be quite nonuniform. Since the An-
dreev term is proportional to the square of the tunneling
probability, a small fraction of the junction with a
thinner barrier may dominate in the leakage term.

2. Basic consequences

The nondissipative aspect of the RCSJ model can be
described by the Hamiltonian

H=—E;cos¢p+Q?/2C .

Taking account of the quantum nature of the phase-
number relationship described by the commutator

[¢,0]=2ie, by making the operator replacement
Q —2ie /3¢, we obtain
H=—E,;cosp—4E_,d?/3¢? , 4)

where, again, E,=e?/2C. Leggett and other au-
thors®*~%” have shown how to introduce damping into
the problem by coupling an infinite collection of harmon-
ic oscillators (representing the environment) to the sys-
tem described by (4).

In the classical approximation, E, <<E;, and one can
neglect the term in 82/3¢% Thus, in the ground state,
Y(¢@) is approximated by a delta function at the minimum
(¢=0) of the Josephson cosine potential [more exactly,
the width 8¢~(E,/E;)!/*]. Introducing a current bias
by adding a term —(#/2e)l¢ to (4) (the “tilted wash-
board model”’), the minimum energy shifts to

¢=sin" (I /I,y

so that I =1I,ysing, the usual Josephson current relation.
However, when I > I, there is no energy minimum, and
the representative point accelerates down the washboard,
reaching a terminal velocity é (corresponding to a volt-
age V =#¢/2e~2A/e) limited by dissipation due to
quasiparticle transfer at the gap voltage. Thus the model
described by (4) leads in this limit to the monotonically
increasing I, =1,(T), and R,=0, since V=0 for I <I_.
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These results well describe the behavior of conventional
large-area low-resistance (high I.,) junctions; the I-V
curves of such devices, in which E; >>E_, kT, were de-
scribed in the Introduction.

If kpT or E, are significant in comparison with E,
I.(T) is no longer expected to closely follow I.o(T). It is
now well established, both experimentally’® 32 and
theoretically,>* 3% that thermally activated “escape”
from the minimum of the tilted cosine potential causes
“premature switching” to the finite-voltage regime. The
thermal escape rate is approximately given by

—AUW /ky T

A=

=v,e

The attempt frequency is given approximately by
v,~w,/2m, and is typically of order 10 Hz
[w,=(1/%)8E,E, )172]. As a result, in experiments with
current sweep times of order 1 s, escape will occur as
soon as AU(I)/kg T =~Inv,~20>>1. Taking account of
the fact that AU (I)~2E;(1—1/I.4)*/? to a good approx-
imation, one expects switching to occur when this
AU (I)=20 kT, or more generally, at

2/3
kT 51,
B n |22 ] , (5)

2E; dI /dt
where 81, /(dI /dt) is the time spent sweeping through
the switching distribution. A more careful analysis by
Danchi et al.3! gives the same result, apart from small
numerical refinements. Thus the apparent I. depends
logarithmically on the current sweep rate.

Because this escape is a probabilistic event, the I, mea-
sured in an actual experiment is different on each current
sweep. The distribution of measured I, values has a
characteristic width 8., mentioned above, which is pro-
portional to the extent of the depression of I.. For the
dependences cited above, one finds

In

I=I, [1 -

I,—1
sI 2 c0 4

" 3 In[v,81, /(I /dD)] ° ©

In our samples, I, ~0.1I , and the logarithm is of order
20, so that (6) would give 81, =0.03I,,. This result is in-
consistent by an order of magnitude with the new data, in
which 81, =0.0031,,. The switching distribution is sim-
ply too narrow to be compatible with an explanation of
the depression of the observed I, so far below I, by
premature switching. Put another way, for I so far below
1., the cosine potential is barely tilted, and the height of
the barrier is almost independent of current. Hence a
small change in current could hardly account for a sud-
den onset of switching out of the zero-voltage state.
Moreover, this picture of stochastic escape is qualitative-
ly incompatible with the finite voltage below I,, which
implies a steady-state phase evolution, rather than meta-
stable locking in position in a single well until the escape.
As one goes down in temperature, eventually this
thermally activated escape becomes less likely than es-
cape by macroscopic quantum tunneling (MQT) through
the barrier.2!232%26.39=44 This mechanism already takes
us beyond the classical regime, but in the junctions stud-
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ied previously,?"3°"% this escape probability was
sufficiently low that one could still treat the phase as a
rather localized semiclassical quantity, which occasional-
ly made a probabilistic transition through the barrier into
a free-running finite-voltage state. In this regime, it was
show‘{l5 that there is a crossover temperature given rough-
ly by

kB Tcrossover =~ ﬁwp /2m=( SECEJ )1/2 /2 . (7)

Below this temperature, the same qualitative probabilistic
switching should occur as in the thermally activated re-
gime, except that the constant T, .v.r replaces the actu-
al temperature. Thus the same inconsistency between a
narrow switching distribution and a huge depression of I,
below I, exists in this regime as in the thermally activat-
ed one, and a more appropriate explanation must be
found.

B. The new regime: the semiclassical limit

In the previous section, we have argued that the usual
dynamics describing Josephson junction behavior do not
apply to our observations. The common situation of a
constant ¢ value at I <I, followed by a probabilistic
switching into the finite-voltage “running” state is simply
inconsistent with our measurements. Since the observed
I-V curves are resistive, even at the lowest currents, it
seems very plausible that the dynamics of the system are
characterized by very frequent phase slips, which would
give rise to dissipation, and thus to R,. Mechanisms of
these frequent phase slips would be thermal activation
(since for devices typical heights of the Josephson poten-
tial are of order 1 K), and quantum tunneling (since E_ is
of order E;). However, since a current bias tilts the
Josephson potential, the system would possibly exhibit no
critical current at all, since once the first phase slip
occurs the subsequent ones become easier. To account
for the observations, therefore, we need to consider the
effect of damping as a retrapping mechanism. Qualita-
tively, therefore, the dynamics of our devices may be de-
scribed as follows: At I <I., the phase frequently es-
capes from its potential well. The energy it acquires in a
27 phase slip, however, is lost through damping, and the
phase retraps in a subsequent well. This process goes on
until I =1, at which point one of two things happens.
Either the potential tilt becomes enough for the system to
acquire more energy than it loses from damping, or some
intrinsic limit to the maximum Josephson current is ex-
ceeded. We believe the first situation to be valid at
higher temperatures, in what we call the “semiclassical
regime,” and the second situation to be valid at low tem-
peratures, in what we call the “quantum regime.”

1. Estimates for the critical current: effect of damping

It is well known that so long as a junction is under-
damped, the amount of damping affects the escape rate
only through a modest change in the prefactor in (4).
Since this factor only enters logarithmically in the
depression of I., this change is usually unimportant.
However, the amount of damping is the crucial factor in
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determining the retrapping critical current I,. Because I,
and I, coincide above about 27, in the new data, where
they are both strongly reentrant, it is appropriate to re-
view the physics of what is going on with I, as well as 1.

Within the simple RCSJ approximation, in which the
damping is attributed to a simple linear resistor of value
R shunting the junction, Stewart'® and McCumber!
showed that the degree of damping was conveniently de-
scribed by the dimensionless parameter

2el oR2C
=R
They worked out the dependence of I, /I, on 3., and in

particular showed that so long as B, was significantly
larger than unity, the relation was the simple one

L _4_ 1
Io ™ /B,
From these relations it follows that

I, < [Io(T)/CI'"?R(T)"'. )

(8)

The temperature dependence of I, is the well-known
Ambegaokar-Baratoff relation (3), which monotonically
increases as 7 is decreased. Accordingly, if (9) is to de-
scribe the temperature dependence of I, in this reentrant
regime below ~0.97,, it must result from the tempera-
ture dependence of R (T). In fact, if we substitute the
leakage resistance approximated by (2), we find excellent
agreement with the shape of the temperature dependence,
as shown in Fig. 5(b). (The magnitude is too small by a
factor =~7, but we shall see that the discrepancy can be
accounted for largely by fluctuation effects which are not
included in the Stewart-McCumber analysis.)

To see whether it is reasonable to substitute R; for R
in f3,, it is necessary to examine the physics behind this
formula for I,. It is useful to consider the motion of a
representative point in the tilted washboard potential (see
Fig. 15). In the absence of damping, it moves horizontal-
ly, representing the conservation of energy in the pres-
ence of the energy input from the current source. In the
presence of damping, the trajectory sags downward to
reflect the loss of energy at the rate dE /dt =—V?2/R.
From the Josephson relation, V is related to the rate of
change of phase along the washboard by
V =(#/2e)d¢/dt, as well as the component of the total
energy E stored in the capacitance, 1C V2. By combining
these relations, one can write

dE _ #

d¢ 2eR

2(E +E;cosd) 2
C b

in which R is to be understood as being a function of the
instantaneous voltage, which is determined by integrating
this equation forward in ¢. The condition for I, is that, if
the representative point starts at the top of one maximum
of the tilted washboard, where it has zero velocity, it
should just exactly reach the next maximum, again with
zero velocity. If the tilt (i.e., current I) is any greater, the
representative point will run away at a rate limited by the
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FIG. 15. (a) Schematic of the effect of fluctuations on the re-
trapping process. Total system energy is plotted vs phase. (b)
Sketch of the effect of thermal fluctuations in reducing and
eventually eliminating the hysteresis in an underdamped
Josephson junction.

damping; if it is any less, it will be trapped in the next
minimum. For this critical trajectory, the voltage oscil-
lates between zero (at the maximum) and a maximum
value such that %CVZQZE 7, corresponding essentially to
the plasma frequency. The average voltage, as read off
the I-V curve, is evidentally less than 2A /e. Theoretical-
ly, one expects the quasiparticle conductance to be only
weakly dependent on voltage for eV <2A. Accordingly,
it is plausible that the average R determining I, should be
quite similar to the measured R; at the average voltage,
and that is what the data imply.

2. Estimates for the critical current:
effect of thermal fluctuations

It is well known, as noted above, that thermal fluctua-
tions have the effect of reducing the measured I, by in-
ducing premature switching out of the zero-voltage state.
It is less well known that thermal fluctuations have the
opposite effect on I,, i.e., they increase it. This point has
been made by various authors, recently by Cristiano and
Silvestrini (CS),*¢*’ who also presented the results of nu-
merical calculations. Since this result seems counterin-
tuitive to many, it is worthwhile to give a simple physical
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argument which establishes the correctness of the sign of
the effect.

Consider Fig. 15(a), which depicts the tilted washboard
potential at the current corresponding to I, in the ab-
sence of fluctuations. At this current value, the represen-
tative point starting at the top of one barrier follows a
trajectory which reaches the corresponding point at the
next maximum. Now consider the effect of fluctuations
which raise or lower the energy discontinuously at some
point on this trajectory. If the initial fluctuation is down-
ward, the trajectory continues downward because energy
is dissipated at the rate —¥V?2/R and is not recovered
from the current drive since the trajectory is confined to a
single minimum. On the other hand, if the initial fluctua-
tion is upward in energy, this increases +C V2 and hence
V2 /R, so that the trajectory falls more steeply, eventually
returning to the marginal trajectory on which it started,
which it follows stably until the next fluctuation occurs.
Since upward fluctuations recover while downward ones
cause retrapping, it is clear that the fluctuations tend to
make the system more stable against runaway. Accord-
ingly, the marginal current value (tilt) giving retrapping
is greater in the presence of fluctuations than without
them, so I, is increased.

As shown schematically in Fig. 15(b), then, the effect of
fluctuations is to induce a convergence of I, and I, to-
ward a common intermediate value, eliminating hys-
teresis. Another effect of the fluctuations is to cause both
I, and I, to acquire a probabilistic switching character,
as has been mentioned earlier. As the fluctuations in-
crease further in strength beyond that causing the coales-
cence of I, and I,, the switching back and forth in the vi-
cinity of this critical current value becomes so rapid com-
pared to experimental time scales that the measured volt-
age averages to give a smooth continuous resistive transi-
tion. The value of this coalesced I,=1I, can be deter-
mined by simulation methods, but one can also reason
that it will be determined by the physics of I, rather than
the physics of I,, since when fluctuations are this prom-
inent, the system is activated out of its metastable mini-
ma so quickly that “premature” switching is taking place
continuously. The crucial question is at what current the
damping assisted by fluctuations leads to the retrapped
state being the more dynamically stable one, and this is
the consideration determining I,. We conclude that, in
the nonhysteretic regime near T, where fluctuations are
dominant, the measured critical current 1, should be in-
terpreted as I, as enhanced above the value given by (8)
by the presence of fluctuations. This theoretical con-
clusion is confirmed by the experimental observation (see
Fig. 5) that the temperature-dependence trend set by the
coalesced I, =I_ in the nonhysteretic region continues as
that of I, when the junction becomes hysteretic.

With the principle established that the trapping mech-
anism (including the major enhancement by fluctuations)
determines not only I, at all temperatures but also I,
above the temperature at which hysteresis disappears, we
now must estimate how large is the enhancement of (8) by
fluctuations. The results of CS are restricted to values of
y=2E;/kT =5-50 and attempt numbers =~ 10°-10°
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whereas in our samples ¥ is typically less than 1 and the
attempt numbers are of order 10'°. Still, we can use their
results by noting that they show that the enhancement of
I, increases approximately linearly in the logarithms of
both ¥ and L. Using this observation, if one extrapolates
their results to y<1 and L=~ 101%, one estimates an
enhancement factor of roughly 5 or greater; for compar-
ison, the largest enhancement for the parameters con-
sidered by CS is about 3, so this extrapolation is not terri-
bly extensive. It is reassuring, nonetheless, that our
direct simulations also give enhancements by similar fac-
tors. Since it appears that the enhancement factor should
not depend strongly on ¥ so long as it is less than or of
order unity, nor on L so long as it is within an order of
magnitude of 10'°, we conclude that the temperature
dependence of the observed I, should be very similar to
that of the unfluctuated result (8), but that the magnitude
should be larger by a factor of order 5 because of the fluc-
tuations. Considering the uncertainties in parameter
values (especially C) and in this extrapolation, this esti-
mate is quite consistent with the observation that the
measured I, is roughly 6-7 times the value given by (8),
and has essentially the same temperature dependence.

3. The low-voltage dissipative branch: R,

Another interesting feature of our observations is the
presence of a resistive state at currents below the mea-
sured I,. At higher temperatures, the I-V curve is not
hysteretic, and the presence of a dissipative branch is not
surprising. We have seen that damping appears to play a
key role in the determination of the critical current in
this regime. We believe that the observation of a nonzero
R, is also primarily due to damping.

For almost all our junctions, at temperatures above 1
K, thermal fluctuations are very large compared to the
Josephson coupling energy. The escape out of the
Josephson potential well is thus very rapid, with rates of
the order of the Josephson plasma frequency w,. The
“phase point” is thus constantly out of the Josephson po-
tential well, and gradually slips downhill. At currents
less than the retrapping current I,, however, the escape
of the phase point over many wells is not energetically
favorable: It loses energy through dissipation faster than
it gains energy from the motion downhill. The phase
point will thus retrap in a subsequent well.

It would be desirable to compare the observed values
of R, with estimates extracted from theoretical calcula-
tions of the rates of escape out of the Josephson potential.
Unfortunately standard theoretical estimates for the es-
cape rate out of a metastable potential appear to break
down when kT becomes greater than barrier height.
Moreover, we cannot interpret our low-temperature data
in this fashion, since below 1 K we expect quantum tun-
neling to be very important. Our comparison with ac-
cepted thermal-activated escape theories is thus limited;
we can only expect quantitative agreement from our
lowest-resistance sample (R, =550 Q, E;=45 K), for
which the Josephson coupling energy is reasonably large
compared to kzT even at relatively high temperatures.
For this sample, at temperatures above 2 K, the contribu-
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tion of quantum tunneling should be minor, but the ratio
of E; to kg T is still large.

As we point out above, the existence of substantial
resistive voltage even for I <<I, indicates that the phase
variable is steadily evolving in time, at an average rate
d¢/dt =2eV /#. In the presence of a current, the succes-
sive minima drop in energy by hlI/2e, and the barrier
heights for escape in the uphill and downhill directions
are shifted by *hl/4e with respect to the zero-current
case. As a result the escape probability is greater in the
downhill direction than in the uphill one, and there is a
net rate of downhill tunneling proportional to I (for small
I). Hence there is a voltage V «<d ¢ /dt < I, which can be
described by the resistance R,=V¥V/I. We assume that
the system will lose energy by dissipation and retrap in
the adjacent well, making the phase slip per activation
event approximately equal to 27 at low current.

We now need to calculate the difference between uphill
and downhill escape rates. We define 't to be the escape
rate to the right (downhill) and '™ to be the value of the
escape rate to the left. Expanding around I =0 the fol-
lowing estimate is obtained:

_fildy # 1 +_p—
0= e T ar S22

To estimate the escape rates we assume that 't and '~
are independent, i.e., we assume that rtis only depen-
dent on the barrier height to the right, and not affected
by the fact that escape to the left is also possible. I't and
I'™ can then be estimated by using results from thermal-
activated-escape theories. They are a function of the
uphill and downhill barrier heights, respectively, and the
resistance and capacitance of the device. For the param-
eters of our lowest-resistance junction (R, =550 Q), the
differences in the estimates for the theories by Kramers, **
Biittiker, Harris, and Landauer,>” and Barone, Cristiano,
and Silvestrini®® are small. We use the last approach for
our actual estimates since it is valid closer to the break-
down at E;~kyT. The escape rate is thus given by3?

(10a)

n n

vE,
2

1 & 1

__1 YU
RC Z, nln

2

, (10b)

where U, is the barrier height (in the uphill or downhill
direction) and E|, is the initial energy of the representa-
tive phase point, both normalized to E;, while
y=2E,;/kgT. E, is not a well-known parameter for the
system: However, it is reasonable® in the large ¥ limit to
assume that Ey~=~2/y, which corresponds to the particle
having initial energy equal to kz7T. For large v, there-
fore, E is small, and (10b) is easily applied.

Using (10a) and (10b), we can now estimate the low-
current resistance R, for our lowest-resistance (largest y )
sample. The agreement is excellent, as shown in the Ar-
rhenius plot of Fig. 16, using the estimated intrinsic ca-
pacitance C;, the leakage resistance given by (2), and no
adjustable parameters. We can use the same approach to
estimate R, for higher resistance (lower y) samples.
However, (10b) becomes much more sensitive to E,, and
the approach only works as an order-of-magnitude esti-
mate.
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FIG. 16. R, vs T™! for the sample with R, =550 Q. The
line is a theoretical fit with no adjustable parameters using
theory outlined in the text [see (10a) and (10b)].

For our higher resistance samples, standard models of
thermally activated escape no longer apply. For the sam-
ple with R, =140 kQ, for example, the Josephson cou-
pling energy E; only corresponds to 0.3 K. Except at the
lowest temperatures, the representative phase point is
constantly thermally activated out of the potential well.
The motion of the phase point, therefore, might resemble
more a diffusive random walk, than a sequence of well-
defined activated jumps from well to well. Unfortunately,
to our knowledge, this regime has not yet received exten-
sive theoretical scrutiny in the underdamped case. To
obtain a simple phenomenological prediction, we assume

1000
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B ot 833 Y
1004 EER BRI 00
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R, (kQ)
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o Dbarrier height = 2Ej
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FIG. 17. Comparison of experimental and model dependence
of Ry vs T for the sample with R, =140 kQ. The horizontal
scale is expanded in (b).
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that the rate of motion downhill is proportional to the
amount of time the system spends above the barrier. The
proportionality constant must deduce to R, as T—T,.
We write

—~AU/kpT

Ro=R g +(R, —Rym)e , (11)

where R g, is the contribution of quantum tunneling, es-
timated below in Sec. IIIC. The activation energy AU,
given by the barrier height ~2E; in a classical treatment,
may be reduced in a more complete quantum treatment,
since part of the Josephson potential well is below the
lowest quantum state. This rough phenomenological esti-
mate is good enough to give an order-of-magnitude esti-
mate and an idea of the general trend of the data, as
shown in Fig. 17, where thm was chosen to fit the limit
as T—0. A more complete treatment will be required
for quantitative agreement.

4. First conclusions

From the above, we conclude that the semiclassical
model can account for the entire I,(T) and for the I (T)
(and R, qualitatively) in the nonhysteretic temperature
range, provided the following.

(a) The effective capacitance in the RCSJ model has a
value =1-2 fF, as estimated from the geometry with lit-
tle allowance for capacitance contributed by the leads.

(b) The temperature-dependent damping is governed
(at least in the frequency range relevant to I,) by the
leakage resistance (2), which agrees with the measured
value of R; .

(c) Thermal fluctuation effects enhance the I, given by
(8) by a factor of order 5, as expected from simulations.

However, the semiclassical model cannot account for
the low-temperature data, where I, > I,, with a measur-
able resistive voltage at all current levels, including
I <I.. The possibility that quantum effects provide the
explanation is suggested by the fact that for C~1 fF, as
found above, the Coulomb charging energy
E,=e?/2C~1 K, which is comparable with E;. In the
next section, we will explore this possibility.

C. The quantum limit: ¢-space description

In Sec. III B we have given a phenomenological classi-
cal treatment of the behavior of a Josephson junction
when E; is of order kz T. In our devices, however, the es-
timated charging energy is also of order the Josephson
coupling energy, causing very large quantum phase un-
certainties. Therefore, to understand our measurements,
especially as thermal fluctuations freeze out for T'< 1 K,
it is necessary to extend our treatment to include the
quantum-mechanical nature of the phase. We begin in
this section by treating the problem in ¢ space, and con-
tinue in Sec. II1 D by looking at the conjugate representa-
tion in Q space. While the former representation is a nat-
ural extension of the classical treatment presented above,
the Q-space approach should be more appropriate in the
extreme quantum limit (E, > E;), in which uncertainties
in ¢ become comparable to the well spacing in the
Josephson potential (27).
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1. Nature of the quantum ground state

Recalling the form of the full Hamiltonian (in the ab-
sence of a current) given above as (3), namely,

H=—E,cos¢ —4E_3*/3¢* , (12)

we see that the parameter x =E, /E; provides a measure
of the relative importance of the charging energy in forc-
ing a delocalization of the phase, away from the
minimum potential energy point at ¢=0. Physically, this
reflects the uncertainty relation between phase and parti-
cle number (or charge):

ApAN>1 .

For x <<1, as noted above, the ground state is a narrowly
peaked wave function (¢) with width of order x /4, and
there are many higher states in each minimum, resem-
bling the excited states of a harmonic oscillator. By con-
trast, when x >>1, the term in E, is dominant, and ¢ ap-
proaches a constant to minimize it. At this point, one
can no longer ignore the periodicity of the potential term
—Ejcos¢ and the question of whether ¢ should be
viewed as an extended variable or a cyclic one such that ¢
and ¢+27 (or 4w, if we include quasiparticles?’) are
physically indistingushable. From the former point of
view, ¥(¢) has the form of a Bloch function u (¢)e™?,
where u (¢) is periodic with period 27; from the latter
point of view, ¥(¢) is only defined between — 1 and +,
and it must satisfy appropriate boundary conditions at
those points. So long as we restrict our attention to the
ground state, which we expect to correspond to ¢ =0 in
the Bloch picture, and to the boundary conditions
Plr)=y(—m) and ¢'(7r)=¢'(—m)=0 in the single-cell
picture, both pictures yield the same eigenvalue problem,
and the same energy eigenvalue E.

Since this problem is one-dimensional, it is easy to
solve by numerical means. However, one gets a bit more
insight by a variational approach, using trial functions
appropriate to the limiting cases of x <<1 and x >>1, re-
spectively. For x <<1, one assumes a Gaussian trial
function,

P p)~e#/4 ; (13)

where o, the rms spread in @, is chosen to minimize the
expectation value of (12). The resulting minimum energy
is

E=—E,;e~""Y1—02/2), (14a)

where o has the value determined by the solution of the
transcendental equation

ote T P=2x . (14b)
For x << 1, (14) leads to the analytic approximation
E=—E;[1—(2x)?] . (14c¢)

In the other limiting case of x >> 1, an appropriate trial
function which satisfies the boundary conditions at the
edge of the cell is

Y(d)~(1+acosd) . (15)
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Minimization of the expectation value of the energy with
respect to the parameter a leads to the condition that

(16a)

a=4x[(1+1/8x%)12—1].
For this value of a, the energy is
E=—E2x[(1+1/8x)2—1] . (16b)
For x >>1, this has the limiting form
E~—E;/8x =—E}/8E, , (16¢)

where the second form shows explicitly that in this limit
the binding energy is second order in E;, in contrast to
the first-order binding energy in the usual other limit (14).

These variational approximations to the ground-state
energy are plotted in Fig. 18(a). The tight-binding ap-
proximation (13) gives a lower (more accurate) energy for
x <1, and the weak-binding approximation (15) gives a
better energy for x > +. Numerical solutions in the cross-
over region near x =4 show that the exact binding ener-
gy exceeds the better of the two approximations by less
than 5%, even in the worst case. The wave functions
Y(¢) for values of x ranging from 0.05 to 1 are shown in
Fig. 18(b). In this figure, the loose-binding approxima-
tion is shown for x > 1 and the tight-binding approxima-
tion for x <. Qualitatively, it is clear that for x > %, the
probability density for the phase variable ¢ is sufficiently
delocalized that it is no longer a good approximation to

00 02 04 06 08 1.0

v(0)

FIG. 18. (a) Estimated binding energy E vs x =E_./E,;. The
two curves correspond to two different trial wave functions, as
outlined in the text. (b) Estimated ground-state wave function
P($) as a function of ¢, for different values of x. From top to
bottom the curves correspond to x =1, 0.5, 0.3, 0.1, 0.05.
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treat ¢ as a semiclassical variable as in the discussion of
the foregoing sections of this paper.

We now will investigate to what extent quantum effects
resulting from going beyond the semiclassical approxima-
tion can account for the puzzling low-temperature data
cited above.

2. Interpretation of the resistance R,

Our treatment of this problem in the quantum regime
is quite similar to that given in Sec. III B, for the classical
case. For the lower-voltage branch of the I-V curve, at
I <I, the expectation value of the phase tunnels from
well to well, evolving in time at a rate d¢/dt =2eV /#.
To develop an interpretation of this voltage in the ¢-
space framework, we assume that the degree of delocali-
zation is sufficiently small that we can reasonably
represent Y(4,¢) by a function localized in one well,
which occasionally tunnels into an adjacent well. (For
the present, we assume 7 =0, so there are no thermally
activated hops.) In the presence of a current, the tunnel-
ing probability is greater in the downhill direction than in
the uphill one, and there is a net rate of downhill tunnel-
ing proportional to I (for small I). Hence there is a volt-
age V «cd@/dt «< I, which can be described by the resis-
tance R, =V /1. While perhaps qualitatively appropriate
for all samples, this picture can only be expected to be
quantitatively correct for the samples with x <1, so that
the phase uncertainty is still not large compared to 2.
The sample with R, =14.8 k), and x =0.25 thus appears
to be a good example for testing the accuracy of this
model.

We implicitly assume that there is sufficient damping
present that, after each tunneling event, the system
equilibrates into the lowest quantum state in the well into
which it has just tunneled, before tunneling again. If the
system did not lose energy in this way, it would run away,
since in successive wells (in the downhill direction) it
would experience lower and lower barriers, and tunnel
ever more readily, until it was above the barrier entirely.
Of course damping also reduces the tunneling rate, as
shown by Caldeira and Leggett,?® but a calculation of the
tunneling rate in the absence of damping provides a use-
ful starting point, giving an upper bound on the resis-
tance R,. We also ignore any effect of phase coherent
reflections from subsequent wells of the Josephson poten-
tial. This is expected to be a significant source of error,
especially for values of x > 1, in which case ¥(¢) is ex-
pected to be significantly spread out over more than one
potential well.

We assume that I'", the tunneling rate to the right
(downhill) and T' 7, the tunneling rate to the left are in-
dependent. We obtain, as in the classical case,

fildg #1, .
=n_ée 7 -r). 17
0= 20 T dt =~ 2e I2ﬂ'(F r-) (17)

To obtain a first estimate of R, we use the Wentzel-
Kramers-Brillouin (WKB) approximation result for I.
The tunneling rate has been estimated by other authors
to be23—26
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oy~
= — ‘/ —
2 xXV'v exp(—uvs), (18)

where v =(V, /#iw,y)'’?, V), is the barrier height, equal to
2E;—hlI /4e, wy is the classical resonant frequency of the
well, #iwo=(8E,E,)"/?, at I <<I,,, x¥ and s are numerical
constants, which are functions of the shape of the poten-
tial and of the damping. For the cubic potential approxi-
mation, and assuming low damping x=52.1,
§~7.2.22726 Combining (17) and (18), we obtain an
analytical estimate for R, which we compare with the
measured low-temperature values in Fig. 19. While the
value of R, for the sample with R, =14.8 kQ (x =~0.25)
is in agreement with the estimate, the samples with large
x exhibit values of R, considerably lower than the esti-
mate.

One large source of discrepancy in the above compar-
ison is the inaccuracy of WKB tunneling estimates for
values of x > 1. In this range, the width of ¥(¢) becomes
comparable to the well spacing, and only one energy level
is found in the well. Thus the semiclassical WKB ap-
proximation is no longer appropriate. To obtain a better
estimate for the tunneling rate in the regime with x near
1, we have carried out a numerical calculation. We iso-
late a single well of the Josephson potential by consider-
ing the potential U, shown in Fig. 20. For any energy,
one can integrate the Schrodinger equation to find the re-
sulting wave function ¢¥;(¢$). We consider an initial con-
dition (¢, t =0)=1)y(¢) chosen to be essentially local-
ized in the potential well; ¥,(¢) is defined by us as the
ground state of the potential Up shown in Fig. 20. We
then expand vy(¢) using the ¢;(¢) wave functions, and
compute the time evolution ¥(¢,?). Finally, we can ex-
tract the probability that the system has not tunneled,
which we call P(t), from the projection of ¥(¢,t) on
Pold); P(t) |f¢o(¢)*¢(¢,t)d¢|2. We define a normal-
ized spectral weight

| [ 95 1e(9)ds|

f(E)= 1 ) (19)
1000
100y
0 — — — < — —tge-
R, k) ! ] é —
0.1y
0.01 4 ® experimental values
— WKB estimate
0.001 ] O numerical estimate
0.0001

0.1

Snkm—- 4

FIG. 19. R, vs x=E_./E,. Comparison of experimental
values, values obtained using the WKB approximation, and
values obtained numerically. The dashed horizontal value indi-
cates the value of the quantum resistance Ry =h /4e>.
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FIG. 20. The two different potentials used in the numerical
calculations of R,. (a) Metastable potential, used to calculate
Y. (b) Stable potential, used to calculate .

where A4 is the normalization constant given by

A =f1/}0(¢)*t/10(¢)d¢f¢E(¢)'¢E(¢)d¢. We then have
p)=|[aE fEe=m. (20)

Insofar as the shape of f (E) is approximately Lorentzian,
with full width at half maximum of §E, then we may ap-

proximate P(t) by a function of the form e ~*/". The es-
cape rate 7~ ! is then given by
#
—=8E . 1)
-

Figure 21 shows a comparison of escape rates calculat--

10" 3
10°§
1074
SE ]
E ]
1073
3 1 -®-numerical estimate
10 3 — WKB estimate
1 O “ v T T T
0 2 4 6 8 10
E¢
Ey

FIG. 21. Comparison of WKB and numerical estimates for
the escape rate, expressed as a normalized energy width, and
therefore only dependent on x. 8E =#/7, where 1/7 is the es-
cape rate.
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ed with the WKB formula (18) and by the numerical
technique discussed above. We see that, while for values
of x <<1 the results of the two calculation methods con-
verge, for x >0.5 there is considerable discrepancy, as
expected; the tunneling rate calculated by the wave-
function expansion method outlined above is significantly
lower. In particular, note that the numerical estimate
yields 8E <E;, which is self-consistent, whereas the
WKB escape rates give SE > E;, which is conceptually
inconsistent with the escape out of a well of depth E;.
This systematic difference in lifetime is also in the right
direction to improve the agreement with the observed
values of R,.

We obtain direct numerical estimates for R, by calcu-
lating the escape rates I'" and I'” after small positive
and negative (respectively) currents have been applied,
tilting the potential. The numerical estimates for R, are
shown in Fig. 19, in comparison with the WKB estimates
and the experimental values. While the wave-function
expansion method allows us to obtain reasonable esti-
mates in the regime with x near 1, where WKB methods
have broken down, its range of validity is also limited.
As x becomes larger than one, the range of bias current 1
giving a constant R is very small, making estimates of
R, very inaccurate. For x distinctly larger than 1, the
calculated f(E) also no longer resembles a Lorentzian
bell shape, and P(¢) can no longer be approximated by a
decaying exponential. At this point the quantum phase
uncertainty approaches one well spacing, and our as-
sumption of a well-defined exponential escape rate neces-
sary for evaluating (17) breaks down: Other methods
must be used to estimate R,. The numerical calculations
are an improvement over the WKB estimates, but a more
refined model, perhaps taking into account coherent
reflections between subsequent wells, is needed.

While our model is inaccurate for x > 1, it provides a
very good account of the behavior of our sample with
normal resistance 14.8 kQ. For this sample, x is only

Ry (k)

1 ?H-l a® m . = .

0 10 20 30 40 50
1/T(K)

FIG. 22. R, vs T"! for the sample with R, =14.8 kQ. The
horizontal line is the zero-temperature estimate obtained by nu-
merical methods. The dashed vertical line corresponds to
T=ﬁwp /2mky, at which the crossover to the quantum limit
should occur.
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about 0.25, so that ¥(¢) should have relatively small
width compared to the spacing between Josephson poten-
tial wells, and our model appears reasonable. As shown
in Fig. 22, the estimated value is in very good agreement
with the low-temperature value of R,. Moreover, the
crossover temperature at which the system apparently
goes from this quantum tunneling limit to thermally ac-
tivated escape is in excellent agreement with the
fiw, /2mkg, as expected from (7). The predicted values of
R,(0) and of T, v contain no adjustable parameters:
R, is measured, and the capacitance is given by the es-
timated intrinsic capacitance C;. This value of the capac-
itance is also in agreement with that involving the charg-
ing effects described in Sec. II B 2, and interpreted below
in Sec. III D 3.

From Fig. 19, it is apparent that characteristic low-T"
values of R, approach a value of order Ry, =h /4e?=~6.1
kQ. We do not believe this to be fortuitous. If we take a
maximum reasonable energy level width equal to the bar-
rier height 8E =2E;+hI /4e, the net escape rate to the
right becomes I't —I" ™ =(27)I /2e. Using (17), we have
Ro=(h/2el)(2m)(I/2e)=(2m)h /4e>.

3. Interpretation of the critical current I,

Having developed a picture of the evolution of the sys-
tem which gives rise to a linear resistive voltage at low
current values, we now address the question of the criti-
cal current, i.e., up to what current level is this regime of
slow phase slippage locally stable? As we have seen in
the semiclassical regime, two aspects must be considered.
There is an absolute limit (I, in the semiclassical case)
set by the binding energy of the phase-locked state, and
there is a dynamic limit (I, in the semiclassical case) set
by the dissipation which prevents runaway and causes
continual retrapping into the slow phase-slip (low volt-
age) regime. In the quantum regime, we are only able to
provide an estimate for the *“binding energy” of the
phase-locked state. Our estimate should thus serve as an
approximate upper bound for the actual critical current
I.. Quantitative estimates for a ‘“dynamic” critical
current, which take into account the device’s relaxation
by dissipation, are difficult in the quantum regime, and
will be left to future work.

Because the state of the system is time-dependent in
the presence of a current, which causes phase slippage,
there is no simple way to find the analogue of the classi-
cal maximum supercurrent Iy, even at T'=0. However
it seems plausible to argue that, just as I .,=2eE;/# in
that case, where E; is the binding energy due to the
cosine potential, in this case we might expect
I,=(2e/#)Ep where Ej is the binding energy given by
(16). The rationale is this: The work done by the current
in an incremental phase shift is (#%/2e)l d¢. For stability,
this must be less than dE =[dE(¢)/d¢]d¢. This leads
to I <(2e/A)dE($)/dp]lax OF 2eE; /h for the classical
case E(¢)=—E;cos¢. If we assume that Ej is lost for a
phase shift A¢ =1 in the quantum case as well, it follows
that I, ~(2e/#)Eg. In particular, in the limit where
E; <<E,, we have Ey=E}/8E,, which leads to
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FIG. 23. Measured critical current I, (at H =0 and T =30
mK) for six samples (black squares). The A-B line is the
Ambegaokar-Baratoff critical current prediction. The other
two lines are our estimate (24a), plotted for two reasonable ca-
pacitance values.

I,=(E;/8E)1, . (22)

Insofar as this formula is correct, the observed I, should
scale with R, ? rather than with R, ! as does I,,. In fact,
just such a scaling of R, ?'of I, (extrapolated to T =0) is
found for our highest-resistance samples as shown in Fig.
23. Moreover, the absolute numerical magnitudes are
also in reasonable agreement if E_ is based on the same
capacitance values of 1-2 fF used earlier in interpreting
R,. Again, this must be considered quite satisfactory in
view of the approximate nature of the argument.

In a recent Comment on Ref. 3, Mirhashem and Fer-
rell*® (MF) have suggested a similar estimate for the
reduction in I, due to quantum phase fluctuations. They
estimate the linear response of a Josephson junction by

1
m  experiment
4 e linear response
1 4 e Zener
. Y + binding energy
c,A-B
0.1
0.01 T
0 2 4 6
Ee
E;

FIG. 24. Measured critical current I, (at H =0 and T =30
mK) for six samples (black squares), plotted against the estimat-
ed ratio of charging to Josephson coupling energy. Two of the
estimates shown are obtained by our binding energy method
and by the linear response method by Mirhashem and Ferrell
(Ref. 48), described in Sec. III C. The third estimate is our
Zener tunneling estimate (only valid at large E, /E,), described
in Sec. III D.
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calculating the inverse inductance of the device
L~ '=(2e/#)’E;{cos¢), where { ) denotes the ground-
state expectation value. As the ratio of E, to E; in-
creases, quantum fluctuations increase, and (cos¢) de-
creases. Assuming that the critical current scales with
the linear response (as it does in the absence of fluctua-
tions) they obtain, at large x =E_ /E,,

I,=(E;/AE,)1,, , (23)

which is a factor of 2 larger than (22). Figure 24 shows a
comparison of these two I, estimates calculated for
O0<x <7, a range covering all our experimental data.
While the MF estimate is closer to the experimental
values for large x, both approaches provide reasonably
satisfactory agreement, given their approximate nature
and the experimental uncertainty in C.

D. The quantum limit: Q-space description

The simple analysis we have provided in the above sec-
tions is successful in providing a semiquantitative ac-
count of our observations in the regime with Josephson
energy of order the charging energy (x=1). As we de-
crease the Josephson energy further, quantum phase fluc-
tuations increase, and the behavior of the devices be-
comes increasingly difficult to characterize by models
based in ¢ space. It is useful to consider the opposite
viewpoint.

1. The energy band spectrum

Several authors'**~%7 have investigated Josephson
junction dynamics in charge space, looking at the behav-
ior of Q, the quantum-mechanical conjugate of ¢. The
energy spectrum of the Josephson device then assumes a
bandlike structure, reminiscent of that of a one-
dimensional crystal. Such models appear particularly ap-
propriate for the case E, >>E; (that is, x >>1), where the
band structure approaches that of a free particle, with
small energy gaps caused by the periodic Josephson po-
tential. Figure 25 represents a theoretical energy spec-
trum for parameters in this regime, derived by Guinea
and Schon.’® The variable on the horizontal axis is Q,,
the charge applied to the device by external means (such
as a current source). The qualitative behavior of the de-
vice is simple: The device can charge up, as a common
capacitor, but it can only discharge by having electrons
tunnel from one electrode to the other. While the
charging-up process is continuous, the discharge by tun-
neling is discrete, in units of e (single electrons) or 2e
(Cooper  pairs). In this limit, E, is the width of the
gaps at Q,=*e, where the ‘kinetic energy”
Q2/2C =e?/2C =E,. (In the opposite limit x <<1, be-
cause of the negligible MQT between adjacent minima,
the bands approach zero width, and low-lying ones are
separated by the plasma energy.)

In the presence of an imposed current I feeding charge
onto the electrodes, the external charge variable Q, ad-
vances at a rate dQ, /dt =I. The instantaneous voltage is
given by V =dE /dQ,. While the energy spectrum may
appear straightforward, the motion of the system along
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FIG. 25. Sketch of the energy spectrum as a function of ap-
plied charge Q, derived for a Josephson junction in the limit
E.>>E;. The figure is adapted from Ref. 55.

the energy band may be quite complex, even if we assume
a perfect current source (an assumption which we later
relax). If we begin at Q, =0, the system can at first only
charge up capacitively. Once Q, is greater than e/2,
however, the system can either proceed upward, continu-
ing to accumulate charge on one electrode, or it can relax
to the lower band, by having a single electron tunnel
from one electrode to the other. Moreover, if the current
is large enough, the system can Zener tunnel to the
higher bands, as described below (which corresponds to
charging up faster than electrons can tunnel to equalize
the built-up charge). Depending on the values of these
various relaxation times, the size of the band gaps, and
the actual nature of the current source, one can obtain
very different dynamics, corresponding to a large variety
of possible I-¥ curves.

This analytic framework can be used to provide an al-
ternative version of the arguments given above in inter-
preting the observed depressed values of I.. Moreover,
this framework can also be used to explore the regime in
which E_, >>Ej, to provide a theoretical background for
an interpretation of I-V curves exhibiting apparent knees
at ¥V =e /2C, of the type shown in Fig. 3.

2. Determination of I,

As the current I =dQ /dt increases, there is an increas-
ing probability that the system will jump from the max-
imum of the lower band at the zone boundary into the
next higher band rather than continuing to cycle up and
down in the lowest band. By simply transcribing the usu-
al calculation of this Zener tunneling probability to the
present context, we have previously shown! that the
probability of a jump on each cycle is

mE?
8E_ (%l /2e)

I

I

Pyener =€Xp | — =exp ’ (24)
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where

I,=meE}/8#E, . (24a)

Here I, is just 7/2 times larger than the I, found in (22),
or 7 /4 times the estimate in (23), both obtained starting
from the ¢-space framework, described in Sec. IIIC. In
particular, all three results share the property that I,
scales with E? or R, 2, rather than with the first powers
of these quantities, as does I, The physical picture we
have is that, for I <I,, occasional Zener tunneling
occurs, but the system quickly relaxes back down to the
lowest band. The associated dissipation contributes to
the resistance R, but this does not spell the end of the
low-voltage regime. Rather, we associate the end of this
regime with the complete breakdown of the band gap, al-
lowing the system to run up onto the upper, free-
particle-like bands, where it acts “normal,” i.e., as if E;
were zero. It is, of course, arbitrary to associate this I,
where Py, is just 1/e, with the observed I, but because
of the exponential dependence, one might expect this cri-
terion to be correct to within a factor of 2; hence the
three estimates (22), (23), and (24) are consistent within
their expected accuracy.

At T >0, the probability of thermal excitation across
the band gap E; would be expected to be approximately

givenby e 7 3T 5n each cycle of the Bloch oscillation.
If this probability is added to that given by (24), and the
sum set equal to 1/e in analogy to the above argument,
we obtain a simple phenomenological estimate for the
effect of temperature in reducing I,. This argument gives
the correct characteristic temperature for substantial
reduction in I, namely E;/k. This rough estimate is
plotted in Fig. 5(b).

In this approach, as in the ¢-space one, damping dur-
ing the MQT process is expected to have a strong effect
in reducing the tunnel probability, and hence increasing
the estimated critical current. The physical arguments of
Buettiker and Landauer®® suggest that we can still use

dE _ 4 2(E +E cos¢d) 12

dé 2R c

(which was discussed in Sec. III B in the semiclassical re-
gime) at least approximately in the MQT case by taking
the absolute value of the quantity inside the brackets.
Thus in the present case it has a similar value in the bar-
rier and in the well. However, the question is what value
of R is physically correct to be inserted into this formula.
We can say that R =R, would be consistent with our
data, in that it would introduce rather modest corrections
which could be accommodated by choosing a different
criterion for I, such as the criterion that P, be set equal
to e 2 I. On the other hand, R; is so

(25)

rather than e .
large that its damping effects would be negligible in this
regime. Likewise, R is sufficiently below R, at low tem-
peratures that it would, if applicable, give such large
corrections as to be very difficult to reconcile with the
data. Even more inconsistent with the data would be any
damping resistance comparable with the impedance of
free space Z,=377 €, such as the characteristic im-
pedance of the leads attached to the junction.
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3. Coexistence of Coulomb blockade and Josephson tunneling

In the previous sections, we have provided a number of
semiquantitative models accounting for the basic features
of our observed zero-magnetic-field I-V curves. As de-
scribed above, however, we also performed a second set
of experiments: By applying a magnetic field to the junc-
tions, we depressed the Josephson coupling even further.
At low field values we obtained measurements similar to
the ones made at zero field, with increasing R, and de-
creasing I, as the field was increased. In all three sam-
ples measured as a function of magnetic field, however, a
new regime was discovered, exemplified by the I-V curve
shown in Fig. 3. As mentioned above, the striking
feature of this regime is the coexistence of a sharp knee at
a voltage corresponding to e /2C, with a very sharp volt-
age jump at a “critical current” I..

We have proposed® the following simplified phenome-
nological picture: The difference in electrostatic energy
due to the transfer of a single electron is e2/2C. In our
samples this energy is large, typically of order 1 K. At
low voltages, below e /2C, the system does not acquire
enough energy from the source in the tunneling process
to offset the difference in electrostatic energy involved.
Tunneling is therefore energetically unfavorable and is in-
hibited, provided the temperature is low enough for
thermal-activation processes to freeze out. This yields a
static situation; electrons are ‘“‘trapped” on the junction
electrodes and the dynamic resistance is extremely high.
As V becomes greater than e /2C, on the other hand, a
single electron transfer becomes energetically favorable,
and the differential resistance decreases, giving rise to a
knee in the I-V curve at that voltage. In this dynamic re-
gime, if the instantaneous voltage increases beyond e /C,
it becomes energetically favorable also for Cooper pairs
to tunnel, and the voltage is driven back down. The ob-
served average voltage is thus restricted to a value below
e /C, until the system’s ability to transfer Cooper pairs is
exceeded at I =I,. It thus appears that Josephson tun-
neling plays an important role in the explanation of the
observed plateau in the I-V curve and the subsequent
critical current.

This explanation can be restated in terms of the band
model described in Sec. III D 1. The highly resistive part
of the I-V curve may then be due to the system being
trapped at a fixed charge on the lowest band. This
configuration is, however, only stable for V' <e/2C. At
higher (average) voltages, the system must spend time in
higher bands and tends to relax to lower bands by elec-
tron tunneling, conducting charge, and reducing the
differential resistance of the device. This happens until
the current is large enough for Zener processes to become
so likely that the Josephson band gaps are ineffective at
keeping the system in low bands. At this point (I =1,)
the voltage rises sharply to the energy gap.
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IV. CONCLUSIONS

We have experimentally investigated the competition
between charging, Josephson, and thermal energies in
small tunnel junctions. Furthermore, we have presented
a series of simple phenomenological models which pro-
vide satisfactory semiquantitative explanations of some of
the startling phenomena observed experimentally, and
may be a useful starting point for more rigorous theoreti-
cal treatments. Our most important findings are outlined
below.

If the Josephson energy is much larger than the charg-
ing energy, we find the usual current-voltage characteris-
tics found in conventional low-resistance Josephson junc-
tions. However, we find that as the charging energy be-
comes important, the behavior of the devices changes
completely.

When the charging and Josephson energy are of com-
parable magnitude, the I-V characteristic is always resis-
tive, even at low currents I <I,; apparently the very low
Josephson barrier height, comparable to kzT or to the
energy-level width, causes very frequent phase slips, due
to thermal activation and/or quantum tunneling. The
critical current itself, now defined as the current at which
the average phase-slip rate sharply increases to the ener-
gy gap frequency, is greatly reduced below the
unfluctuated Ambegaokar-Baratoff critical current I,
even at the lowest temperatures, and apparently scales
with the binding energy of the ground state, i.e., with
R, *for E.>>E,.

If the Josephson energy becomes much smaller than
the charging energy, the I-V characteristic becomes very
resistive (R =~R; >>R,) at low currents, with a sharp
knee at a voltage apparently corresponding to e /2C. The
average phase-slip rate increases very quickly at low
currents, as the Josephson potential seems too weak to lo-
calize ¢. While quantum fluctuations in ¢ are presum-
ably large, the charge now seems classically well defined,
as indicated by the knee at e /2C, the voltage difference
required before the tunneling of a single electron becomes
favored by the capacitive energy Q*/2C.
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FIG. 4. Scanning electron microscope photograph of a previously measured sample with area 0.1 (um)?*, normal resistance R, =35
k{, and capacitance C =2 fF.



