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Superconductivity and spin-density waves

I.. L. Daemen and A. W. Overhauser
Department ofPhysics, Purdue Uniuersity, West Lafayette, Indiana 47907

(Received 23 November 1988)

Superconductivity in a metal with a spin-density-wave (SDW) broken symmetry is investigated
within the framework of the Bardeen-Cooper-Schrieffer (BCS) theory. The gap equation is solved
analytically leading to a gap that falls to zero at the SDW gap for a spiral SDW, and to a small, but
nonzero value, for a linear SDW. The electronic specific heat in the superconducting state acquires
a low-temperature tail, far in excess of a BCS exponential falloff. The ultrasonic attenuation exhib-
its a similar deviation from the usual BCS result.

I. INTRODUCTION
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FIG. 1. Electronic specific heat in the superconducting state
for Pb and UBe». The dashed line is the behavior expected
from the BCS theory with no (or little) gap anisotropy.

Baltensperger and Strassler' proved some 25 years ago
that superconductivity and antiferromagnetism are com-
patible. Recently, Nass et a/. investigated the problem
of superconductivity in the presence of a spin-density
wave (SDW) for Chevrel compounds, and Psaltakis and
Fenton have studied the inhuence of SDW's in a one-
dimensional organic superconductor. In this paper we
examine superconductivity in a SDW metal, for which
the SDW is a high-temperature phenomenon (i.e.,
G »b„where 2G is the SDW energy gap). The motiva-
tion for this study is twofold; first, it is complementary to
prior work' ' and second, the results obtained suggest a
possible resolution of the longstanding problem in the
specific heat of superconducting Pb.

Twenty-five years ago, Keesom and van der Hoeven '

discovered that the specific heat of lead in the supercon-
ducting state exhibits an unexpected low-temperature tail
shown in Fig. 1. It has been argued that such behavior,
observed in the heavy-fermion compound UBe, 3, is indi-
cative of exotic pairing. However, Pb is a spin-singlet su-

perconductor. Another way to account for this behavior
is to postulate a highly anisotropic energy gap. Howev-
er, a theoretical study of the energy gap in lead, exploit-
ing the known phonon spectrum and Fermi surface, pre-
dicts a gap anisotropy of about ten percent, which is far
too small to explain the experimental result. It is impar-
tant to appreciate that the specific-heat deviation from
the Bardeen-Cooper-Schrieffer (BCS) theory cannot be at-
tributed to an incorrect subtraction of the phonon contri-
bution, since the expected BCS result was obtained for
PbIIlo 06. The reversion to a pure exponential la~ in this
latter case also confirms the anisotropic energy-gap inter-
pretation * since gap anisotropy is washed out by impuri-
ty scattering. A dramatic gap anisotropy is also re-
quired by the observed low-temperature tail in ultrasonic
attenuation.

In Sec. II, the most important results regarding spiral
and linear SDW's that will be needed in subsequent sec-
tions are summarized. Sections III and IV investigate (in
turn) superconductivity in the presence of a spiral or a
linear SDW for the simplest "metal" of all: jellium. The
electron-phonon scattering matrix element is calculated
and the BCS gap equation is solved exactly. The critical
temperature is determined, together with the efFective
value of the electron-phonon coupling constant A,. Final-
ly, the specific heat is eva1uated numerically as well as the
ultrasonic attenuation coefficient. The latter phenome-
non also exhibits an important low-temperature deviation
from BCS behavior and has been observed by several
workers. ' A preliminary report" of some of our re-
sults has been presented.

II. SPIN-DENSITY %'AVES

Before proceeding directly to the study of supercon-
ductivity in the presence of a SDW, we shall briefly re-
view the SDW formalism to establish our notations and
to focus attention on the most relevant features.

Consider a three-dimensional electron gas with short-
range repulsive interactions. The normal state of such a
system can be described by a Slater determinant of plane
waves within the Hartree-Pock approximation. This
state, however, does not necessarily correspond to the
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lowest ground-state energy. In fact, Overhauser' '
showed that other (exact) solutions of the Hartree-Fock
equations can have a lower energy. We now examine in
some detail those solutions.

A. Spiral SDW

In this case, the one-electron Hamiltonian can be taken
to be

H =p~/2m —G(o cosgz+cr~singz),
where o„, o. , and o., are the Pauli matrices, and we
choose Q=2kFz. It is a rather simple exercise to find the
exact eigenfunctions and eigenvalues of this Hamiltonian.
They are, ' for a (mostly) up-spin state,

pent(r) =cos8gexp(ik. r)a+sin8i, exp[i(k+Q). r]P, (2)

where a and P are the usual Pauli spinors. The
coefficients are

l.O

0.

g =0.02

(A' k /2m) —c,i,
sinO& =

IG +[si,—(iii k /2m)] I'~

6
cosOk =

t62+[E —(iii k /2m )]~I

The eigenvalues are

(3)

(4) 0.5—

g = 0.05

fi k'+ Ik —Ql' — (k' —Ik+Ql )'
4m

'2 1/2 '

4mG
(5)

a)

SPIN UP

The spin-"up" Fermi surface is shown in Fig. 2(a) and is
flattened by an energy gap 26 at k, = —g /2.

For a (mostly) down spin state,

Pi,&(r)=cos8&exp(i k r)P+ sin8i exp[i (k Q) r]—a, .

kF

FIG. 3. (a) Fermi surface for the spin-up or spin-down elec-
trons of a metal having a linear SDW. (b) Anisotropy of the su-
perconducting gap parameter, h(k, ), for a linear SDW.

where the coefficients are still given by Eqs. (3) and (4)
but Q has to be replaced by —Q in Eq. (5). The spin-
"down" Fermi surface is similar to the spin-"up" Fermi
surface except that it is flattened at k, =g /2.

In Sec. III the state Pi, t will be paired with its degen
crate partner:

i, &(r) =cos8&exp( —ik r)P+ sin8i, exp[ —i(k+ Q).r]a,

0. 5

-kF

0. 02
0. 05
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which is not the time reverse of Eq. (2). The time reverse
of Eq. (2) would have an opposite sign for the second
term in Eq. (7), and would have a higher energy (by 26
for states near the SDW gap). Observe that the Hamil-
tonian [Eq. (1)]does not have time-reversal symmetry. In
Eq. (7), the coefficients and Ek are given by Eqs. (3)—(5).

B. Linear SDW

The one-electron Hamiltonian for a linear SDW can be
taken to be

FIG. 2. (a) Fermi surface for the spin-up electrons of a metal
having a spiral SDW. (b) Anisotropy of the superconducting
gap parameter, h(k, ), for a spiral SDW.

H= —26cr, cosgz .P
2m

For small values of 6, the solutions may be approximated
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by a linear combination of two plane waves'

Pk&(r) = Icos8„exp(ik. r)+sin8kexp[i(k+Q) r]Ia, (9)

pk&(r) = Icos8kexp(ik r) —sin8kexp[i(k+Q) r] Ip, (10)
k k'

V

where —Q/2& k, &0. The coefficients are still given by
Eqs. (3) and (4). The solutions for 0&k, &Q/2 are ob-
tained by replacing Q with —Q in Eqs. (9), (10), and (5).
The Fermi surface is shown in Fig. 3(a).

0
p

8

III. SUPERCONDUCTIVITY WITH A SPIRAL SDW

A. Electron-phonon interaction
FIG. 4. Virtual-scattering matrix element Vz z for a spiral

SDW.

As mentioned previously, the simple "jellium model"
will be used to investigate the inhuence of a spin-density
wave on the electron-phonon interaction. It has long been
known that, for this model, the Hamiltonian for the pho-
non mediated electron-electron (e-e) interaction is given

15

Dexchange
kk', —q 3 F

COq

' 1/2

( S1118kcoS8k

+COS8kS1118k )

i'd)q
H.-.—&&X «;-q zz', q"(Ex —sx ) —(&~,)

Xcg,cgcg cg

X5(k+k'+Q —q) . (14)

The summation over q in Eq. (11) can now be performed.
After some trivial algebraic manipulations, the Hamil-
tonian, Eq. (11),can be rewritten:

where IC (X') designates the initial (final) state —i.e., be-
fore (after) exchange of a virtual phonon —and E (I7 ') is
its degenerate partner. Dzz'. has the following simple
form:

Hee gg VkkC kiC kiCktCk
k k'

where

(15)

D ~
=—'E fi

EX',q 3 F
COq

' 1/2

fd rPxt. (r)Px(r)e p(xiq. r),

(12)

D direct —2 E fig
kk', —q 3 F

COq

1/2

(cos8kcos8k +sin8ksin8k )

X5(k —k' —q) . (13)

where M is the ionic mass, N the number of ions per unit
volume, and EF the Fermi energy.

Equations (11) and (12) are, so far, completely general;
only pairing between a state and its degenerate partner
has been assumed. The final step consists in evaluating
Dzz. .q,

' this will be done now for a spiral SDW, whereas
the linear SDW case will be treated in Sec. IV.

On account of the spin admixture in Eqs. (2) and (7),
two terms contribute to Eq. (11). The first one, a "direct"
term, is such that both the initial and final states (K and
E') are "mostly up" states, i.e., of the form given by Eq.
(2). Of course, their degenerate partners are both "most-
ly down" states. Substitution of Eq. (2) in Eq. (12) leads
to

Vkk = —V cos28kcos20k. , (16)

and where the q-dependent coefficients have been approx-
imated by a constant (as in the BCS theory) and have
been collected in the constant V. As usual, Vkk. is
different from zero only when k and k' lie in a thin shell
of thickness 2Acoa centered on the Fermi surface. The
matrix element Vk k. , Eq. (16), is shown in Fig. 4 versus
the angles Ok and Ok.

B. Solution of the BCS gap equation

The remarkable fact that Vkk appears in factorized
form makes it easy to solve the BCS gap equation analyti-

lly. 8, 16

~(k, T)=~V„„.
2[/' +b (k' T)]'

[g +5 (k', T))'
X tanh

2
(17)

where gk is the single-particle energy sk measured, how-
ever, with respect to the Fermi energy. One can readily
verify that

The second one, which will become an "exchange term, "
is such that the initial state k is, for instance, a "mostly
up" state, while the final state k' is "mostly down. "
Upon substituting Eqs. (2) and (7) into Eq. (12), one ob-
tains

h(k, T ) =b.o( T)cos28„ (18)

is the solution of Eq. (17). b,o( T) is a function of tempera-
ture only, and it is the solution of the following equation,
obtained by substituting Eq. (18) into Eq. (17):
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tanht [g+b,o(T)cos 28&]' /2k+ T I1=V cos 28(,
2[/+ho(T)cos 28']'

(19)

Fermi surface near the SDW gap. For simplicity we
choose to keep Q=2k~z independent of g, so that the
density of states at the Fermi surface (a quantity mea-
sured experimentally) remains the same for all values of
g. Consequently, the Fermi energy depends weakly on g.

b.c( T) varies with temperature in a way similar to the iso-
tropic gap parameter in BCS theory.

Since 8i,=m /4 at the SDW gap, as can be seen from
Eq. (3), 6 vanishes at the SDW gap. The Fermi-surface
neck, shown in Fig 2(.a) and caused by the SDW, has in
general a finite circumference. Accordingly, the super-
conducting gap 6 has a line of nodes on the Fermi sur-
face. This feature leads automatically to a power-law tail
in the low-temperature specific heat (Sec. III D). The re-
duced gap b, (k, T )I/b, c( T) is shown in Fig. 2(b) for
different values of the dirnensionless parameter

G
4E (20)

It is important to notice that although the anisotropy of
6 is enormous, it is confined to a small fraction of the

I

C. Critical temperature

At T, the gap 5 vanishes. This provides us with the
following equation for T, :

tanh(gi, /2kii T )1=Vg cos 28i,
2/i,

(21)

where the summation extends over all k vectors lying in a
shell of thickness 2A'coD centered on the Fermi surface, as
shown in Fig. 5. In the weak-coupling (BCS) limit, Eq.
(21) can be solved exactly; to this end, the sum over k is
first replaced by an integral. On account of the cylindri-
cal symmetry of the Fermi surface, this integral is most
easily evaluated in cylindrical coordinates. So, with the
notations of Fig. 5, Eq. (21) becomes

V &+ &+ (k, & tanh(gi, /2k~ T ) k & (I, ) tanli( g&/2k& T )1= dk, dkikicos 28& — dk, dkikicos 28&—kF —kF o 24 (22)

Now, it follows from Eq. (5) that gi, is of the form

Ski +a(k, ),
2@i

where a(k, ) depends on k, only. Furthermore, let

(23)

needed]. Equation (22) becomes

V m "F tanh(g/2kii T )
1 = dk, cos28k d g8~' A' z %cog)

(25)

k', =k, +k~ . (24)

Equations (23) and (24) together form a two-dimensional
change of variables, the Jacobian of which is readily eval-
uated [notice that an explicit expression for a(k, ) is not

To obtain this result, it has further been assumed that,
owing to the smallness of fico&, it follows that
k+, k =k+. We have also made explicit the fact that

1. 0

K+( kz)

z) o. 5

)

0
) )

o. OB
9

O. 07 O. 1

FIG. 5. Notations for Eq. (22).

FICx. 6. g dependence [see Eq. (20)] of )1,)r and T, (from
McMillan's equation with A, =0.4 and p =0.1}. gho(T) is the
superconducting gap parameter at the (linear} SDW gap. (g=0
for the spiral case).
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cos28& depends only on k„which can be inferred from
Eqs. (3)—(5). The right-hand side of Eq. (25) is now the
product of one-dimensional integrals. Upon replacing
cos28k by its expression in terms of k„ the first integral

z

can be calculated analytically, while the second one is a
well-known integral in BCS theory. It can be evaluated
easily in the weak-coupling limit. After some tedious, but
simple, algebra, one gets the usual BCS expression for T,

Ces

7Tc

O.I-

0.0 I-

k~T, =1.14ficoDexp( —1/A, ,s),
but with

A,,tr=A[1 —g arctan(1/g)] .

(26)

(27)

0.00 I-

O.OOOI-
It is interesting to substitute A,,tr for A, in McMillan s
equation'7 for T, . Both A,,~ and T, versus g are shown in

Fig. 6. Superconductivity is quenched by a large SD%'
gap. Notice also that in the large g limit, one recovers
the ferromagnetic limit, i.e., A,,s goes to zero (as does T, ).

D. Electronic specihc heat

We now consider the effects of anisotropy on the elec-
tronic specific heat, c„, and its low-temperature behav-

ior. c„is given by'

2 g fg ( 1 fg ) g'k+—b, (k, T )
2

lO l5

Tc /

$ 05 ill kFgkgc„(T)- 2 z
T

m fi60
(29)

FICx. 7. Electronic speci6c heat in the superconducting state
vs T, /T for a spiral SDW. SDW gap parameter g is defined by
Eq. (20).

Bk(k, T)
BT (28)

where ho=ho(0). This power-law behavior is caused, as
already mentioned, by the line of nodes at the Fermi sur-
face.

where

1
ft,= 1+expI [gz+6 (k, T)]'~ /k~ TI

is the Fermi-Dirac distribution for quasiparticles.
We calculated the specific heat by numerical evaluation

of Eq. (28) for several values of g. The results are shown
in Fig. 7. A rather intricate calculation, detailed in Ap-
pendix A, shows that close to absolute zero the specific
heat has the following asymptotic behavior:

IV. SUPERCONDUCTIVITY WITH A LINEAR SDW

A. Electron-phonon interaction

The calculation of the virtual-scattering matrix ele-
ment for the linear SDW case is straightforward. Both
initial and final states correspond to a well-defined spin
state and no exchange term appears, as in the spiral SDW
case. Substitution of Eq. (9) into Eq. (12}leads to

D ~
=—'E 2

kk'; —q 3 F . 2~M COq

' 1/2

[cos(8&—8&, )5(k —k' —q )+sin8&cos8& 5(k —k' —q+ Q)+ cos8&sin8&5( k —k' —q —Q )] .

(30)

It is clear from Eq. (30) that coupling can occur through virtual emission of phonons q, q+Q, and q —Q, a consequence
of the nature of the SDW one-particle wave functions, Eqs. (9) and (10}. Upon adoption of the simplifications already
described in Sec. III, it is easy to show that the virtual-scattering matrix element Vkk. is given by

Vzz = —V(cos28&cos28k. +—,'sin28&sin28& ) .

This k dependence is shown in Fig. 8.

(31)

B. Solution of the gap equation

Since Vkk does not appear in factorized form, the Markowitz-Kadanoff theory ' can no longer be used. However,

Vkk is a sum of factorized terms, and a treatment similar to that for linear Fredholm integral equations with degenerate
kernel can be applied to the BCS integral equation. ' For notational convenience, we define
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gk =cos28k,

A k
=sln28k

tanhI[g+b, (k', T)] / /2k&TJ

2[/ +b, (k' T)]'
h(k', T) .

k'

(32)

Using Eq. (31), we first rewrite the BCS integral equation in the following way:

tanhI [g+b, (k', T)]'/ /2k' T]
h(k, T)= Vgk ggk I

b.(k', T)+ —,
' Vhk g hk

2[gk2, +a2(k, T)]'" k'

This suggests a solution of the form

b(k, T)= V[c1(T)gk+c2(T)hk), (33)

(34)

where c, (T) and c2(T) are temperature-dependent constants to be determined. Substituting Eq. (33) in Eq. (32), and
recognizing that gk and hk are linearly independent, one obtains the following two equations for c& and c2..

tailllI [gk+ V (clgk+c2hk ) ] l2kII TI =0
2[g2+ V2(c +c h )2]1/2

tanhI[g+ V (c,gk+C2hk) ]' l2ksTI
c2 —

—, g Vhk(c, gk+c2hk) 2 2 2 1/2
k 2[/k+ V (c,gk+c2hk) ]'/ (35)

Equations (34) and (35) form a set of two nonlinear, algebraic equations, the solution of which completely determines
the superconducting gap. At this point, it is convenient to introduce two new functions b,o(T) and 2)(T) instead of
c, ( T) and c2( T):

bo(T) —=c, (T)V,
c2( T)

I)( T) = V.—
ci T

The superconducting gap can now be rewritten in terms of 50( T) and I)( T):

b(k, T)=ho(T)[cos20k+il(T)sin2ek],

as well as Eqs. (34) and (35):

tanht[g+b, o(T)(g„+rl(T)h„) ]' l2ksTI
1 —~ Vgk gk+I)(T)hk =0

2[$2++2( T)(g +.2)( T)h )2]1/2

(36)

(37)

ta htn[g+b (T0)(gk+ )(T7)hk) ]' l2k&T J
(38)

En general, this set of equations has to be solved numeri-
cally. This task, however, is not as formidable as it might
look at first sight. Indeed, it is shown in Appendix B that
rl(T) is in fact temperature independent and can even be
determined analytically (see Sec. IVC). This consider-
ably simplifies the resolution of Eqs. (37) and (38) since
only one of them has to be solved once g is known. The
gap is shown in Fig. 3(b) for several values of g. Notice
that the gap no longer vanishes at the SDW gap, as in the
spiral SDW case, but rather falls to a small value, gho.
This will lead to a low temperature dependence of the
electronic specific heat somewhat different from that ob-
tained for a spiral SDW.

lt k'

C. Critical temperature

At T„ the gap b, (k, T), or more precisely b,o, vanishes.
Hence, from Eq. (37), we obtain the following relation-

FIG. 8. Virtual-scattering matrix element Vz z for a linear
SDW.
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ship between g and T, :

tanh(gi, /2k+ T )
1 —g Vgq(gi, +qh k ) =0,

k 2$„

while from Eq. (38) one gets

tanh(g~/2k& T )
1 —

—,
' g Vhq(gk/g+h), ) =0 .

k 2
(40)

These two equations can be solved exactly in the weak-
coupling limit. To this end, we first replace the summa-
tion over k by an integral in cylindrical coordinates, ac-
cording to the symmetry of the Fermi surface. The fol-
lowing steps will be performed on Eq. (39) only. [The cal-
culations for Eq. (40) are similar, and we will merely
quote the final result. ] With the notations of Fig. 9, Eq.
(39) becomes

y kF K+(k )

~ f dkz f dkikigg(gi, +qhk)

1 —2AgF f dt(sinh t /cosht )

arcsinh(1/2g)
dt tanht

0
arcsinh( 1/2g)gI' dt tanht

1 Ag—Ff dt(1/cosht )
0

where Fdepends essentially on T, and is defined by

c tanhQ
d'Q

0 Q

(44)

(45)

This expression can be evaluated in the weak-coupling
limit and leads to the well-known result'

AQ)DE=ln 1.14
B c

(46)

All of the integrals appearing in Eq. (44) can be evaluated
analytically and Eq. (44) reduces to a quadratic equation
for I', from which T, can be extracted:

tanh(g„/2kii T)
X =0 . (41)24 k~ T, = l. 14AtuDexp( —1/A. ,s) . (47)

tanhQX dQ =0 .
0 Q

A similar calculation for Eq. (40) leads to

(42)

Next, we perform a change of variables, Eq. (23), fol-
lowed by the change of variables Eqs. (52) and (53),
displayed in Appendix A. The final result is

1 —2Ag f dt tanht(sinht+g)
0

2[(A,,tr/A, )
—u ]

(49)

A eff 1s g1ven by

A,,s.= —,'A
I 1 —u + [(1—3u )'+2u ']'i'),

where u =g ln(1+ 1/4g ) and u:—g arctan(1/2g).
Substituting these results in Eq. (44), one obtains an ex-

act value for q,

arcsinh(1/2g) Sinh t +g
1 —2A, dt

0 2gcosht

X
tanhQ

dQ =0 .
0 Q

(43)

jef& Tc & and g vef sus g are showIl 1Il Fig. 6. AgaiI1
McMillan's equation with k replaced by A,,ff has been
used rather than the BCS-like formula, Eq. (47).

D. Electronic specific heat

At this point, it is clear that g can easily be eliminated
between Eqs. (42) and (43):

%'e have calculated the electronic specific heat by the
numerical evaluation of Eq. (28). The results are shown
in Fig. 10 for several values of g. The low-temperature

x,{k,)

O, I—

0,01—

k~
kF

o,ool—

0.000 I—

IO l5 20

FIG. 9. Notations for Eq. (40).
FIG. IO. Electronic speci6c heat in the superconducting state

vs T, /T for a linear SDW.
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behavior is no longer a power law as for the case of a
spiral SDW. This arises from the fact that the supercon-
ducting gap no longer vanishes at +Q/2, but rather falls
to a small value qho as already mentioned. Now as g in-
creases, g increases, thereby reducing the gap anisotropy
when g is large enough. This behavior causes the low-
temperature specific heat to revert to a BCS-like ex-
ponential fallo8; but to one having a much smaller slope
than ideal BCS behavior.

10

.002

02

E. Ultrasonic attenuation

af
N(0) k Eg Mi,

(50)

BCS

cg

N

0
0 2

G(~)zt

FIG. 11. Experimental ultrasonic attenuation coefticient
(from Ref. 18).

Finally, we examine how the gap anisotropy caused by
a linear SDW a6'ects the ultrasonic attenuation. A "long
tail, " similar to that of the specific-heat curve, appears at
low temperature. This is reminiscent of the experimental
results obtained in Pb by Fate, Shaw, and Salinger and
also by Randorff' and Marshall. ' (See also Ref. 20 and
references therein for a recent discussion of the experi-
mental situation. ) Shown in Fig. 11 is the experimental
curve obtained by Fate et al. , juxtaposed with the ex-
pected behavior from the BCS theory. Besides the pres-
ence of this "long tail" at low temperature, the ultrasonic
attenuation in Pb exhibits two other anomalies. ' ' '

Just below T, the attenuation decreases too rapidly (with
decreasing T) compared to the BCS prection. (This
causes the attenuation curve in Fig. 11 to rise above the
BCS line. ) Furthermore, this anomalous dependence near
T, is frequency dependent. So far, such efFects have not
been explained. In what follows, we shall focus our atten-
tion on the low-temperature anomaly.

We employ a simple deformation-potential model to
calculate the attenuation coefticient. In order to concen-
trate on the effect of the superconducting gap anisotropy,
we take a spherical Fermi surface, so as to avoid any
complexity that might arise from the angle between the
propagation direction of the acoustic wave and Q. The
ratio between the ultrasonic attenuation coefficient in the
superconducting state, az, and that in the normal state,
Q~ is

FIG. 12. Ultrasonic attenuation coeScient for a metal having
a linear SDW.

where N(0) is the density of states (per spin) at the Fermi
surface and E& =[/ +IS(k, T) ]' . The transformation
of this sum into an integral (followed by simple algebra)
yields the result shown in Fig. 12 for different values of g.
The quantity

Q~
ln 2 —1

s
is plotted versus

G(t) 1 b(t)
t b,,(0) '

where t =—T/T, . In such a plot the BCS curve for an iso-
tropic energy gap is just a straight line with slope
bo(0)lk~T, . Notice the significant deviation of the. cal-
culated curves from the BCS straight line at low tempera-
ture.

Comparison of Figs. 11 and 12 leads to the conclusion
that the SDW structure can account for the low-
temperature anomalies observed in Pb for the ultrasonic
attenuation as well as for the specific heat. If this were
true, we expect that Pb will have a cubic family of small-
amplitude, linear SDW's, e.g., Q's along twelve [211]
axes. It is possible to estimate the SDW transition tem-
perature Tso~ from the data in Fig. 1. The specific-heat
tail (near T, /T=11) caused by each SDW would be
about —,', the value shown in Fig. 1, i.e., slightly above the
curve for g=0.002 in Fig. 10. It follows from Eq. (20)
that each SDW gap is 2G -0.2 eV. Since 26 -3.5k& T, '

we find Tsow -660 K, which is above the melting point.
Accordingly we would not anticipate transport anomalies
caused by a SDW phase transition in the normal state of
(crystalline) Pb.
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At low temperature ho is essentially constant and the term proportional to its der'ivative with respect to T in Eq
(28) can be neglected. In what follows, we let b,o= b,o(0). Upon replacing the sum over k in Eq. (28) by an integral and
performing the change of variables defined by Eqs. (23}and (24), c„can be written as

exp[[/ +6 (k„T)]'~ /k~TJ
dk, d [ +b, (k„T)] (5 l)

o
'

o
' i+exp[[/ +5 (k„T)]' IksTI

(States for which k, (—kF or k, )k~ give a negligible contribution to c„and have not been included. } By means of
successive changes of variables

g=kii Tu, (52)

k, =2gk~sinht,

and by the use of Eqs. (3), (4), and (8), one obtains

2~kg'gk g T arcsinh(]/g}
2 60

~es dt cosht du u ++2'' o k~T

2
exp[u +(bo/ksT) ]

l+exp[u +(holk~T) ]

(53)

22mkFgkg T arcsinh(1/g} 00f dtcosht f du[u +a (t)]exp[ —[u +a (t)]' (54)

where a ( t)—:hotanht /kz T.
Let I(t) be the result obtained by performing the integration over u in Eq. (54). Using the change of variable,

u =a(t)sinhu, one gets

I(t)= f dx a (t)cosh x exp[ a(t)cosh—x]
0

$3= —a 3(t) f exp[ —a(t)coshx] =a 3(t) [
3 g i[a( t)]+ ,'K3[a ( t)]I-5[a(t)]'

where &, and &3 are modified Bessel functions of the second kind. Subsitution of Eq. (55) into Eq (54) leads to

(55)

2mkrgk, 'T
~es 2 2

0 arcsinh(1/g} slnh t 3 0
tanht + 4&3 tanht

k~T o cosh t
(56)

At low temperature, it can be seen from the behavior of
E& and K3 for large and small arguments that only
small values of T contribute signi6cantly to the integral.
Near T=0, the contribution of K3 is the most important
one; upon taking this into account and performing the
change of variable,

~o
x = tanht,

B
one gets

keg ~o x'
&es = dx K3(x) (57)

2n. iri T 0 [(b, /k T) x]—

kz

kF

FKr. 13. (a}The angle 8q vs k, . (b) The "summation domain" for Eq. (60). The sign of sin(281, —281, }is indicated.
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where the integration has been extended to infinity (a
good approximation at low temperature and reasonably
small g). Due to the rapid decay at infinity of K3 (x), only
small values of x contribute signficantly in Eq. (57), so
that finally

From these equations, we extract

(&f /i)ho)(&g/c)T) —(c)g/t)a, )(af /aT)
(&f/&6 )(t)g/&g) —(Bg/t)& )(Bf/r)il) D

'

(59)

fly kFgkg T oo $ 05 re,kFgk~c„= 2 2
dxx IC3(x)= T

2m. A 60 m Ado
(58)

The partial derivatives appearing in Eq. (59) can be evalu-
ated exactly from Eqs. (37) and (38). One finds a result of
the form

APPENDIX B
N =g g ai,Pi, sin(28q —20i, ),

k k'
(60)

In this appendix we prove that the parameter q which
appears in Eq. (36) is temperature independent. We shall
merely sketch the proof; the details of the lengthy (but
simple) calculation are left to the reader.

Equations (37) and (38) form a system of two nonlinear
equations for b,o(T) and il(T); they have the following
general form:

f(bo, ri, T)=0,
g(b.o, ri, T)=0 .

where the only properties of ak and Pk of interest to us
here are

(61)

(62)

The angle 8& versus k, is shown in Fig. 13(a) together
with the summation domain" where the sign of
sin(20& —28i,. ) is indicated [Fig. 13(b)]. So it is obvious
that, by symmetry, the sum [Eq. (60)] vanishes; hence,
d rild T=0, and rl is temperature independent.
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