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The Cooper-pair mass m®* is defined by use of the gauge-invariant momentum,

p*=m*v=[(h/2m)Vé—(e*/c) A], where ¢ is the phase of the macroscopically occupied wave
function of Cooper pairs of charge e* (twice the electron charge), A is the total magnetic vector po-
tential, and we have taken the limit of v <<c. We point out that for a general class of experiments in
which the superconductor is in steady-state motion with respect to the laboratory (including uni-
form rotation), the physically observable Cooper-pair mass m’' is measurable, where
m'=m*+e*(®)/c? and (P ) is the expectation value of the total microscopic electrostatic poten-
tial in the bulk metal averaged over the single-electron states that contribute to the superconducting
pair wave function. To lowest order m'=m™*=2m,, and to first order m*c?=pu*—e*(®) and
m’c*=pu*, where u* is the electrochemical potential (including the rest mass 2m,c? and the work
function W). For niobium the intrinsic mass is m * /2m, ~1.000 18, and the observable mass for ex-
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periments is m'/2m,~=0.999 992.

INTRODUCTION

Superconductivity provides two classic relations which
involve the exact values of fundamental constants: the
quantization condition for magnetic flux and the Joseph-
son relation between voltage and frequency.! One might
be tempted to add to this list a third relation, whose
status, however, is somewhat less clear. London? argued
that in the interior of a rotating superconductor there ex-
ists a uniform magnetic field which is proportional to the
angular velocity of rotation w by

Binterior:_(zmcpc/e*)w . (1)

We now know that e*= —2|e| exactly and that the
Cooper-pair mass parameter mcp is given by 2m, twice
the electron mass, in the nonrelativistic limit of electron
velocity.> Equation (1) follows easily by converting the
uniform rotation to a uniform magnetic field using
Larmor’s theorem. In this paper, we clarify the nature of
the first relativistic correction to mcp. We show that
mgcp receives corrections from the internal structure of
the Cooper pair which depend on the microscopic prop-
erties of the superconductor, but which can be sensibly
computed.

Currently, the size and sign of the corrections to mcp
are a matter of controversy in the literature. An ap-
proach to the problem from macroscopic thermodynamic
arguments was begun by Anderson (with reference to
Josephson),* and extended by Brady® and most recently
by Anandan® These authors have predicted
mcp—2m, <0. A microscopic approach was followed by
Cabrera, Gutfreund, and Little (CGL).” They obtained
mcp—2m, >0, in clear disagreement. Our purpose here
is to reconcile these two approaches. To do this, we need
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to take proper account of the atomic electrostatic poten-
tials. We define two masses: m* the intrinsic mass of the
Cooper pair and m' the observable mass measured in ex-
periments. As we shall see, m* is greater than 2m, as
found in the CGL treatment, but the observable mass m’
is less than 2m,, and m’ is the quantity accessible to ex-
periments.

As part of our argument, we show that the Cooper-pair
mass parameter is observable not only in uniform rota-
tion but also in a larger class of steady-state motions of
superconductors. In particular, m* appears when a local
uniform translation at constant velocity is considered. A
simpler and more transparent analysis of m *, and later of
m', can then be performed from the viewpoint of inertial
frames rather than dealing with the more cumbersome
mathematics of accelerated rotating frames.

COOPER-PAIR MOMENTUM

Let us begin by analyzing a piece of superconductor in
uniform translation, and relating this system to a ring of
superconductor in uniform rotation. That such a relation
should exist is clear from Fig. 1. Figure 1(a) shows a thin
(but still macroscopic) superconducting ribbon set into
steady-state motion around two-rollers. As the roller di-
ameter is decreased, a larger percentage of the path
length around the ribbon moves at a fixed constant linear
velocity with respect to the laboratory frame. We will ar-
gue that the flux quantization condition receives equal con-
tributions per unit length from each uniformly moving seg-
ment as well as each accelerated segment. Then, in the
limit of small rollers, the effects of the ends (where the su-
perconductor clearly undergoes acceleration) become
negligible. Figure 1(b) shows that a more complicated ar-
rangement of rollers and uniformly moving segments can
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(b)

FIG. 1. (a) Schematic of flexible superconducting pulley with
most of path length undergoing uniform translation, and (b) ap-
proximate uniform rotation by piecewise uniform translation.

approximate a uniform rotation.

A simply-connected quiescent superconductor at rest
in the laboratory has a superconducting order parameter
Y=|¢le’® with uniform spatial phase ¢, if we choose a
gauge in which the macroscopic A field is zero. If this
piece of superconductor is set into uniform motion, we
should expect to see a spatial variation of the order-
parameter phase. We can interpret the order parameter
¥ as the macroscopically occupied wave function of
Cooper pairs* and we expect this function to have the
form ¥,e2™P */% when the assemblage of Cooper pairs is
in motion. In principle, we can obtain an expression for
p* by Lorentz boosting the superconductor from rest;
however, we must be careful always to refer the boost to
the same gauge condition that we had originally imposed.
The easiest way to keep track of this condition is to
work, with the gauge-invariant momentum
[(h/27)Vd—(e*/c)A]. For a superconductor in uni-
form motion with velocity v, we should expect that this
vector be uniform in space (at the macroscopic level) and
that it point in the direction of v. Thus we may define
m* by the relation

m*v=(h/2m)Vé¢—(e*/c) A ()

for v<<c. In the nonrelativistic approximation, the
phase variation described in Eq. (2) reflects the momen-
tum of the Cooper-pair electrons; thus m* ~2m,.

Equation (2) can be connected to more standard equa-
tions of superconductivity by using it in conjunction with
the assumptions of Ginzburg-Landau theory.® In this
mean-field approximation of marcroscopic variables, ob-
servables are local functions of the order parameter .
Actually, it is conventional to write the current-density
equation of this theory in terms of a wave function ¥ for
superconducting electrons as

j=(e*/m*)W*Y[(h/2m)Vd—(e*/c) A] . (3)
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The phase of W is identical with that of ¢ and
V*W =~ (Ep/A)Y*Y, where Ep is the Fermi energy and A
is the superconducting energy gap (Ep/A~10° to 10%).
If we indentify the superconducting electron charge den-
sity p=e*¥*¥, we find that j=pv. Note that V¢ can be
thought of as the wave vector k for the coherent state.

Defining the penetration depth A=(m*c?/
4e *2W*W)!1/2 we can obtain several classic results® by
rewriting Eq. (3) as

(4me*A2/c)j=(h /2m)Vd—(e*/c) A , @)

where now m* appears only in A. If we assume that the
only steady-state current within the superconductor is
the supercurrent j, then taking the curl of Eq. (4) and us-
ing Maxwell’s equation curl B=(41/c)j leads to curl(curl
B)=—(1/A%)B. Taking the curl once again gives the
identical equation for j, curl (curl j)=—(1/A%)j. The
solutions to these equations always result in B and j ex-
ponentially attenuated to zero, within a characteristic
length A, as a function of the distance to the nearest sur-
face of the metal. Thus the left-hand side of Eq. (4) is
negligible in the interior of the superconductor.

By taking the line integral of Eq. (4) around a closed
path T contained within the superconductor which
bounds the surface S, we obtain

[ (am?/e)j-d1=n(he /e*)— [ B-dS, (5)
r N\ N

where we have used the single-valued condition to set

V¢-d1=n2m (n an integer). Equation (5) is the fluxoid
quantization condition of London.? For the path T'
everywhere many A away from any surface, we obtain ex-
act quantization of the magnetic flux in quanta of hc /e*,
and the result does not depend on an exact knowledge of
A. The discovery of flux quantization by Deaver and
Fairbank and by Doll and Nabauer® in 1961 determined
that e*=2e¢ and was the first direct experimental evi-
dence for Cooper pairing.

In circumstances where the left-hand side of Eq. (5)
may be neglected, the exact value of A is unimportant and
the right-side gives a precise relation, independent of the
assumptions in the Ginzburg-Landau theory, since the
right-hand side of Eq. (4) depends only on the phase ¢ of
the order parameter and not on its magnitude. Similarly,
in situations involving uniform translation, Eq. (2) is ex-
act. Of course, these exact relations involve the phenom-
enological mass parameter m*, which so far we have
determined only approximately.

To derive the exact consequences of Eq. (2), consider
now a loop of superconductor, consisting of segments in
uniform translation. Choose a gauge which makes A
nonsingular over the closed path I" (of length L) and over
the surface S bounded by I'. Then we may compute

JBrds= [ A-di=(he/2me*) [ V¢-a1
—(cse*) [ [(h/2m)V

—(e*/c)Aldl (6)
so that

[ B-dS=n(hc/e*)—(m*c/e*) [ v-dl. (7)
N r
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We argue that since the moving frame is locally inertial,
the supercurrent must be zero in the interior as we have
shown from Eq. (5) for a superconductor at rest in the
laboratory. Thus, in the interior, v must be the lattice ve-
locity. Equation (7) gives the generalization of Eq. (5) for
superconducting loops in arbitrary (nonrelativistic)
steady-state motion.

COMPUTING m *

Now let us turn to the problem of computing m*.
Since we have related m * to a gauge-invariant quantity in
Eq. (2), we can determine m* by a straightforward
Lorentz boost. We must, however, account for the effect
of the boost on both V¢ and on A.

The boosted V¢ is obtained by noting that
P,=[(h/2m)V¢, (h/2mc)d¢$/dt] is a Lorentz four-
vector and that, for a superconductor at rest, the order
parameter behaves in space and time according to the
Josephson relation \I/(x,t)=‘ll(x)e2“'i“*‘/h. A boost will
produce a spatial variation of the phase given by
¢=2mu*v-x/hc®. Properly, this relation follows if u*,
the electrochemical potential of a Cooper pair, is referred
to the boost-invariant vacuum state. That is, u* should
be the free energy required to create a pair of electrons at
infinity, bring them into the superconductor, and bind
them into a Cooper pair (see Fig. 2). At zero temperature

u*=2(m,c*—W)—e, (8)

where W >0 is the work function of the superconducting
metal and € (with 0 <e << W) is the condensation energy
per Cooper pair.® This energy e~ 107 °E and is given by
N(0)A? for a weakly coupled BCS superconductor at
zero temperature, where N(0) is the normal density of
states at the Fermi surface.

The A field which appears in Eq. (2) should be the
macroscopic A field acting on the Cooper pair. In the
superconductor at rest, this is zero; however, the boost
gives a contribution to A from the total electrostatic po-
tential ® in which the Cooper pairs move [ 4, =(A,®)
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FIG. 2. Energy diagram for Cooper pairs which includes the
work function W <0, the electrochemical potential u*, and the
electrostatic potential e *(®).
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is a Lorentz four-vector]. The term ® is the spatial
mean-field interaction potential of the pair with all of the
other electrons and nuclei in the metal. If (&) is the
correct macroscopic average of this potential, then the A
induced by the boost is

A=(v/c)(D) . (9)
In the BCS theory, (® ) is given’ by ‘
(@) = [ d’k|Wpes(k) (k| @[K) , (10)

where the average is formed from the expectation values
of single electron states weighted by the BCS ground-
state occupation density in k space (nonzero only for
|[Ep—E |=~A). Since A/Ep=~1073 to 107% it is
sufficient to average over states at the Fermi surface, and
(@) =~(kp|®|kp) ., as pointed out by CGL.’

Combining the Lorentz boosts of Eq. (8) and (9) with
Eq. (2) we obtain

m*ci=p*—e*(®)=2(m,c*+{(T))—¢, am

where in the last expression all energies have been written
as positive quantities (see Fig. 2). We have used the rela-
tion

le{®)|—W=(T), (12)

to introduce { T'), the single-particle kinetic energy of an
electron, averaged over the Fermi surface. Note that
m*c? is the chemical potential (including the rest mass).
Equation (12) makes it clear that, in estimating m * from
single electron states, one cannot use the familiar psuedo-
potential cancellation between the kinetic and potential
energies near the ion cores. The chemical potential is an
intrinsic property of the bulb metal’® and is independent
of electric charges and electric dipole layers on the sur-
face, a statement not true of either u* or e*(® ).

The expectation value of ® includes the interaction po-
tential of the Cooper-pair electrons with all of the other
electrons and nuclei in the metal, but it does not include
the binding energy of the Cooper pair itself. Thus m*
does not directly contain any interaction energies other
than the small condensation energy € per pair. It is a
good approximation, however, to neglect this small quan-
tity. One then recovers the result of CGL.’

LORENTZ BOOSTED SUPERCURRENT

Having unambiguously defined m*, let us consider a
Lorentz boost of Eq. (4). For this purpose it is con-
venient to define Lorentz four-vectors for the macroscop-
ic quantities, the current density Ju=( j, ce*V*W¥), the
canonical momentum P, =[(h/27)V¢, (h/2mc)d¢ /1],
and the vector potential A4 #=( A, (®)). As before, we
are only interested in the nonrelativistic Galilean limit.
We obtain

J— Ve WrW=(e* /m*W*W[(h /2m)Vd—(e* /c) A
—m*v], (13)

where we have assumed v <<c. Note that this equation is
identical with Eq. (3) where we have subtracted equal
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quantities from both sides. In the laboratory frame
Jiota=J—ve*W*V¥, the first term being the supercurrent
and the second the normal current. Taking the curl twice
and utilizing Maxwell’s equation curl B=4w/c¢ j, .., We
obtain curl (curljg )= —(1/A%)j,, .1, SO that the left side
of Eq. (13) is exponentially attenuated many A away from
any surface as was true for the supercurrent alone in Eq.
(4). Neglecting the left side of Eq. (13) we obtain Eq. (2),
and integrating Eq. (13) around a closed path " which
remains everywhere within the superconductor yields

fr(417'7»2/c)jma,'dl
=n(hc/e*)=(c/e*) [ [m*v+e*/c Aldl, (14

where again the singled-valued condition on the phase
was used. For I' in the interior and many A away from
all surfaces,

nh=fr[m*v+e*/cA]-d1, (15)

exactly the Bohr-Sommerfeld quantum condition for the
canonical momentum. Notice that this exact relation de-
pends solely on the phase of the order parameter and that
the Cooper pairs are at rest with respect to the lattice in
the interior of the superconductor. This result must hold
since locally the moving frame is inertial and cannot be
distinguished from the superconductor at rest.

Returning to the pulley arrangement in Fig. 1(a) and
picking a path I' everywhere parallel to v, we obtain

m*v-dl=m*vL, where L is the path length around I".

Equation (15) becomes
[ B-dS=n(hc/e*)—(m*c/e* )L . (16)
For each integer n there exists a velocity v, such that
m*v, =nh/L , (17)

an explicit form of the de Broglie relation for Cooper
pairs.

THE OBSERVABLE MASS m’

Equation (7), which leads to Egs. (16) and (17), is a fun-
damental relation for the magnetic flux enclosed by a
loop immersed in a moving superconductor. However, a
further step is necessary to connect this relation to ob-
servable quantities. In general, one observes flux quanti-
zation in a superconducting loop by measuring the mag-
netic flux coupling through a second circuit. This sensor
is external to the superconducting material of the sample
loop. For a sufficiently thick superconductor at rest,
there is no difference in the magnetic flux through nearby
loops inside and outside of the material. But in our
analysis of a moving superconductor, we need to include
the contributions of Eq. (9) from the microscopic atomic
electrostatic potential. This vector potential appears only
inside the metal, whether it is superconducting or nor-
mal, and does not couple to an external magnetometer.
Thus, this contribution to the intrinsic mass m* should
not be observable.

To better understand this point, consider a simple ex-
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ample, as shown in Fig. 3, for the atomic electrostatic po-
tential in a spherically symmetric Wigner-Seitz (WS) cell.
The electric field produced by each WS cell is nonzero
only within each cell. In the lattice reference frame we
assume that there is no magnetic field thus the electric
field E'=—V®'. Then when viewed from a laboratory
frame, there is a magnetic field everywhere given by
B=—(v/c)XE'=(v/c)XV®'=VX[(v/c)®']. Thus
to within a gauge transformation A=(v/c)®’. In our
symmetric example the magnetic field also is confined
within each WS cell, thus magnetic flux can only couple
to surfaces S bounded by paths I' within the lattice.
The contribution to the total vector potential from the
atomic electrostatic potentials is zero outside of the lat-
tice so that surfaces bounded outside of the superconduc-
tor, for example at the magnetometer pickup loop, couple
no net magnetic flux.

To properly account for the effects of the microscope
contributions to A, which contribute to the shift in the
order-parameter phase but are not detectable outside of
the material, we write

A=A+ (v/e) (D), (18)

where A, contains the contributions from all macro-
scopic currents. Note that for uniform translation curl
A= curl A, so that the discussion following Eq. (13) is
unaffected. It is also convenient to write

m*=m'—e*(®)/c?, (19)

and from Eq. (11) we can identify m’ with u*/c?, the
electrochemical potential for a Cooper pair which in-
cludes twice the electron rest energy. The canonical
momentum remains an invariant since

///// Sy
B- -8 xE

(b)
FIG. 3. (a) Electrostatic potential of Wigner-Seitz cell in lat-
tice rest frame; (b) transforms to magnetic vector potential in
laboratory frame.
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m*v+(e*/c)A=m'v+(e*/c) Ay, (20

as it must to maintain the quantization condition. All of
the previous equations can be written in terms of quanti-
ties observable from outside of the superconductor by re-
placing A and m* with A and m’, respectively.

To illustrate these results, let us consider the predic-
tions for niobium in detail. D. Liberman!'! has obtained
(T)=91.6 eV from a self-consistent calculation on a
symmetric WS cell with the volume of the unit cell in
bulk niobium. The cell is embedded in a sea of electrons
with Fermi energy equal to that of niobium. From an in-
dependent estimate based on the Herman-Skillman tables
for a single neutral niobium atom, CGL (Ref. 7) obtained
(T)=92 eV. The work function for niobium is ~4.0
eV.!? From Eq. (11) we obtain for the intrin-
sic Cooper-pair mass m*c2~2m,c’+ 184 eV or
(m*/2m, )N, =~ 1.000 180, an increase over twice the elec-
tron rest mass of 180 ppm dominated by the kinetic ener-
gy for two electrons averaged over the Fermi surface.
Also, we find the observable Cooper-pair mass in an ex-
periment to be m'c?=2m,c? —8 eV or (m'/2m,)np
~0.999 992, a decrease over twice the electron rest mass
of 8 ppm which is dominated by the work function for
two electrons averaged over the Fermi surface.

One might argue that the intrinsic mass m* is in prin-
ciple measurable using a direct probe of the magnetic
field through the interior bulk material of a uniformly ro-
tating superconductor. Such a probe could be construct-
ed using neutron interferometer. The probe would sense
the interior field by the precession of the neutron magnet-
ic moment along a path through the material. However,
for a rotation velocity of 100 Hz the differential field
B—B,,,~ 103G is too small to detect with current tech-
nology using cold neutrons. In addition, one would ex-
pect the field contribution from the interior electrostatic
potential as measured by a neutron probe to differ from
that derived from Egs. (9) and (10), because the neutrons
will sample the interior nearly uniformly. Thus for neu-
trons Eq. (10) would be replaced by a nearly uniform spa-
tial average of the electrostatic potential. For Nb the
uniform spatial average of the electrostatic potential is
about 15 V, six times smaller than its expectation value
for the Cooper pairs.

Note that an additional but smaller surface electrostat-
ic potential exists (P ..~ —1 €V) because electrons ex-
tend out further at the surface, giving the surface WS
cells a net electric dipole moment, and because adsorbed
surface gas layers can contribute an additional electric di-
pole layer. This term, which can change depending on
the sample surface preparation, is included in the work
function and does contribute to m’ but not to m*. Such
variations of less than 1 ppm are not of concern in the
present treatment, but may determine the ultimate reso-
lution for measuring m’.

UNIFORMLY ROTATING RING

Beginning with London, a number of authors have ana-
lyzed the case of uniform rotation.?”’ We argue that
Egs. (13)-(17) are also applicable to the case of uniform
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rotation at angular velocity @ by making the substitution
v=o Xr and assuming |@ Xr| <<c. In the interior, many
A away from any surface, the left-hand side of Eq. (13) is
negligibly small and the curl of the right side yields

B=—(m*c/e*)curlv
or
B,,,=—(m'c/e*)curlv , (21)

where B, =curl4 . The magnetic field strength inside
of the material is B, whereas the field strength on the in-
side of a spherical void in the material is B,,,. From Eq.
(21), those portions of a superconductor under uniform
translation have B=B_ =0, whereas for uniform rota-
tion curl (o Xr)=2w and

B=—02m*c/e*)w
or
B, ,=—(2m'c/e*)w , (22)

the London relation of Eq. (1). To illustrate uniform ro-
tation, Fig. 4 shows the vector potential and magnetic
field strength plotted as a function of radius for a uni-
formly rotating solid cylinder [Fig. 4(a)] and for a uni-
formly rotating hollow cylinder [Fig. 4(b)]. In the interi-
or of the material there exists a larger value for the ex-
pectation values of the vector potential A and magnetic
field B, and any measurements performed with magne-
tometers either outside of the cylinder or in the central
core of a hollow cylinder are sensitive only to A, or
Bobs'

Turning again to the case of uniform rotation, it has
been argued that, since the mass appearing in the London

(a) (b)

FIG. 4. The magnetic vector potential - A (entirely azimuthal)
and the magnetic field B (entirely along the spin axis) plotted as
a function of radius (a) for a uniformly rotating solid cylinder
and (b) for a uniformly rotating hollow cylinder. The contribu-
tions from the electrostatic potential are greatly exaggerated so
as to be seen.
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expression can be derived from the Larmor theorem of
the kinematic equivalence between a uniform rotation
and the application of a uniform magnetic field, it is not
related to the m* appearing in the Ginzburg-Landau
equations.® We point out that the results of Egs. (13) and
(14) are more general than those derived from an assump-
tion of uniform rotation. The term containing m * or m’
will appear on the right-side of Eq. (15) whenever the cir-
culation | v-dl around a closed path is not zero. Note
also that in Fig. 1(a) the contributions from the sections
undergoing uniform translation are equal per unit path
length to those undergoing uniform rotation, even though
for the former curl v=0 locally.

It is important to point out that precise experiments
based on Eq. (14) are performed on thin-film supercon-
ducting rings. Then the left-hand side of Eq. (14) is not
. negligible; however, Eq. (17) still holds since both j,,, and
A, become zero together for each n. Thus, although
the magnetic flux becomes a smaller fraction of a fluxoid
with decreasing film thickness, v, —v, _; remains exact.

The most precise measurement utilizing Eq. (17) has
been made on a uniformly rotating ring with its spin and
symmetry axes coincident.!> The analysis has been based
on uniform rotation, but can be easily obtained from Eq.
(23) by setting L =27 R, where R is the radius of the ring,
and v=wR. Then m'w,=nh /27R? and setting the area
S=7R?and Aw=w, —,_, we obtain

h/m'=2AwS . (23)

It is m' in Eq. (23) which appears in the Larmor theorem
for uniformly rotated superconductors (not 2m,) but
more fundamentally m’ and m* are derived from the
quantum-mechanical canonical momentum P=m*v
+(e*/c) A=m'v+(e* /c) Ay, of the Cooper pairs.

CONCLUSIONS

In the nonrelativistic limit for single-electron veloci-
ties, m'=m*=2m,. To include the first-order relativis-
tic corrections, we find that we must consider the single-
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electrons states which make up the pairing function
(those very near the Fermi surface). The relativistic shifts
to the intrinsic mass m™* come from the velocity-mass
shift of the single electrons and not from the center-of-
mass velocities of the pairs, which are highly nonrela-
tivistic. We find m *c? is the chemical potential (includ-
ing the rest masses) for two single electrons on the Fermi
surface, defined as the difference between the electro-
chemical potential and expectation value of the electro-
static energy, minus € (the condensation energy per
Cooper pair), a negligible quantity. The mass m* is an
intrinsic property of the bulk metal and could in principle
be deduced from measurements with a neutron inter-
ferometer. For most superconductors m* is 100-200
ppm greater that in 2m,. Experiments with magnetome-
ters do not directly measure the intrinsic mass m *, but
rather the observable mass m’, which is smaller than
twice the free electron mass by twice the work function.
For most superconductors m' is about 10 ppm less than
2m,. As with the work function, m’ is affected by
changes in the electric dipole layer on the surface of the
superconductor caused by differing surface structure and
adsorbates. However, these variations are expected to be
of order 1 ppm.

The treatment presented here is in agreement with pre-
vious treatments*~® which are based on the macroscopic
approach and we conclude that the treatment of Cabrera,
Gutfreund, and Little’ correctly computed m *, but did
not include the entire contribution to the magnetic vector
potential from the interior electrostatic fields when
analyzing experiments with magnetometers.
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