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We study via simulation how a lattice breaks if each bond is an elastic beam having longitudinal
and flexural breaking thresholds randomly selected according to various probability distributions.
We observe scaling of force, displacement, and number of broken beams in the controlled regime.
The distribution of local forces just before breaking is characterized by a multifractal spectrum
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I. INTRODUCTION

How does a heterogeneous solid break when an exter-
nally applied displacement is slowly increased? This
question is technologically of great importance, and an
entire branch of material science is devoted to its study.
Much empirica1 knowledge has been gathered and vari-
ous theoretical approaches have been worked out. ' How-
ever, there are still numerous fundamental aspects that
remain unsolved.

In the last years a new way of approaching the problem
has emerged from statistical physics, more precisely from
the study of disordered media. The solid is modeled by a
lattice of elastic bonds. Each bond represents the materi-
al on a mesoscopic level and it can break irreversibly if
the strain applied at its ends exceeds a certain threshold.
An essential feature of the model is the presence of
quenched disorder either in the elastic constants, in the
threshold values or in the presence of a bond (dilution).
When an external strain (or stress) is applied to the lattice
and then slowly increased, the individual bonds wi11

break in a certain order until the system falls apart. The
sequence of breaking bonds and the spatial patterns they
form are supposed to mimick a real breaking process.
They depend on the type of disorder and on its distribu-
tion. But how relevant is this dependence? Is there some
universal law common to all distributions? This is the
typical question in statistical physics that one is interest-
ed to answer. Also other quantities like the total number
of bonds that one must break or the maximum stress one
has to apply to break the system apart might follow some
universal laws. It is in this direction that we aim the
present work.

The simplest way of describing an elastic solid is via
the electric analog, i.e., to reduce the problem to a scalar
one. The bias that is introduced through this
simplification in the case of dilution is now well under-

stood. In this approach the bonds of the lattice are
fuses. Disorder has been considered in the conductivi-
ties, ' in the lattice in form of dilution ' and in the
thresholds. It has been found that the distribution of
external breaking voltages and the maximum voltage
drop across a bond' follow nontrivial laws.

The results obtained for the electrical analog can serve
as a guide1ine but if one wants to compare theory and ex-
periment it is inevitable to consider the vectorial nature
of elasticity on one hand and the bond-bending eA'ects on
the other. Some cases of fracture that include random-
ness and take into account the vectorial nature have been
studied but they are relevant to very particular situations
only. In one case a thin layer of elastic-brittle material
connected to a rigid substrate, where breaking is thermal-
ly activated, has been investigated numerically by Mea-
kin. " The other case is the mechanical analog of dielec-
tric breakdown, ' and its experimental relevance is not
clear. This approach gives rise to fractal patterns and
has been attempted' using a discretization of Lame's
equation.

In the present paper, we consider the most common
situation where fracture takes place in the bulk of the
material. We wi11 take into account the vectorial nature
of elasticity and thus bond-bending by using the beam
model. ' In this model each bond of the lattice is an elas-
tic beam soldered on both ends to sites. In two dimen-
sions each site has three degrees of freedom: two spatial
coordinates and an angle of rotation. The rotation of a
site necessarily curves and shears its adjacent beams [see
Fig. 1(a)]. Elongation, shear or flexion of a beam cost en-
ergy. In addition, we give in our model to each beam a
breaking criterion with randomly chosen threshold
values. This means that we choose the quenched disorder
to be in the breaking thresholds. In the next section we
will describe the model and the algorithm that we use to
solve it. In the following section we present and discuss
our results.
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tion and tM, for flexion randomly chosen for each beam.
The thresholds are picked according to the following
probability distributions:

P(tF ) =(1—x)tF " with tF E [0, 1]

and

II. MADEL AND METHOD

We consider a square lattice of size L XL with periodic
boundary conditions in the horizontal direction and fixed
boundary condition on top and bottom. On each site i
there are three continuous degrees of freedom: the two
coordinates x, andy, and z, =0, 1 where 0, H[ —rr, vr) is an
angle and the lattice spacing I is set to be unity. Nearest-
neighboring sites are connected through a "beam" in
such a way that it forms an angle 0, with the direction of
the underlying square lattice at the site i [see Fig. 1(b)].

A beam is to be imagined having a certain thickness
giving it not only longitudinal but also shear elasticity.
Its elastic behavior is given, e.g. , in Ref. 15 and for our
purposes also in Ref. 14: One defines the three material-
dependent constants

I
EA ' GA' EI

where E and G are the Young and shear moduli, 3 is the
area of the beam section, and I is the moment of inertia
for flexion. Then one has for a horizontal beam between
sites i and j [Fig. 1(b)] for the longitudinal force:

1F=—(x —x ),
a

(2)

for the shear force:

FIG. 1. Schematic representation of the hearn model (a) rota-
tion of one site (b) beam flexed due to the angles at its extremi-
ties.

F ' max( fM, f, fM, f)+ l & J )
tF

(6)

To impose an external strain we attach at the bottom a
zeroth line on which for all sites x, =y, =z, =0 are fixed
and on top we attach a (L +1)th line on which all sites
have the same fixed values x; =X, y, = Y, and z, =0. If we
want an external elongation we set X =0 and Y = 1 and if
we want an external shear we set X =1 and Y=0. The
fact that we fix the external strain to be unity is no re-
striction. This is because all the microscopic quantities of
the lattice (displacements, forces, etc. ) are proportional to
this value. It is the aim of our calculation to determine
this proportionality constant k such that one would just
break the first (weakest) beam. That means that we look
for the beam between sites i and j for which the A, that
satisfies in Eq. (6) the equality

Fq
' max( fM, X f, fM, X f)+ =1

tF tM

is smallest. The force F and the moments M,- and M in
Eq. (7) are obtained for a unit external strain.

In other words we calculate for fixed unity external dis-
placement the values for x;, y;, and z, on each site of the
lattice and from there we calculate for each beam

P(tM)=(l —x)q 'tM with tME[O, q],
where the exponent x ( 1 and the relative width q of the
distributions are parameters of the model. Large disor-
der is given by x ~ 1, small disorder by negative x. We
then use for a beam the following rupture criterion' that
can be derived from Tresca's or von Mises's general
yielding criteria for the material the beam is made from:
The beam breaks if

S=(b+ —,', c) '[y, —y + —,'(z +z, )],
and for the flexural torque at site i:

(3)
(h'+4h )' ' —h,

2h~
b

M,=, (z, —z))
12

z+ ,'(b+ —,', c) '
y, —

—y,+ —', z, + —'
Analogous formulas are valid for vertical beams. In Eqs.
(2)—(4) we only consider the leading linear terms. This is
an approximation if the local strain is not infinitesimal.
However, we consider here the case of a brittle material
for which a linear approximation is valid up to the
threshold. In this work we arbitrarily chose a = 1,
b =30/7, and e =2b as material constants.

In first order, only two mechanisms contribute to the
breaking of a beam: elongation and flexion. We there-
fore introduce only two threshold values tF, for elonga-

with h, =max( fM& f, fM~ f)It~ and h~=(F/tF) using
Eqs. (2) and (4). The beam that has the smallest value of
A, "breaks" and is removed [i.e. , its constants a, b, and c
in Eq. (1) become infinite]. A beam that has been re-
moved will never be restored. Once a beam has been re-
moved all the values of x;, y, , and z,- on the lattice will
change and must be calculated again in order to deter-
mine via the same procedure the next beam that will
break. In this way starting from a finite square lattice
that has a beam on each bond one gradually removes the
beams one by one in a sequence that depends on the ran-
domly distributed threshold values through the pro-
cedure described above. We assumed implicitly in this
model that the network relaxes to mechanical equilibri-
um at a much faster rate than the bond breaking process.
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TABLE I. Number N of lattices generated for the case x =0,
q =1, external elongation for different sizes L.

4
8

16
32
64

50 000
10000

500
40

1

0.3—

When the last beam breaks for which top and bottom
were still connected via beams the system falls apart and
the breaking procedure is stopped. We call n& the total
number of beams that had to be broken to reach that
point. After this point all A, would trivially be infinity.

The calculation of the x;, y, , and z; on the sites before
each breaking is done numerically via relaxation using
the conjugate gradient method. ' ' More precisely we
use Eqs. (40) —(46) of Ref. 18 replacing the kernel D by:

0.1—

I

100

X; FI g II FIII+g Iv

y gI+FII gIII Flv

m'+ I"+m"'+I"
~l l I

(9)
10 3

where I—IV indexes the four beams adjacent to the site i.
We stopped after reaching a precision of @=5X 10 [see
Eq. (47) in Ref. 18]. We did not use Fourier acceleration
since even for the largest lattices we studied (L =64) it
was ine%cient. The number of relaxation steps needed
grows roughly as L and the CPU time to break a lat-
tice apart grows like L

In order to properly handle the quenched disorder in
the breaking thresholds we repeated the calculation X
times with diff'erent casts of thresholds and all the quanti-
ties that we calculated are averages over the X samples.
These averages were always taken for fixed number of
broken bonds. In Table I we show typical values for N.

10 7-

10 10 10 10 3 10

III. THE BREAKING CHARACTERISTICS

During the breaking process we monitor a certain
number of quantities. In the simulation we imposed an
external displacement of unity. Therefore the real total
external elongation or shear (depending on the initial
condition), i.e., the one needed to break a beam, is just
the A. from Eq. (8). Similarly Y= g, F, , where the sum
goes over all the vertical beams that connect lines zero
and one, is the elastic modulus of the lattice which could
also be obtained from the computation of the total energy
of the system. A. and Y are averaged over many samples.
The total external force f that must be applied to break a
beam is then given by f= A, Y.

The force-displacement characteristic, i.e., f versus A, ,
at the breaking of the individual beams is experimentally
accessible and contains the most interesting information
about the breaking process. In Fig. 2 we show this
characteristic for difterent sets of parameters. One can
see that in the beginning of the rupture process force and
displacement increase proportional to each other. We
call this the "controlled" regime.

0.1— (c)

3.03
I

0.01—

0.05 0.3

FIG. 2. Log-log plot of the force f against the displacement
A. at the rupture of the individual beams applying an external
elongation for L =16 (a) x =0, q =1, N=60, (b) x =0.8, q =1,
N=30; (c) x =0, q=0.01, N=100.
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In this region the statistical fluctuations are weak. It is
d b the disorder: if one has more disor er

(larger x) the region is larger [compare Figs. (a an

value of this maximum is the force needed to break the
Aft oing through the maximum there is

needsa second region: the catastrophic rupture. One nee s
eac time ess

it is onlh bi statistical fluctuations. Experimentally it is on y
accessible if one imposes the external strain and no i

the external stress because in the second case allimposes e
bonds will break simultaneously in the catas rop
gime.

~ ~

erIt is of interes o anf t t alyze these characteristics furt
to study the dependence on the size L. Unfortunate y,
specially for arge1 L the statistical noise is substantial.
For this reason we wrote a smoothening routine t a
makes use o t e o viouf h b us fact that k must monotonically

~ ~ ~

increase in e prthe rocess and that f cannot have minima t

uld have averaged (in the way described a oveone wou ave a
le in ourover in ni e yfi itel many samples. So if, for examp e,

'

data we had at two subsequent breakings an wi
A,

' (A, (where these data are the averages over a finite
number of samples) we replaced them by

0.20 l—

0.18

0.16 I-

0.1L "

0.08—

0.06 &

O.OL

0.02

0.00
0.0

II

1.0 1.5 2.0 2.5 3.0 3.5 L.D L.5 5.0

and A
3 g +

3
A,

' An example of how this smoothening
works is shown in Fig. 3.

By conveniently scaling the axis of the characteristics
we tried to collapse the data for different L. The collapse
works best in the controlled region for:

0.2D
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7.0 8.0 9.0 10.0

FIG. 3. f/L against A, /L for x=0, q = I applying an exter-
nal elongation for dift'erent sizes L (a) raw data, (b) using the
smoothening routine.

FIG. 4. f/L against A/L ' for different stz. es for (a)
=0 = 1 (b) external elongation,external elongation, x =, q-

x =0.5, q =1; (c externa s ear, x =x = . , =; ( ) 1 h ar x =0 q = 1 (data smoothened).
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L 3/4y( gL
—3/4

) (10)
0.36—

0.32—

0.28—

0.16—

0.12—

0.08—

0.04-

0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5

X/Lo8

FIG. 5. f/L against k/L for different sizes for an
external elongation x = —1 and q = 1.

where P is a scaling function while the brittle regime does
not scale as shown in Fig. 4. This is true for x ~0; for
x = —1 we found better collapse for somewhat larger ex-
ponents (see Fig. 5). Our exponents have error bars of
about 10%. We also tried to collapse the data using a
scaling law of the type L (lnL )~ and found that the pure
powerlaw scales the data best. It is specially remarkable
that a scaling with L/3/lnL does not work at all since
this type of behavior has been calculated in the scalar
case for dilution and for distributions in the threshold
with a lower cutoff for the maximum of the characteris-
tic. The fact that f and A, scale in the same way implies
that the elastic modulus Y=f IA, is independent of L.

Another quantity that should be observed is the num-
ber n of beams that have been broken at a certain stage of
the process averaged over several samples. In Fig. 6 we
show the elongation k as a function of n. Again one can
scale the data and again the scaling works in the con-
trolled and not in the brittle regime. In Fig. 7 we see that
a scaling of the form

—L ff(fL '3/4
)

20

I
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0.0
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1.8

FICs. 6. Elongation A. against number n of broken beams for
an external elongation, x =0, q = 1 for (a) L =4 and {b)L =16.

FIG. 7. Data collapse of f/L / against n/Lr for different
sizes for x =0, q = 1 (a) external elongation; (b) external shear.



642 HANS J. HERRMANN, ALEX HANSEN, AND STEFHANE ROUX 39

where P is a scaling function, works well and we have for
x =O„q = 1, y = 1.65 for an external elongation and
y=1.75 for an external shear. For x=0.5, q =1 and an
external elongation we obtained y = 1.85. The error on y
is about 10%.

A particularly important point of the breaking charac-
teristic is of course the maximum after which the system
will break catastrophically. The maximum characterizes
macroscopic brittle fracture. We analyze in Fig. 8 the

force fl„ the displacement kt, and the number of broken
beams nI, at the maximum. ft, is the average over the in-
dividual maxima of each sample while k& and nI, are the
values at the maxima of the averaged curves. We see that
nb clearly follows a powerlaw in L with an exponent of
about —,'. This value seems quite universal since in Fig. 8

we show it to be valid for large disorder (x =0.5) and
very small disorder (x = —1 ) and for external elongation
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(d)
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I
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FIG. 8. Log-log plot of n~(o), X„(A), and f~(4) as a function of L for (a) x =0, q = l, external elongation; (b) x =0, q = 1, exter-
nal shear; (c) x =0.5, q = I, external elongation; (d) x = —1, q = 1, external elongation. The straight line is a guide to the eye of slope
7/4.
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as well as external shear. This result is in contrast to
what is found if the probability distribution of breaking
thresholds has a lower cutoA', then it can be shown that
nb is a finite number independent on L. Force fb and dis-
placement kb do not lie on a straight line in Fig. 8 so that
they do not follow a pure powerlaw. The curvature in
the data can be due to strong corrections to finite-size

scaling or to logarithmic prefactors. The precision of the
data and the small sizes considered do not allow us to dis-
tinguish between these possibilities. It is nevertheless
clear from the data that A. b is not compatible with a be-
havior L/&lnL as found in similar cases ' because the
effective slope in Fig. 8 is already larger than unity at the
larger sizes and the curvature is positive. Another fact
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FICx. 9. Log-log plot of nf('7), kf{E), Yf(~), and If( ) as a function ofl for (a) x =0, q =1, external elongation; (b) x =0, q =1,
external shear; {c)x =0.5, q = 1, external elongation; (d) x = —1, q = 1 external elongation. In (a) and (c) the solid lines have slope 1,
the dashed lines slope —3/2 and the dotted lines slope 7/4. In (b) we have slopes 1.64, 0.76, —1, and 0.9 for nf, A.f, Yf, and If and in
(d) we have slopes 1.55, 0.61, 1.5, and 0.9 for nf, kf, Yf, and If.
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that can be extracted from the data is that like in the can-
trolled regime fb and kz have essentially the same L
dependence which means that the elastic moduli Yb are
independent of L within the statistical error bars.

The other special point of the breaking process is the
end of the characteristics, i.e., when the last beam breaks
before the system falls apart. This point gives informa-
tion about the catastrophic rupture. The average number
n& of broken beams at this point scales (similar to the
maximum) roughly like L as shown in Fig. 9; in some
cases [Figs. 9(b) and 9(d)] the exponent is a little smaller.
In fact nb and nI are quite parallel which means that the
number n&

—
nb of beams broken during the catastrophic

break also scales roughly like L ~
~ This is in contrast to

the result obtained for the single crack approximation
which predicts an nI proportional to L. The average dis-
placement A,I at the final breaking point increases with a
powerlaw in L where the exponent is less or equal to uni-
ty depending on the case. The behavior of the average
Young modulus YI at this point is interesting. It de-
creases like L for an external force and like L ' for
an external shear. The exponents have an uncertainty of
nearly 10%%uo. Finally we also calculated the average
chemical distance at the final breaking point, i.e., the
length of the shortest path if one goes from top to bottom
over present beams. This length scales like L and is
therefore not fractal.

h2

10S—

10

10
2

10

10

10

10

10' I

10O

10

I I I I 1 I I I I I I

2 4 6 5 10 12 14 16 10
n

20

IV. LOCAL PROPERTIES
10'—

During the process of rupture there are very strong lo-
cal strains specially at the tips of cracks. The study of
these local e6'ects seems crucial to understand the mecha-
nisms of rupture. Experimentally local properties might
eventually be accessible, for instance through photoelas-
tic measurements.

We have analyzed the two terms h 2
= (F /tF ) and

h ", =max( ~M, ~, ~M2 ~
) ItM that appear in Eq. (8), at the

beam that breaks averaged over the samples. The behav-
ior of h z as a function of n is shown in Fig. 10 for two
difl'erent sizes. We see that it varies over many orders of
magnitude. In the beginning of the process hz is very
large due to the very small values of tF which determine
the breaking; so there the process is controlled by the dis-
order. In Fig. 11 we see the behavior of h *, . Both h *, and
hz decrease monotonically and this has as consequence
the monotonic increase of X. But we see that h*, de-
creases very slowly so that it is actually the elongation
given by h z which dominates the behavior of A. as a func-
tion of n. h*, Auctuates more or less equally strong dur-
ing the whole process and is comparable in size and Auc-
tuation to the behavior of h z at the end of the process.
So, only at the end the two contributions become about
equally relevant.

To see better the two contributions to breaking,
elongation and flexion, we regard f, =A, (hz )'~ and
m, =A, h

~
for diferent system sizes. We would expect

f, +m, =1 if we would have calculated f, and m, for
each sample and then averaged, but we averaged first k
and the h *'s and then took the product. In Fig. 12(a) we

10

15 30 45 60 75 90 105 120 135 150

n

3.0
)

-1.5 j.

-3.3—

-5.1 I

-6.0
0 13 26 39 52 65 78 91 10! 117

n
130

FIG. 11. h l logarithmically plotted against n for x =0,
q =1,L =16, and an external elongation.

FIG. 10. hz logarithrnically plotted against the number n of
broken beams for x =0, q =1 and external elongation for (a}
L =4 and (b) L =16.
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2.0

fC

and

inn (F)—cz(~)=
lnL

(13)

1.2—
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0.8—

1.5niL" 2.0 2.5 3.0

where the constantants c& and cz are amplitudes. a de 'b

how sin ular
s. a ecri es

g ar a certain region of beams is, i.e., how the
stress would change if the size of th e system increases.

f a) ts the fractal dimension of the subset of beams hav-

ing a singularity of strength 0.. The values of c, and cz
are given through the scaling in L, i.e., they must be
chosen such that for large L all f ( )a curves collapse on a

single curve. Then the scaling F= 'L d
2 f(a) .

=e and n (F)

In Fig. 13 we show f(a) where c and c h bave een

jus in the way described above, but the deter-
mination of c, and c is not

cult to know what the behavior for large L will be:
Our systems are quite small for this analysis. Still one
sees that the collapse is reasonable. Since the number n

o onds cut just before the syst b kem rea s completely
apart goes like nf -L with y (2 t 1 hi is c ear t at the total
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FIG. 12. , (a) and m, (b) as function of n/L' f
q =, external elongation for various system sizes
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structure just before breaking is not fractal and so the
largest value of f(a) must be f,„=2. The convergence
towards 2 is studied in Fig. 14 for the case of Fig. 13(a).
We verify the expected behavior as 1/1nL which indi-
cates that we have chosen the right values of c, and c2.
The value of a at this maximum is about —2 which
means that the majority of beams have a stress scaling as

2

In Fig. 13 we also see that for increasing system sizes L
the end of weak singularities (left-hand side) saturates
each time towards higher values and it cannot be exclud-
ed that for L~ ~ they will stay at 2. Such a scenario for
the "cold" side of the spectrum has previously been pro-
posed for the random resistor network.

The "hot" side of the spectrum and the form of the
maximum in Fig. 13 seem quite stable towards changes in
L and it is very probable that one obtains asymptotically
for large L a curved f(a) spectrum. This means that one
has multifractality, ' i.e., an infinity of relevant exponents
determining the scaling behavior of the structure.

In Fig. 15 we show the analog of Fig. 13 for the distri-
bution of local shears, i.e., replacing in Eq. (12) and (13)F
by S. Qualitatively the situation is similar to the case of
local forces but the spectra are a little less curved and less
smooth. One cannot exclude the possibility that they
might tend towards two joined straight lines in this case.

Another way to investigate the distribution n(F) and
look for multifractality is via the moments
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FIG. 15. Spectrum f(a) for the distribution n(S) of shears S.
We show data for L =4, 8, 16, 32, and 64. For externally ap-
plied elongation, q = 1 and (a) x =0, c1 = 1.5, c2 = 1.0; (b)
x =0.5, c, = 1.6, c2 = 1.5.

We calculated mi, for various values of k and the size
dependence is shown in Fig. 16. The zeroth moment
beautifully scales like L reconfirming that f,„=2. the
first negative moment scales with an exponent larger than
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V. CONCLUSION

We simulated the rupture of an elastic network with
random breaking thresholds. Three regimes can be dis-
tinguished: First, the controlled regime dominated by
disorder, then the brittle threshold where the maximum
external force must be applied, and finally the catastroph-
ic regime where statistical fluctuations are very strong.

In the controlled regime we found that force f and dis-
placement k at the breaking of a beam scale with the sys-
tem size L like a powerlaw with an exponent which for
both is numerically very close to 3/4 nearly independent
of the distribution of thresholds or the externally applied
strain. The number n of broken beams scales with an ex-
ponent of about 7/4 so that a relation

f cc A, ~n/L (16)

is numerically verified. Physically this means that the
displacement depends roughly only on the density of bro-
ken beams along a line across the network.

For the number nb of beams that must be broken to
reach the maximum in the force and thus trigger off the
catastrophe we found a powerlaw dependence on L with
the same exponent around 7/4. In the scalar case two
different approximations have been proposed for this brit-
tle regime: the single crack approximation, i.e., the ap-
proximation that any crack larger than one lattice unit is
unstable, yields n„~ L. The dilute crack approximation,
in which cracks are like random percolation at low con-
centration, gives if Eq. (16) is used nb ~L /&lnL. Our
result nb ~L lies between the two. We think that the
essential effect that both approximations overlook is that
once a crack starts growing it can be, and usually is,

4 also in agreement with our expectations. Already k =1
and k = —2 give unclear results not only because of sta-
tistical fluctuations but also because Eq. (14) is a sum of
very large and very small numbers giving rise to roundoff
errors. This can be understood if one considers the enor-
mous variation in the local forces seen, e.g. , in Fig. 10.
We conclude that in this case the moments are not a good
tool to investigate multifractality.

stopped again in its growth due to the encounter with a
region of stronger beams.

In the catastrophic regime we focused on the last
configuration of the lattice before it falls apart. The
tenous structure of the stress-carrying part of the lattice
induces multifractality in the distribution of loca1 strains,
which can be visualized in the f(a) spectrum.

As a result we have several predictions that one should
in principle be able to verify experimentally. There are
on one hand the scaling laws of Eqs. (10) and (11) as well
as the size dependence of Fig. 8 which one should be able
to see in experimental settings like the one described in
Ref. 23. Multifractality is more difficult to verify, how-
ever, photoelasticity might be a tool to do so.

Our system of beams as we11 as the way we introduce
the disorder imply a certain number of restrictions on the
applicability of our model to rupture phenomena. Other
versions like a central force model or a scalar model
have also been studied and the conclusions found are
similar to the ones found in this work giving strong sup-
port nevertheless that our results are quite generic. It
would, of course, be interesting to investigate the theoret-
ical principles underlying this universal behavior.

In reality many other effects will occur during a rup-
ture due to the various properties of the materials. Let us
mention here only one: plasticity. Efforts have also been
made to understand the behavior of materials made of
fibers via thermally activated thresholds.

Of course, the most urgent thing to do next in order to
describe the experimental reality of breaking is to study
the three-dimensional behavior. Work in this direction is
under way.
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