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In short-period superlattices, excited electrons and holes are subject to a one-dimensional per-
turbation with spatial dimension comparable to the bulk excitonic radius and strength comparable
to the bulk excitonic binding energy. We study the stability of the electron-hole liquid and
band-gap renormalization as a function of the perturbing potentials (band off'sets) using the
density-functional approach. We find that there is no universal band-gap renormalization in su-
perlattices, that type-II staggered superlattices are the best candidates for observing the electron-
hole liquid, and that a luminescence line in these systems should show a blue shift at intermediate
electron-hole densities due to a positive differential band-gap renormalization.

The electron-hole liquid and electron-hole plasma in
highly excited semiconductors have been thoroughly inves-
tigated. ' Much of the success in our understanding of this
complex many-body problem comes from the fact that the
large excitonic radius ao and small excitonic Rydberg R
allow us to treat electrons and holes as a homogeneous
electron-hole plasma (EHP). Much the same is true for
semiconductor quantum wells where a picture of a quasi-
two-dimensional EHP holds. However, no consensus on
the stability of the electron-hole liquid (EHL) and band-
gap renormalization has emerged as yet. ' In short-
period superlattices, excited electrons and holes are sub-
ject to a one-dimensional perturbation of spatial dimen-
sion and strength comparable to the bulk excitonic radius
and excitonic Rydberg. Moreover, superlattice potentials
(band offsets) can be very different for electrons and
holes: in type-I superlattices such as GaAs-Ga& — Al As
both electrons and holes are localized in GaAs layers; in

mixed superlattices such as CdTe-Cdl „Mn„Te electrons
are localized but holes are essentially three dimensional
(3D); in type-II superlattices such as InAs-GaSb and
GaAs-AlAs electrons and holes are spatially separated.
The exciting possibility exists of selecting a type-I or a
type-II superlattice in a single GaAs-A1As superlattice
sample by the application of a weak electric field. In
each case the eA'ect of the superlattice can be varied by
varying band offsets, i.e., one can go from a 3D to a 2D
system in a controlled way. That this evolution is non-
trivial will be shown here.

To study the ground-state properties of the electron-
hole system we consider a simple model of interacting
electrons and holes with densities n l and n2 and effective
masses m l and mz. Each density couples to a 1D periodic
potential V(z) (band offset) with periodicity a. In the
density-functional approach the ground-state energy is
given by'
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where Exp is the exchange-correlation energy, vxc
=8Exc/Bn' is the exchange-correlation potential,= + l. e is the background dielectric constant and e~ are
the eigenvalues of Kohn-Sham (KS) equations
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Here v, tr is the effective potential for the ith carrier and p
is the electrostatic potential.

The exchange-correlation energy can only be treated

approximately and we use the local-density approximation

Exc =„"dr[nl (r)exc(n l)+n2(r)exc(n2)], (3)

where exc is the exchange-correlation energy per electron
or hole. We consider two approximations: (1) the Vash-
ishta and Kalia (VK) approximation where exc is the en-
ergy per electron (hole) in a homogeneous electron-hole
plasma as parametrized in Ref. 1 and (2) an approxima-
tion in which exc is the exchange correlation per electron
(hole) in a single-component plasma as parametrized by
Hedin and Lundqvist. The approximation (1) overesti-
mates while approximation (2) underestimates correlation
energies, while exchange energies are treated on the same
footing. We next proceed to solve self-consistently the set
of coupled Kohn-Sham equations and determine ground-
state energy as a function of electron-hole density for
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diff'erent superlattice potentials. Since the external poten-
tial is a function of z, we write KS wave functions and ei-
genvalues in the form
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Here k, is the Bloch wave vector along the z axis and r is
the position in the plane perpendicular to z axis. We ex-
pand all relevant quantities (potentials, densities) in the
Fourier series, e g , .n(.z) glnle '( i'). The KS equa-
tions are then cast in the form of matrix equations for
coefficients Cf (k, ) and eigenvalues e'(k, ) which are
solved to determine self-consistent densities, Fermi ener-
gies, Hartree and exchange-correlation potentials, and KS
band structure. This procedure has been carried out for
three sets of potentials.

Set (a):

Vi(z) V2(z) 0, Iz I &a/4,

Vi (z) V„V2(z) Vp„a/4 & I z I
(a/2 .

Set (b):

vi(z) -0, Iz I &a/4,
v, (z)-v„a/4& IzI &a/2,

aiid

V2(z) 0 for 0& Iz I (a/2.
Set (c):

v, (z) -o, o & Iz I &a/4,

Vi(z) -V„a/4 &
I z I «/2,

and

Vz(z) Vp, 0& Iz I &a/4,
vz(z)-o, a/4& Iz I «/2.

The masses have been taken to be mi 0.1 and m2 0.4,
which are characteristic of electron and heavy-hole
masses. The cases a, b, and c describe a type-I, mixed,
and type-II superlattice. We define a band gap as the
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FIG. 1. The energy per electron-hole pair (solid line), the sin-
gle exciton binding energy (horizontal solid line), the band gap
(dashed line), and the chemical potential (dotted line) as a
function of electron-hole density for a mixed superlattice. The
energy is measured in excitonic Rydbergs and the density in

units of ao where ao is the excitonic radius. The amplitude of
the conduction-band offset is V, 100 (Vq 0 for holes). Other
parameters are a ao, m ~ 0.1m„and m2 0.4m, .

diff'erence of the sum of the lowest KS eigenvalues for a
given density of carriers and for the empty bands. In a
similar way the chemical potential (the sum of Fermi en-
ergies) is defined. The changes of the band gap with in-
creasing carrier density (increasing power of radiation)
are responsible for the shift of the luminenscence peak
while the diff'erence between the gap and the chemical po-
tential determines the width of the peak. If an electron-
hole liquid is formed, the position of the peak is insensitive
to the intensity of radiation and to the changes in temper-
ature. The EHL can be formed if the energy per
electron-hole pair is equal to the chemical potential and is
smaller than the binding energy of an exciton. In our
model the exciton corresponds to the lowest bound state of
an interacting electron-hole pair in the presence of super-
lattice potentials. The binding energy is obtained by solv-

ing an integral equation for the Fourier transform of the
exciton wave function
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(5)

v 30 is the 3D Fourier transform of the Coulomb interac-
tion. In writing Eq. (5) we have retained only states from
the lowest conduction and valence subbands. The exten-
sion to higher subbands allows for the systematic ap-
proach to the exact solution of Eq. (5). We have solved

Eq. (5) by transforming it into a symmetrical singular
Fredholm equation which was posed as an eigenvalue
problem for a charge on a hole and solved using modified
quadrature method.

We now turn to the discussion of results. In Fig. 1 we
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FIG. 2. The minimum energy of the EHL and the exciton
binding energy as a function of the conduction-band offset V, in

the VK approximation. The valence-band offset is Vg V,/4
and other parameters as in Fig. 1. The negative values of the
band offset correspond to a type-II and positive ones to a type-I
superlattice. Squares indicate results in the second approxima-
tion which neglects correlations between electrons and holes.

show the energy of the EHL, the binding energy of an ex-
citon (solid lines), the chemical potential (dotted line),
and the renormalized band gap (dashed line) as a function
of electron-hole density for a mixed superlattice. The
minimum EHP energy and the excitonic binding energy in
type-I (positive V, ) and type-II superlattices (negative
V, ) are shown in Fig. 2. The band gap as a function of
density for a type-I, type-II, and mixed superlattice is
shown in Fig. 3. We find that the excitons have larger
binding energy than the EHL in type-I superlattices (see
Fig. 2) irrespective of the band offset, but for band offsets
larger than a critical value, EHL becomes stable in type-
II superlattices. This effect is true even if we neglect en-
tirely correlations between electrons and holes (approxi-
mation 2) which decreases EHL binding energies. The
uncertainty in correlation energy does not affect the sta-
bility of EHL. For strong confinement of electrons
(V, 100R) we find that EHL is unstable in a type-I
superlattice but stable in type-II superlattice (V,
=100R, VI, =25R) and weakly stable in a mixed super-
lattice (V, 100R, VI, 0) as seen in Fig. 1. We note that
in a strictly two-dimensional layered electron-hole liquid
the exciton gas is the ground state. ' This demonstrates
that the superlattice effects are important. We now turn
to the band gap as a function of density as shown in Fig. 3.
At low densities the largest reduction in the gap is for a
type-I superlattice, followed by a type-II and mixed super-
lattices. This can be understood as being due to

FIG. 3. The band gap as a function of the electron-hole den-

sity for the type-I, type-II, and mixed superlattice. Band offsets
are V, 100, V„=25. Other parameters as in Fig. 1. Note the
nonmonotonic dependence of the band gap on density in a type-
I I superlattice.

confinement of electrons and holes, strong in type-I and
type-II superlattices but much weaker in a mixed super-
lattice. As the density increases both type-I and mixed su-
perlattices show a gap shrinkage at different rates and
quite different from an approximate 2D relation ng-
The behavior of the gap in a type-II superlattice is quite
different. While initially the gap starts to decrease it
reaches a minimum value and then starts to increase.
This nonmonotonic behavior is due to both Hartree and
exchange-correlation potentials. For a very high density,
Hartree fields wil1 compensate confining potentials and
the gap will increase again with density of excited car-
riers.

In summary, we find that the electron-hole liquid
should be stable in type-II staggered superlattices. The
band-gap normalization with electron-hole density is a
sensitive function of conduction- and valence-band offsets.
While in both 2D and 3D semiconductors the band gap
shrinks with increasing electron-hole density, we find that
in type-II superlattices it is possible to increase the gap
with increasing electron-hole density. The "positive dif-
ferential band-gap renormalization" opens up new possi-
bilities for light emitting devices. The nature of electron-
hole droplets, the exact form of the exchange-correlation
function Exc, and the effect of details of band structure
on electron-hole liquids in superlattices remains a chal-
lenge.
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