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The zero-field splitting of a 'S-state ion in a cubic field has been studied in detail within the d'
configuration. It is found that the splitting arises mainly from the coupling among the excited states
Ti, 'T&, and E and the ground state 3, via the spin-orbit interaction. The splitting parameter a

can be expressed approximately as Fog+F~ g', where Fo and F, are independent of the spin-orbit
coupling constant g and have a property ~Fo ~

&& ~F, ~. Analytical formulas of F„and F, are derived

by a perturbation calculation with the help of the procedure suggested by Macfarlane. Based on
this, a very simple expression of a is obtained semiempirically. Calculations are carried out for the
splittings of Fe'+ and Mn + ions substituted as impurities in several octahedrally coordinated lat-
tices and for the splitting parameter dependences on pressure for Fe'+ and Mn'+ in MgO crystals.
The results are in good agreement with the values observed experimentally, indicating a successful
interpretation of the crystal-field theory for the cubic zero-field splittings of S-state ions in octahe-
dral coordinations. The power law a ~ R has been investigated on a theoretical basis. This is in-
dicated to be able to reasonably account for the observed data for a system that has Dq or a values
close to each other. In particular, a reasonable value m =12+2 is expected for Mn + ions having

Dq ~8.

I. INTRODUCTION

One of the most important spin-Hamiltonian parame-
ters of a S-state ion is the cubic zero-field splitting pa-
rameter a, which is defined by the spin Hamiltonian

H, =(a/6)[S„+S +S, —
—,'S(S+1)(3S +3S —1)] . (1)

The study of a has become very interesting in crystal-field
theory as an effective way of investigating the crystalline
potentials at the magnetic ion sites. The parameter a
measures the energy difference between the I 7 and I ~

representations of the ground state S:

3a =E ( 1,) E( I ~ ) . —

A large number of works have been published on the
theoretical study of a. ' Two kinds of calculations were
presented; one applied the perturbation theory to give an
approximation approach' and the other diagonalized
the full energy matrices, including the spin-orbit interac-
tion H, . The following has been found:

(i) a is positive in the range ~Dq~ & 200 cm ', where Dq
refers to the cubic field parameter. '

(ii) The spin-spin interaction has a negligible contribu-
tion.

(iii) The odd processes of the spin-orbit interaction
have an effect so that a (+Dq)&a ( Dq) (Refs. 2 and 3). —

(iv) Omitting the spin doublets reduces the calculated
splitting by almost 2 orders of magnitude.

Efforts have also been devoted to accounting for the
observed data. Low and Rosengarten concluded that
one was unable to achieve this unless a spin-orbit cou-
pling parameter g larger than that found in the free ion is
used. Taking g ( 300 cm ', and using for B and C (The
Racah parameters) the values for MnO, Gabriel,

Johnston, and Powell found that the observed cubic
zero-field splitting of MgO:Mn + can be accounted for if
the cubic field parameter Dq is about 30% greater than
that observed in MnO. This seems to be confirmed by
later optical spectra measurements reported by Koid and
Blazey and by the high-order perturbation calculation
published by Du and Zhao.

Due to the lack of the orbital angular momentum in
the ground state S, the calculation of the zero-field split-
ting is rather complicated. A diagonalization calculation
will result in two large matrices having dimensions
22X22 and 42X42. Although seeming to be simpler, a
perturbation calculation is still considerably tedious, be-
cause the spin-orbit interaction begins to affect the split-
ting at fourth order. Powell, Gabriel, and Johnston have
performed a numerical perturbation calculation up to
sixth order by regarding the spin-orbit and the spin-spin
interactions as the perturbation Hamiltonian. A sixth-
order perturbation formula has been recently reported by
Du and Zhao, ' who treated the cubic crystal field and
the spin-orbit coupling as perturbations of the free-ion
Hamiltonian, as did by Watanabe. ' The formula is only
expected to work well in the cases where the crystal fields
are weak. It thus becomes worthwhile to develop a tech-
nique of simplifying the diagonalization calculation and
to find a simple analytical expression of a for the purpose
of application.

The main aims of the present work are (i) to investigate
the splitting parameter a in more detail, in particular its
dependence on the spin-orbit coupling constant g, (ii) to
deduce effectively the dimensions of the energy matrices
for simplifying the diagonalization calculations, (iii) to
obtain an expression of a that is very simple and ap-
propriate for a wide range of Dq, and (iv) to justify the
achievement of the crystal-field theory in the explanation
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of the cubic zero-field splitting.
Using the spin-orbit coupling matrices of d

configuration, we calculate the splitting parameter a as a
function of Dq. The results are quite different from those
of Powell, Gabriel, and Johnston. An investigation of
the g-dependence indicates a =Fog +F,g, where Fo and
Ft are functions of Dq, B, and C, and Fo~ && ~F, . The
diagonalization including only the 3, , Ti, T2, and F
states is found to give results almost identical to those
with the complete energy matrices, making it possible to
deduce the dimensions 42 X 42 and 22 X 22 to 24 X 24 and
14X14 for the I 8 and I 7 representations, respectively.
Calculations for Fe and Mn + in several lattices indi-
cate that crystal-field theory is successful in interpreting
the observed cubic zero-field splittings of S-state ions.
These will be presented in the following section. In Sec.
III a perturbation formula is derived by employing the
procedure developed by Macfarlane. The formula is
much simpler than that published by Du and Zhao and
is shown to be appropriate for a wide range of Dq. Based
on this formula, we in Sec. IV deduce semiempirically an
expression of a, that involves two terms only and is
shown to be a very good approximation to the accurate
diagonalization calculation. Section V displays a study of
the high-pressure dependences of the splittings of Mn
and Fe + ions in MgO crystals. The results are satisfac-
tory in comparison with the experimental findings. The
power law a ~R is discussed in Sec. VI together with
the effect of the odd-parity crystal-field component. We
shall show it is theoretically reasonable in accounting for
the observed data.

II. DIAGONALIZATION CALCULATIONS

The spin-orbit coupling matrices of d configuration
were derived by Schroder in the strong-field scheme of
Tanabe and Sugano. ' Combining these with the electro-
static and crystal-field matrices reported by Tanabe and
Sugano' enables one to calculate the ground-state split-
ting of a S-state ion in an accurate way. In this section,
our attention is focused on the investigation of the split-
ting based on the diagonalization calculation.

A. Complete diagonalization

The energy matrices include I 6, I 7, and I 8 representa-
tions. The ground state S enters into the last two, of
which the matrices have dimensions 22 X 22 and 42 X 42,
respectively. Taking B=900, C= 3000, and g =400
cm, and utilizing Eq. (2) the splitting parameter a is
calculated as a function of Dq, as displayed in the second
column of Table I. A sensitive dependence can be seen.
It is noted that the results are quite different from those
of Powell, Gabriel, and Johnston, which are listed in the
last column of the same table for comparison. The
present calculation obtains a ( +

~
Dq

~
) & a (

—
~ Dq

~
), con-

sistent with other works (Refs. 3 and 6), whereas Powell,
Csabriel, and Johnston gave a ( +

~ Dq ~
) (a (

—
~ Dq ~

).
One should expect the Powell-Gabriel-Johnston pertur-

bation scheme could result in a very good approximation
to an accurate calculation. Their scheme regards the
spin-orbit coupling as the perturbation term and their
calculation was performed to sixth order (the lowest or-

TABLE I. The cubic zero-field splitting 3a of a S-state ion as a function of Dq, calculated by assum-
ing 8=900, C=3300, and (=400 cm '. Column a lists values evaluated by the complete diagonaliza-
tion, b by the simplified diagonalization, c by the perturbation formula (13), and d by the semiempirical
expression (18). The values are in units of 10 cm

Dq
(cm ')

This work Pomell
et al. (Ref. 2)

1600
1400
1200
1000
800
600
400
200
100

0
—100
—200
—400
—600
—800

—1000
—1200
—1400
—1600

465
223
117
63.6
34.4
17.7
7.86
2.4
0.86
0

—0.23
0.18
3.07
9.47

21.2
42. 1

80.3
155
317

467
224
117
63.5
34.2
17.4
7.68
2.3
0.81
0

—0.16
0.32
3.40

10.1

22.3
44.0
83.6

161
328

354
187
104
58.6
32.4
16.5
7.07
1.9

1.0
5. 1

13.2
27
50
89

160
299

424
212
114
63.3
35.5
19.5
9.75
3.75

—0.5
3.68

10.5
21.8
41.0
74.8

138
263

80.2
42. 1

21.1

9.45
3.06
0.178

2.4
7.86

17.7
34.4
63.6

117
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der affecting the splitting is fourth in their scheme). Be-
cause of the weakness of the spin-orbit interaction, the
Powell-Gabriel-Johnston calculation should be accurate
enough, but the results are out of one's expectation.

In the perturbation scheme of Powell, Gabriel, and
Johnston, one may have a perturbation expansion

a =Foj +F,g +F,P"+F,g + =g g Fi,. g
/' =-0

(3)

Fz„( Dq, B,C—)=F~„(Dq,B,C) (n =0, 1,2, . . . ),
F~„+,(

—Dq, B,C)= F&„+i(Dq,—B,C) (n =0, 1, 2, . . . ) .

Thus we may define a(even) and a(odd), even and odd
functions of Dq, respectively, as follows:

a(even)=g g F~„g ",
n=0

a(odd)=g g F,„+,g'"
n=0

such that

a =a(even)+a(odd) .

where F& are functions of Dq, B, and C, and have a prop-
erty ~F&, ))~F&+, ~. The first term comes from the fourth
order, and the second from the fifth, etc. Because the d
configuration is complementary itself, inversing the signs
of Dq and g obtains an identical result:

a ( Dq, —$,—B,C) =a (Dq, g, B,C) .

This requires the coefficients of the even powers of g to be
even functions of Dq but those of the odd powers of g to
be odd:

TABLE II. The 3a(even) and 3a(odd) as functions of Dq.

3a(odd)/3a(even)
(%)

3a(even)
(10 cm ')

Dq
(cm ')

3a(odd)
(10 cm ')

1600
1400
1200
1000
800
600
400
200
100

391
189
98.6
52.9
27 ~ 8

13.6
5.4
1.3
0.315

74
34
18.4
10.8
6.6
4. 1

2.4
1.1

0.545

18.9
18.0
18.7
20.4
23.7
30.3
43.6
86

173

understandable. This theory treats the cubic crystal field
as one of the perturbation terms, together with the spin-
orbit interaction, and is thus expected to operate well for
weak fields. Taking B=911 and C= 3273 cm ' reduces
the reported sixth- (the lowest) order formula to a simple
expl ession

3a =9.3 X 10 g Dq +4. 1 X 10 g Dq,
where g and Dq are in units of cm '. The first term gives
a(even) while the second a(odd). Since it is proportional
to Dq, a(even) decreases more rapidly than a(odd), that
is linear in Dq, when Dq decreases. Furthermore, when
Dq drops its value less than 0.44(, a(even) becomes small-
er than a(odd) and as a consequence a becomes negative
in the range 0)Dq ) —0.44$ (=150 cm ' for a Mn +

ion with /=340 cm '). Small and negative values of Dq
arise from the lattices with tetrahedral coordinations, but
no such system has been found where ~Dq~ &300 cm
Therefore, observable negative value of a should not be
expected for an actual crystal, according to the theory.

From the facts that a (+ Dq~ ) ) a (
—

~DqI ) and that
a (+ ~Dq ) )0 it follows that

B. Reduction of the matrices

a(even) )0, Fo )0,
and that, for Dq &0,

(9)
The 22 X 22 matrix of I 7 representation involves multi-

plets

&i(1), Ti(3), T~(10), T~(3) E(2) 3 (3)
a(odd))0, F, )0 . (10)

whereas the 42 X 42 matrix of I z includes
Comparing a (Dq) of the present calculation with

a (
—Dq) of Powell, Gabriel, and Johnston, one may find

them almost identical, This perhaps suggests that
Powell, Gabriel, and Johnston have actually used —

g in
place of g or Dq in place of D—q.

The even and the odd parts of a, a(even), and a(odd)
can be identified from the total value with the help of the
properties (5) and (6). The average of a ( ~Dq~ ) and
a (

—
~Dq~ ) obviously gives a(even) while the half of the

difference between them is just a(odd). Their values are
listed in Table II as the functions of Dq. With decreasing
Dq, they decrease, whereas their relative percentage
a(odd)/a(even), increases. In particular, when Dq drops
from 200 to 100 cm ', a(odd) becomes greater than
a(even) so that a (

—~Dq ) changes from positive to nega-
tive (see Table I also).

The perturbation theory of Du and Zhao makes this

"A, (1), T, (6), Tq(10), E(7), T, (6), T, (8),
'~

i (1), '&, (1), "E(2),
the numbers in brackets referring to the dimensions of
the corresponding ' ' I subspaces. In order to reduce
these matrices for calculating the splitting, we first note
that the T& is the only multiplet that couples with the
ground state 3 &, via the spin-orbit interaction. It has
been pointed out by Powell, Gabriel, and Johnston that
omitting the spin-doublets reduces the calculated split-
ting by almost 2 orders of magnitude. This forbids one
to omit the spin doublets but allows one to throw out all
the spin quartets except T, from the full energy ma-
trices, so that the dimensions of the I 7 and I z matrices
are reduced from 22 X 22 and 42 X 42 to 17 X 17 and
32 X 32, respectively.
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Multiplets that couple with T, are expected to have
much stronger effects on the ground-state splitting.
From the work of Schroder it follows that
( T, I 7~H, , ~

A~I 7) =0. This implies that A2 can be
omitted and one thus obtains a 14 X 14 I 7 matrix.

The matrix of the I 8 representation can be further re-
duced to 24X24 dimension by omitting T, . This is be-
cause T, does not appear in the lowest order treatment
in the Macfarlane's perturbation scheme, as will be
shown in Sec. III, and therefore contributes a small value
to the splitting.

Thus we have reduced the I 7 matrix from 22 X 22 to
14X 14 and the I 8 matrix from 42X42 to 24X24. The
reduced matrices involve the 2 [ T& T2 and E states
only. With them the splitting is calculated, as displayed
in the column 3, Table I, for comparison with those with
the complete matrices. The results calculated with the
reduced and the complete energy matrices are almost
identical, especially for Dq) 0. This indicates that the re-
duced matrices are effective and can be used as a solid
basis of a simplified diagonalization calculation of the
splitting. In the following sections, "the diagonalization
calculation" refers to a calculation with the reduced ma-
trices.

C. Dependence on g

~ ~

fA

o 3
CS

IOO 2 300 400

t; (cttt ')
FIG. 1. The cubic zero-field splitting of a S-state ion as a

function of the spin-orbit coupling constant g, calculated by tak-
ing B=900 cm ', C=3300 cm ', and Dq=800 cm '

(
———),

1000 cm '
( ), and 1200cm '

( —~ —~ —.).

Figure 1 shows the value of 3a/j as a function of g.
The dependence is almost linear such that the discrepan-
cy is so slight in the given range 0 (j(450 cm ' that it
is difticult to be drawn in the figure.

This dependence can be well explained by the Powell-
Gabriel-Johnston perturbation series, Eq. (3). The first
term, Fog comes from the lowest (the fourth) order and
therefore predominants the expansion, and the second,
F,g, comes from the second lowest (the fifth) order
and is thus of second importance, governing

a (Dq)&a( D—q). The remaining terms, those in g' with
k 6, have little significance in comparison with the first
two terms. Consequently, one has approximately

a =Fo( +F, g (12)

D. Comparison with experiments

We now calculate the cubic zero-field splittings of
Mn2+ and Fe3+ ions in several octahedrally coordinated
lattices; the main aim is to justify the successfulness of
the crystal-field theory. As the splitting parameter a de-
pends on B, C, Dq, and g, we must take these parameters
that fit the excited energy levels so as to make the calcu-
lated results reasonable.

The optical spectra of crystals KZnF3..Mn +,
RbCdF3..Mn +, and RbMnF3 have been reported. "'

The excited states splittings due to the spin-orbit cou-
pling have been observed for RbMnF3. " As these crys-
tals have a similar crystalline structure, it is to be expect-
ed that they have similar values for B, C, and g. In fact,
the 8 and C have been reported to be 830 and 3122 for
KZnF3. Mn +, 822 and 3151 for RbMnF3, and 825 and
3136 for RbCdF3. Mn +, in units of cm '. ' It thus
is reasonable to assume both KZnF3..Mn + and
RbCdF3. Mn + have an identical value of g to RbMnF3,
320 cm '." The cubic field parameter Dq has been re-
ported to be 822 cm ' for KZnF3. Mn + and 715 cm
for RbCdF3:Mn +.' Substitution of these parameters
into the full energy matrices yields

a =6.93X10 cm

[experimental 6.3(1)X 10 cm ', Ref.
KZnF3. Mn +, and

13] for

a =4.77X10 cm

[experimental 4.7(3) X 10 cm ', Ref. 14] for
RbCdF3. Mn +. The results are in good agreement with
those observed experimentally. This enables us to con-
clude that the crystal field theory is successful in inter-
preting the cubic zero-field splittings of 5-state ions in
crystals with octahedral coordinations.

Useful information about the crystalline potentials and
the spin-orbit interaction can be provided by the ob-
served splitting parameter a. The successfulness of the
crystal-field theory makes it possible to derive the param-
eters Dq and g from available ESR data. Knowledge
about the spin-orbit interaction has a special importance
in the study of the rank-two spin-Hamiltonian parame-
ters, such as D and E, whose origins are not well under-
stood although the spin-orbit effect was suggested to be
one of the most important mechanisms. As an applica-
tion, we deal with Mn and Fe3 ions doped in MgO
and CaO lattices.

The optical spectra of Fe3+ in a MgO crystal was first
observed by Low and Rosengarten with bands at 12 100,
15 200, 18 200, and 25 500 cm '. The authors remarked
that some of the bands may actually belong to Mn in
the crystal, although the reported spectra has becoIIie a
basis of the calculation of a by Kuang and Chen, who
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used a Dq value of 1500 cm ', that is significantly greater
than 1350 cm ' reported by Low and Rosengarten, for
accounting for the experimental value of a, 203.7X 10
cm ' (a value of 115X10 cm ' for a will be obtained
with the use of Dq=1350 cm '). Available spectra was
reported later by Blazey' and by Cheng and Kemp. '

Six bands have been found at 10000, 13 500, 21740,
25 120, 27500, and 30970 cm '. From this it follows
that B=480, C=3380, and Dq=1340 cm '. ' ' Opti-
cal bands at 23500, 25 700, 28 100, and 33200 cm ' have
been found in Mn +:MgO; this enables us to obtain
B=800, C= 3000, and Dq = 1200 cm '. The optical
spectra has not been reported for Fe and Mn + in
CaO, to our knowledge.

With the use of B=480, C= 3380, and Dq = 1340 cm
(Refs. 15—17) and adjusting g to fit the observed
a =203.7X10 cm ' (Ref. 18), we obtain /=430 cm
for Fe +:MgO (calculated a =197X10 cm '). Simi-
larly, we find /=280 cm ' for Mn +:MgO in which a
was reported to be 18.3 X 10 cm '. ' Assuming MgO
and CaO have similar values of B, C, and g makes it pos-
sible to deduce the cubic field parameter Dq from the ob-
served ground-state split tings for Fe:CaO and
Mn +:CaO; the results are 1050 and 850 cm ', respec-
tively. All of the results are summarized in Table III.
The deduced values for the parameters Dq and g have
been shown to fit the spin-lattice coupling constants 6„
and 644 of these crystals very well. '

The Fe ions have cubic zero-field splitting parame-
ters a 1 order of magnitude greater than Mn + ions in
MgO and CaO crystals (Refs. 18—20, see Table III).
Similar case exists in other circumstances. For example,
a was found to be 52.7X10 "crn ' for Fe3+ in a KznF3
crystal but to be 6.3 X 10 cm ' for Mn in the same
lattice. ' ' This fact can be understood partly as the re-
sult of stronger spin-orbit interaction in Fe3+ ions than in
Mn ones. Since a depends on g very sensitively, as is
shown plausibly in (12), a small increase in g will increase

a dramatically. For instance, g(Fe +) being larger than
g(Mn +

) by a factor of 1.536 causes a(Fe +
) being greater

than a(Mn +
) by a factor of 6, in the MgO and CaO crys-

tals. Another thing leading to a(Fe ) ))a(Mn +
) is that

Dq(Fe +
) )Dq(Mn + ).

III. PERTURBATION CALCULATION

The strong-field scheme of Tanabe and Sugano has ad-
vantage of the weak-field scheme in the description of the
crystal-field splittings for a d ion. The d configuration
is complementary itself. And owing to this, the diagonal
elements of a cubic crystalline potential vanish identically
in the weak field scheme but only survive in the strong
field scheme. In the cases where Dq & B, by treating the
diagonal elements in the strong-field scheme as the ener-
gies of corresponding optical terms we are able to under-
stand well the crystal field splittings, which is referred to
as the strong-field approximation in literature. Thus one
expects the Macfarlane's perturbation procedure, which
is based on the strong-field scheme, operates well for in-
terpreting the ground-state splittings of d ions.

In the Macfarlane's procedure, the matrices of
Coulomb interaction Ho are divided into two parts: diag-
onal and off diagonal. The off-diagonal part of Ho is
treated as a perturbation term together with the spin-
orbit interaction H, , whereas the diagonal part and the
cubic field serve as the unperturbed Hamiltonian.

In this model, the fourth order begins to affect the cu-
bic zero-field splitting, contributing a value proportional
to P. The next order gives rise to two terms; one is pro-
portional to P and the other to g . Similarly the sixth-
order perturbation involves three terms in P, g, and g .
As it is the lowest, the fourth order predominants a and
therefore Fo, defined in Eq. (3). In a similar fashion, the
fifth order is the main origin of F, and the sixth order
governs F2. Because Fo and F, have the most impor-

TABLE III. The cubic zero-field splittings of Fe' and Mn'+ ions in crystals.

Ions
lattices

B (cm ')
C (cm ')
Dq (cm ')
References
g (cm ')

Mn'+
KZnF,

830
3122

822
12

320"'

Mn'
RbCdF,

825
3136

715
12

320"'

Mn-'

MgO

800
3000
1200

7
280

Mn'+
Cao

800
3000

850

280

Fe3+

MgO

480
3380
1340
15-17
430

Fe'
Cao

480
3380
1050

430

Cale. "

c
d
Expt.
References

of expt.

6.93
6.6
6.99
6.3( 1)

13

4.77
4.6
4.96
4.7(2)

14

a (10 cm ')
18.5
16.2
17.3
18.3(2)

18-20

5.53
5.3
5.5
5.6(2)

19,20

197
188
194
203.7

18

66
69
67
63 ~ 7

19,20

'That of RbMnF3, see Ref. 11.
Calculated by the diagonalization.

'Calculated by the perturbation model.
Calculated by the semiempirical expression.



39 CUBIC ZERO-FIELD SPLITTING OF A S-STATE ION 627

tance in the splitting, we calculate the fourth-order per-
turbation and the terms in g of the fifth order.

In the calculation we neglect the coupling between T,
and other spin quartets, for the reason remarked on in
the preceding section. Only two processes are found to
have an effect in the lowest order:

4T
5 0

2
T2

s. o.
4

T1
6

H H,s. o. s. O. 's. o. s.o.

:T, =E =T

Other spin doublets, such as T1, 3, , and A2, are
I

found to contribute nothing. This implies that the split-
ting comes mainly from the coupling of the ground state
with the excited multiplets T, , T2, and E, consistent
with the conclusion made in the preceding section.

The next order perturbation involves a large number of
terms. To find the dominant ones among them we notice
that T2(t~) or T2(t2e ) has the lowest energy level
(15B+10C—20~Dq~) in comparison with all other spin
doublets. Processes involving the two terms should have
an important effect and are only considered in our calcu-
lation.

With the use of the spin-orbit coupling matrices and
the crystal-field matrices, ' it is obtained that

a =(P/20) 8

E»
2 1 1

E12 E) E6

2
1 1

E2 E3
8

E1s
2 1 1

E, E E

4
E3 (EO)2

2 4 6

E13 E14 E~

+24 +1 1

E1E4 E3E10

2 8 2 1

(E, ) E~ E2E„E, E,

1 1 16 4 2 2
EO EO EO EO EO EO

1 2 11 12 5 6

+ (g'/5 ) 12
1

E3E102 2

2 1 3

E1E4 E1 E2
1 1

E E

2 1 3 1 1

E3E10 E3 E2 E8 E9

where E; refer to the energy levels of the multiplets, measured from the ground A1 state:

E~ =E( T~, tz( T& )e }=10B +6C+ 12a —10Dq,

E~=E( T), t2( T2)e ( A~))=19B +7C+10a,
E3 =E ( T, , t ~ ( T, )e ) = 10B +6C + 12a + 10Dq,
E~=E( T~, t2)=15B +10C+22a —20Dq,

E~=E( T~, t~( T, )e)=27B +9C+18a—10Dq,

E6=E( T2, t2('T2)e }=17B+9C+22a —10Dq,

E7=E( T2, t&( Tz)e ('2
&
)}=37B+12C+14a,

Ez =E( T2, tz('Tz)e ) =17B+9C+22a+10Dq,
E9=E( T2, t &( T, )e ) =27B +9C + 18a+ 10Dq,

E,o
=E ( T2, tz e ) = 15B + 10C +22a +20Dq,

E
~ &

=E( E, t 2(
' 3, )e ) =31B + 12C + 14a —10Dq,

E,z
=E( E, t ~( 'E)e }=22B +9C +20a —10Dq,

E~3 =E( E, t2( E)e ( A2) }=E( T2, t2( T~ )e ( A2)) =19B+8C+26a,

E,4=E( E, tz( E)e ('E))=E( T2, t2( T~ )e ('E))=23B+8C+18a,

E~& =E( E, t2( 3
&

)e ) =31B+ 12C + 14a+ 10Dq

E,6=E( E, t~('E)e )=22B +9C+20a+10Dq,

E; =E (Dq =0) .

(13)
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The inclusion of the Trees correction u in E, is according
to the work of Mehra. ' It is easy to see that formula (13)
satisfies the properties (5)—(10).

Table I shows the dependence of a on the cubic field
strength, calculated by the perturbation formula. The re-
sults are excellent compared with the diagonalization cal-
culations. The same case can be seen from the Table III,
where an agreement between the calculated and the ob-
served splittings of Mn and Fe'+ doped crystals is
displayed. This indicates that the obtained formula is
reasonable in the interpretation of the cubic zero-field
splitting of S-state ions.

IV. SEMIEMPIRICAL EXPRESSION

1Fp=, —Hp
D-, D,

1
—, H, , (14)

where D, is the energy of T, (t, { 'T, )e ) (Dq) 0) or
T, (t, ('T~ )e ') (Dq (0), and D2 that of T, (t,') (Dq) 0)

or Tz(t, e4) (Dq & 0), in the strong-field approximation:

Although it is more convenient to be applied than the
diagonalization, the obtained perturbation formula (13) is
still tedious. The present section makes an attempt to
simplify it semiempirically.

Comparison between Eq. (3) and formula (13) can ob-
tain the expressions of Fp and F, arising from the pertur-
bation. It is easy to see that the leading term of Fp is
6/5E j Eg for Dq )0 and 6/5E, E jp for Dq & 0 while the
main term of F

&
is 12/5E j Ez for Dq )0 and

—12/5E, E jp for Dq &0. This is not only because these
terms include greater numerical coefficients than the oth-
ers, but also, most importantly, because they involve
much smaller denominators due to the lowest energy lev-
els E, and E„of T, (t, ('T, )e ) and T, (t,') for Dq) 0,
respectively, and E, and E,o of T, (tz('T, )e') and
'-Tz(t, e ) for Dq &0, respectively. Thus we may write

have calculated the splitting dependence on Dq and the
splitting parameters of Mn + and Fe ions in several
lattices, as shown in Tables I and III, respectively. It can
be seen that the results are in better agreement with those
evaluated by the diagonalizations than the results calcu-
lated by the perturbation formula in the Dq range of
practical interest. This suggests that the observed sem-
iempirical expression of a is applicable as a very good ap-
proximation of an accurate calculation in the investiga-
tion of the ground-state splitting of S-state ions in cubic
fields.

Dq =KR (19)

where K and n, positive numbers, are independent of R.
A recent study of Rodnguez and Moreno' on the MnF~
system indicated n being 4.4, which is slightly less than
n = 5 of ionic crystalline field model. From (19) it follows
that

V. PRESSURE DEPENDENCE FOR Mn +

AND Fe'+ IONS IN MgO LATTICE

The cubic zero-field splitting of Mn + and Fe + ions
substituted as impurities in MgO crystal has been ob-
served by Walsh' at diA'erent hydrostatic pressures. It
has been found that a increases linearly with increasing
pressure P, processing variation coeScient 0 lna /BP
=4.03 X 10 " kbar ' for both crystals at room tempera-
ture, and in the range P ~ 10 kbar. We now try to ex-
plain this.

The crystal will be concentrated under applied pres-
sure, resulting in changes in crystal-field parameter Dq
and in B, C, and g and, therefore, in the splitting parame-
ter a. The induced changes in B, C, and g are usually
negligible for those ionic crystals compared with the
change in Dq that is known to depend on the interatomic
distance R of the substituted crystals very sensitively.
In a small range of R, one may write

Dj:10B +6C + 120' 5) D2: 1 5B + 10C + 22K 2A
( 0 lna /r)P) r =

,
' n f3tt, — (20)

(15)
where

with

b, = 10~Dq (16)
f3= ——(BR /r)P), p=(ti lna /cj lnDq) .

3
(21)

and Hp and H i are functions of B, C, and Dq.
The accurate expressions of Hp and H, are consider-

ably difficult to be found. On the contrary, their approxi-
mate expressions can be easily obtained empirically by
comparing (14) with diagonalization calculations. As a
result we have

3A —C B
10(B +C) ' 100

and, correspondingly,

10D -, D,
3A —C gB
8 +C 10D,

(18)

where the plus and the the minus symbols apply to Dq) 0
and Dq & 0, respectively.

With the use of the semiempirical expression (18), we

P is the local compressibility of the crystal in the vicinity
of the magnetic impurity.

The pressure variation coe%cient {8lna /t)P)r can now
be calculated theoretically by adopting formulas (20) and
(21) and by using the analytical expressions of a, (13) and
(18), or the diagonalization method. Listed in the Table
IV are the results of Mn +:MgO and Fe':MgO, calcu-
lated under the simple assumption of ionic crystalline po-
tential (n=5) and that the local compressibility of the
crystals in the vicinity of the magnetic impurities is un-
changed from that of the host crystal. We see that the
values obtained by the diagonalization and by the sem-
iempirical expression are almost identical. The agree-
ment between the calculated and the observed results is
satisfactory. Table IV also lists the predicted pressure
variation coefficients of a of Fe + and Mn in CaO. In
the calculation, the parameters B, C, Dq, and g have been



39 CUBIC ZERO-FIELD SPLITTING OF A S-STATE ION 629

TABLE IV. The pressure variation coefficients of the cubic zero-field splittings of Mn + and Fe'
ions in MgO and CaO crystals, calculated under the assumption that the local compressibility in the vi-

cinity of a magnetic impurity is unchanged from that of the host lattice.

Crystals

/) (10 4 kbar ')

observed (Ref. 25) calc.

0 lna

I =-3O() V

calc.

(10 "lbar ')

observed (Ref. 18)

+ MgO
Mn2+:CaO
Fe':MgO
Fe':CaO

5.9
8.4
5.9
8.4

4.28'
2.92
5.50
3.63

4 17"
2.73
5.38
3.60

3 71'
4.01
4.77
5.08

3.61"
3 ~ 82
4.66
5.04

4.03

4.03

"Calculated by the diagonalization with the reduced matrices.
Calculated by the semiempirical model.

taken from Table III that fit the optical spectra, and the a
observed at normal pressure and the values of P are taken
from Ref. 25.

The values of (r)1na/r)P)r, o„z have been observed to
be identical for both Fe:MgO and Mn:MgO. '" This
thus requires, as can be seen from (20), the values of p for
both to be identical if the local compressibility in the vi-
cinity of the substitutional ions are unchanged from that
of the host lattice and if both crystalline potentials follow
the same power law. However, p(Fe +) is calculated to
be greater than p(Mn +) by about 30%. This suggests
three possibilities: (1) n(Fe +)=n(Mn +) but /3(Fe +)
&P(Mn +

), (2) P(Fe ) =/3(Mn +
) but n(Fe +

)

&n(Mn ), and (3) n(Fe +)&n(Mn ) and P(Fe +)
&P(Mn + ). If the point-charge model operates very well
for both crystals, n(Fe )=n(Mn +)=5, the compressi-
bility P of the substituted crystal Fe:MgO should be
smaller than that of the host lattice by about 15%
whereas that of Mn +:MgO larger by an amount of 10%.
On the other hand, if the compressibilities of the substi-
tuted crystals are unchanged from that of the host lattice
MgO,

/3(Fe' )=f3(Mn +)=5.2X10 kbar

VI. DISCUSSIONS

A. The power law of a

It has been assumed empirically that

a =AR (23)

where 3 and m are positive numbers and are indepen-
dent of the distance R between the magnetic cation and
the nearest-neighbor anions. Because of (19), it is

dependence of a and p on Dq, for B=800, C= 300, and
/=280 cm ' (suitable for Mn ions in MgO, CaO, and
SrO crystals). It can be seen that one must use Dq of
about 1400 cm ' for Mn +:MgO in order to make its p
value equal to 5.5 of Fe'+:MgO. This unreasonable value
of Dq is too large to fit the optical spectra and the
ground-state splitting at normal pressure. Therefore, it is
impossible to obtain an identically theoretical value of
(c) lna/r)P)r for Fe'+ and Mn in MgO unless one as-
sumes n(Fe )&n(Mn +) or P(Fe +)&/3(Mn +).

(Ref. 25), n=4. 3 and 5.4 could be obtained for Fe':MgO
and for Mn +:MgO, respectively, the first being compa-
rable with n =4.4 obtained in Mn F~ system by
Rodnguez and Moreno. ' Studies on the exponent n will
be highly helpful for understanding the changes in the
compressibility of the host crystal when it is doped with
the impurities.

The uncertainties of the parameters Dq and g will
change slightly the calculated p and therefore ulna/BP,
but do not inhuence the conclusion made above. It can
be verified that a remarkable change in g will induce a
change in p very slight and that the p value for a given
value of g is little different from that at /=0. For in-
stance, when changing the value of g from 0 to 500 cm
the value of p goes from 4.14 to 4.19, for B=800,
C= 3000, and Dq= 1200 cm '. Thus one has, from (18), 0

600 $ 000 5&00
0

f600

1 1V(k)=/(4=0)= 2 +
D) D2

+ 6—C/3
(22)

where D, and D~ are defined in (15). This indicates a
sensitive dependence of p on Dq. Plotted in Fig. 2 is the

Dg (cm)

FI&. 2. The Dq dependences of a ( ) and p (
——

calculated by assuming B= 800 cm ', C= 3000 cm ', and
j=280 cm '. The experimental values for Mn + ious in MgO
( ~ ), CaO ( ~ ) and SrO (L) are also shown.
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equivalent to the assumption

a =W'a ' (24)

in which positive numbers 3 ' and k are unrelated with A.
A comparison between these two power laws of a obtains

m =kn, (25)

n being defined in (19).
The power-law exponent m was reported to be 12+4

by Newman and Siegel for Fe +:KNbO& and 7 by
Muller for Fe + ions in lattices having 0 as ligands.
Practically, the power law (23) cannot account for the ex-
perimental data unless the assumption is made that the
interatomic distances are different from those of the host
lattices. ' This assumption is understandable since the
radii of the magnetic impurities differ from those of the
substituted cations, as has been verified by the x-ray ab-
sorption fine-structure experiments. Rubio et al.
have assumed m =12+1 to determine the values of R of
fluoroperovskites doped with Mn + and Fe'+ ions from
the observed cubic zero-field splittings, and the results for
Mn are consistent with those obtained by Barriuso and
Moreno from the isotropic superhyperfine constants.

If (23) and (24) can hold as general laws, one will have

k =ulna/0 lnDq =p, (26)

m =np. (27)

As shown in Eq. (22) and in Fig. 2, the p is a sensitive
function of Dq and therefore depends on R sensitively.
So the power-law exponent m in (23) is actually related
with R and k in (24) with h. This enables one to con-
clude that the power laws of a do not hold as general
laws.

Thus we do not expect that reasonable results can be
obtained by a fixed m for crystals in which the values of
R or a are spread remarkably. However, in the case
where crystals have Dq or a values close to each other,
the power law (23) with an exponent m given by (27) is
reasonable for accounting for the experimental data. In
particular, for the lattices having Dq smaller than and
around the Racah parameter B, the p varies slowly with
Dq and therefore the power law is expected to work quite
well. As an example, we consider here the fluoro-
perovskites doped with Mn + ions, in which it has been
found experimentally B =825+5, C =3135+15, and
Dq =770+55, in units of cm '. From Eq. (22) we have
p=2. 50+0.2. This corresponds to m =11+1 by n=4.4
(Ref. 12) and to 12.5+1 by n= 5 of the point-charge mod-
el. The latter is more consistent with m =12+1 used
empirically by Rubio O. et al.

Since both a and p increase with increasing Dq (see
Fig. 2), a crystal with a greater a processes a larger p and
therefore a larger m. It can be seen from Fig. 2 that, for
n=5, m=21 for Mn +:MgO (a =18.3X10 cm '), 14
for Mn:CaO (a =5.6X10 cm ') and 12 for
Mn:SrO (a =3 X 10 cm '). For Mn -containing
octahedral lattices having Dq smaller than or around B,
taking M being 12+2 is reasonably expected to be able to
account for the observed splittings very well.

B. The odd-parity crystal-field effect

V = g 3 D = V(even)+ V(odd) .
A. , q

(28)

The effect of V(odd) on the energies of multiplets of 3d
configuration can be calculated successfully by means of
the perturbation theory. To the lowest order, this effect
may be expressed as

So far, our attention was focused on the splitting in oc-
tahedral coordinations. We have shown that it and its
pressure dependence can be understood very well by the
simple crystal-field theory. We now turn our attention on
the crystals having tetrahedral coordinations.

In this case the parameter Dq is small in magnitude
and negative in sign. From the theory presented in Sec.
II, one expects small ground-state split tings. For in-
stance, ZnS:Mn + has a B of 405 cm ', C of 3437 cm
and Dq of —575.2 cm '. ' Due to a stronger covalency
effect this crystal is expected to have a spin-orbit interac-
tion constant g less than 280 cm ' of Mn:MgO or
Mn +:CaO, the latter having a Dq value of 850 cm ' (see
Table III); we estimate (=250 cm '. From these data
one may expect a smaller splitting parameter a for
Mn +:ZnS than a =5.6 X 10 cm ' observed in
Mn +:CaO. " Calculation according to (18) yields
a = 1.5 X 10 cm '. On the contrary, the experimental
value is 7 9 X 10 cm ', ' greater than that of
Mn:CaO. The calculated value is less than the experi-
mental value by a factor of about 5. The experimental
value cannot be accounted for by the theory presented in
preceding sections unless one takes /=380 cm ', a value
greater than the free-ion one, 340 crn

A similar situation exists in other tetrahedral crystals.
The crystal Mn +:ZnSe is expected to have a smaller
value of Dq and therefore a smaller value of a than those
of Mn:ZnS. On the contrary, it is found experimental-
ly that a is 19.7X10 cm ' in this crystal, two times
larger than 7.9X10 cm ' observed in Mn +:ZnS (Ref.
18), and even greater than 18.3 X 10 cm ' found in
Mn +:MgO. ' Other examples are a =27X10 cm
of Mn:CdTe, 30 X 10 cm ' of Mn:Zn Te,
128 X 10 cm ' of Fe +:ZnS, and 96 X 10 cm ' of
Fe +:CdS.

This implies another mechanism that exists only in
tetrahedral fields and that gives rise to a much greater
positive contribution to a than that calculated from the
simple crystal-field theory presented in preceding sec-
tions. A significant difference between tetrahedral and
octahedral fields is that the former has an odd-parity field
component, which will bring a mixing between the
ground configuration 3d and the excited configurations
of odd parity such as 3d 4p, 3d 4f, 3d 5p, etc. However,
the effect of the odd-parity field through the mixing can
be regarded as an equivalent even-parity field acting on
the ground configuration 3d, so that this effect has actu-
ally been taken into account when the Dq is treated as a
parameter adjusted from the optical spectra, as is shown
below.

A tetrahedral field contains two parts: one is of even
parity and another is of odd parity:
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(3d LSMLMs~ V(odd)(f, z&3d nl') (f,z&3d nl'~ V( odd)~3d L'S'ML Ms )

E3~ Eodd
(29)

where nl'=4p, 4f, 5p, 5f, etc. The energy separations E E3& are of order of 10 cm ' and can be approximated

averagely as one energy b,E so that (29) can be written as

(3d LSMLMs) V, ~3d L'S'MLMs ) (30)

with

V, = — g V(odd)~$, ~~3d nl')(g, z&3d nl'~ V(odd) .1

~E
(31)

The equivalent crystal-field V, is given by

g KDK

K, Q

where

(32)

k SC

g ( —1/+~+'(2k +1)(21'+1)
Q —Q

t k K t

p I

I k l' I' t I I K I

0 0 0 0 0 0 0 0 0
( k) ( t) gkgt

( & ) gg Eodd E3d
(33)

where k and t take odd numbers. Apparently, V, is of
even parity and has the same angular dependence as the
V(even) given in (28). Therefore, the crystal-field V given
by (28) is equivalent to V(even)+ V, , where V,„ is given

by (32) and (33), and V(even)+ V, has identical matrix
elements in form with V(even) in 3d configuration. Con-
sequently, the crystal-field parameter Dq =Dq(even)
+Dq(odd), where Dq(even) comes from V(even) and
Dq(odd) from V, or, equivalently, from V(odd). A Dq
parameter adjusted from the optical spectra is the sum of
Dq(even) and Dq(odd) rather than one of them. Thus the
contribution to a due to V(even) and that due to V(odd)
can be all taken into account by treating Dq as a parame-
ter adjusted from the optical spectra. One is unable to
distinguish Dq(odd) from the total value of Dq and a
coming from V(odd) from the total value of a by means of
experiment. A similar discussion is suitable for the effect
of the configuration interaction through the even-parity
field V(even).

We have shown that the odd-parity field does not con-
stitute a new mechanism. It contributes to Dq and there-
fore to a in the same way as the even-parity field does; its
contribution to a has actually been taken into account
when Dq is treated as an adjustable parameter although
this contribution is indistinguishable from the total value
by experiment.

The significant disagreement between the theory and
the experiments remarked at the beginning of this subsec-
tion shows a failure of the current crystal-field theory in
the interpretation of the cubic zero-field splitting of
S(d ) ions in tetrahedral fields. The splitting in this case

should be mainly due to other effect. It is noted that the
mentioned tetrahedral crystals are II-VI compounds. In
them strong covalence bonding exists between the central
cation and the nearest anions. The covalency effect has

been known to be one of the origins of the splitting of the
excited states E(G) and A, (G) of a 3d ion, whose lev-

els are degenerate according to the current crystal-field
theory (see, e.g. , Ref. 37). This eff'ect is possibly one of
the main origins of the cubic zero-field splittings of S-
state ions in tetrahedral fields.

VII. CONCLUSIONS

We note the following.
(i) The simple crystal-field theory that regards the

Coulomb interaction, the crystal field, and the spin-orbit
coupling as the total Hamiltonian in d configuration is
successful in the interpretation of the cubic zero-field
splitting and their pressure dependence of S-state ions in
regular octahedral coordinates.

(ii) The splitting arises predominantly from the cou-
pling among the multiplets A „T,, T2, and E via the
spin-orbit interaction, making it possible to reduce
effectively the matrices of the I 7 and I 8 representations
from 22 X 22 and 42 X 42 dimensions to 14 X 14 and
24 X 24, respectively.

(iii) The splitting parameter a can be expressed as
Fog+F~g to a very good approximation. Approximate
analytical expressions of Fo and F, have been given by a
perturbation approach and by a semiempirical model.

(iv) The power law of a is reasonable to account for the
experimental data for a system having Dq or a close to
each other, although the power-law exponent m actually
depends on the interatomic distance. In particular,
m = 12+2 is theoretically reasonable for Mn +-
containing crystals having Dq ~ B.

(v) The simple crystal-field theory is not capable of ex-
plaining the splittings in tetrahedral fields. The covalen-
cy effect seems to be most important in this case.
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Our attention of the present work has been focused
only on the regular cubic situations. For crystals of low
symmetries, the cubic zero-field splitting parameter a
should be perturbed by the low symmetric components of
the crystal field, although this effect is expected to be
small. Finally, the negative splitting parameters observed
in less of crystals, ' ' have not been discussed here. This

cannot be explained by the present work. These prob-
lems await further studies.
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