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Elastic electron backscattering from solid surfaces has been studied experimentally and theoreti-
cally. It has been shown that the recently published P, approximation gives an inadequate descrip-
tion. Much more realistic results are obtained from the Monte Carlo algorithm based on
differential cross sections calculated within the partial-wave expansion method. Excellent agree-
ment has been found between the calculated results and the experimental data obtained in the
present work or taken from the literature. The present calculations seem to be valid for electron en-
ergies exceeding 200 eV and for low- and medium-atomic-number elements. The possibility of
measuring the inelastic mean free path of electrons from the elastically backscattered intensity is
discussed.

I. INTRODUCTION

The problem of elastic electron backscattering has been
gaining attention over the past several years. This
phenomenon is the physical basis of some surface-
sensitive electron spectroscopies, e.g., low-energy elec-
tron diff'raction (LEED). The so-called elastic peak cor-
responding to elastically backscattered electrons is fre-
quently monitored in quantitative Auger spectroscopy for
positioning the sample. Elastically backscattered elec-
trons contribute also in the signal recorded in high-
energy electron appearance potential spectroscopy
(HEAPS). ' The experimental techniques involving quan-
titative estimation of the elastic peak intensity were given
the common name of elastic peak electron spectroscopy
(EPES). ' An important application of EPES is the
determination of the inelastic mean free path (IMFP) of
electrons in solids. Unexpectedly, there are only a few
experimental studies of elastic electron backscattering
published in the literature for energies used in surface
electron spectroscopies (50—3000 eV). ' The elastic
backscattering phenomenon can be quantitatively de-
scribed by the angular distribution of reflected electrons
and by the probability of elastic reflection (reliection
coefficient).

These parameters were measured in several experimen-
tal studies at relatively low electron energies. Schil-
ling and Webb published the angular distribution of elec-
trons elastically backscattered from liquid mercury at en-
ergies below 500 eV. Similar measurements made for a
number of polycrystalline elements at energies below 200
eV were recently reported by Oguri et aI. Most exten-
sive data on angular distribution of electrons backscat-
tered from polycrystalline films in the energy range
100—2000 eV were published by Bronshtein et al. and
Bronshtein and Pronin. It has been found that the shape
of the angular distribution can be very involved, exhibit-
ing minima and maxima, particularly for medium- and

high-atomic-number elements. Schmid et aI. ' published
values, for energies up to 2500 eV, of the reflection
coeScient measured within the solid angle of the retard-
ing field analyzer. These dependences were also found to
be rather involved. A number of values of the reflection
coeKcient were estimated by Gergely.

In view of the wide application of the elastic back-
scattering effect in electron spectroscopies there is an ob-
vious need for a theoretical description

' of this
phenomenon. Several theoretical approaches were pub-
lished in the literature. ' ' " Within the simplest ap-
proach it is assumed that the electron leaving the solid
undergoes only one large angle elastic scattering (single
elastic scattering model). More realistic are the theoreti-
cal models assuming multiple elastic scattering of elec-
trons in the solid. ' '" Some of the applications of EPES,
particularly the determination of IMFP, require an accu-
rate theoretical description of elastic backscattering.
However, to the knowledge of the authors, a critical com-
parison of all existing theories and the experimental data
has never been made. It has therefore been decided to
design a simple experimental method for determining the
relative intensities of reflected electrons. The other objec-
tive of the present paper is to perform extensive calcula-
tions and to compare the theoretical results with experi-
mental data recorded in the present work and those al-
ready published in the literature.

II. THEORY

A. Analytical description of multiple elastic scattering

An extensive theoretical treatment of the elastic elec-
tron transport in a solid in the forward direction was
published by Cxoudsmit and Saunderson as early as
1940.' This multiple elastic scattering theory was ap-
plicable for high energies. Theoretical analysis of multi-
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where k& is the transport mean free path for elastic elec-
tron scattering, g=cosa, g0=cosa0 and the direction of
positive flux is outwards. Note the difference in notation
in comparison with Ref. 11. Finally, the flux of elastical-
ly backscattered electrons is given by"
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where A, is the electron inelastic mean free path and
A =—0.42.

Equation (1) predicts the angular distribution to be
given by the simple expression —', g +g, which in view of
the reported experimental results, ' does not seem to be
realistic. Actually, the P, approximation is expected to
be insufficient when the typical electron contributing to
the spectrum has undergone few elastic scattering
events. " However, it has been argued that the P, ap-
proximation may apply even for small path lengths for
the heavy elements but is expected to be less accurate for
the light elements. " To establish the limits of validity of
the P, approximation we have decided to compare Eq. (1)
with the experimental intensities of elastically backscat-
tered electrons and also with other theoretical models.

pie elastic scattering in solids has received surprisingly
little attention at energies relevant for surface electron
spectroscopies. Schilling and Webb proposed an analyti-
cal expression describing well the elastic backscattering
of electrons from liquid mercury in the energy range
100—500 eV. The theoretical description of electron
transport in solids was also analyzed in a recent paper by
Tofterup. " The validity of this theory in the range of the
elastic peak will be discussed in the present paper. For
this reason, let us first briefly summarize main features of
this approach.

Let the solid surface be bombarded with a monoener-
getic flux F(E)=5(E—Eo) of electrons. Then the ener-

gy and angular distribution of the flux of backscattered
electrons is given by"

j,(E,Q)= f Q(EO, Qo, x =0;R,Q)G(EO, R;E)dR

where Q(EO, Qo, x;R, Q)dR d Q is the probability for an
electron with initial energy E0 and direction Q0 to pass a
plane at depth x in direction (Q, d Q) after having trav-
eled a path length R in the solid. G(Eo,R;E) is the
probability that an electron with initial energy E0 has en-

ergy E after having traveled the path length R in the
solid. Let a0 and u denote the incidence and exit angles
both with respect to the outgoing surface normal. Within
the P] approximation to the Boltzmann transport equa-
tion Tofterup found that"

B. Monte Carlo simulation of multiple elastic scattering

As an alternative approach, the Monte Carlo algo-
rithms have been extensively used in describing the
medium-energy electron transport in solids. ' ' ' ' The
electron trajectory is usually assumed to follow the Pois-
son stochastic process. ' ' The linear path lengths Ax be-
tween successive elastic collisions are then described by
the exponential distribution

f(bx ) =(1/X~)exp( —hx /k~),

with the mean value k& equal to the elastic mean free
path

A, ~=(N~, )

where o. , is the total elastic scattering cross section and N
is the atomic density. The elastic scattering event is de-
scribed by the polar and azimuthal angles after collision.
Taking advantage of cylindrical symmetry of the scatter-
ing process by the central field potential we can assume
that azimuthal angles follow the uniform distribution.
However, major numerical difficulties are associated with
simulating the distribution of polar scattering angles.
The corresponding probability density function is given
b4

W(0) =(do. /d0)lcr, ,

where do. /dO is the differential elastic scattering cross
section. Ichimura et al. ' has shown that at energies
relevant for surface electron spectroscopies the scattering
cross sections cannot be calculated within the first-order
Born approximation. The partial-wave analysis is neces-
sary for an accurate description of the scattering event.
Finally, the probability of inelastic collisions along the
trajectory of a given electron was accounted by the factor
exp( —x /A, ), where x is the trajectory length.

Monte Carlo simulation of the electron elastic back-
scattering requires a considerable amount of computer
time. The probability of the electron elastic backscatter-
ing from surfaces is relatively small, particularly for low-
atomic-number elements. ' As a consequence, a con-
siderable number of complete electron trajectories has to
be followed to obtain reasonable statistics. In the present
work the total number of trajectories varied between
200000 and 500000. In effect, the statistical error of the
total elastically backscattered current was close to —1%.
The Monte Carlo scheme used in the present work has
been described in detail elsewhere. Instead of the first-
order Born approximation, in the present algorithm the
partial-wave expansion method was used to calculate the
elastic scattering cross sections. A number of data on the
elastic scattering cross section was published in the litera-
ture. ' ' However, these data were compiled for select-
ed energies and elements. For this reason it has been de-
cided in the present work to develop general algorithms
making calculations of the differential elastic scattering
cross sections possible for any electron energy and any
element. Details of these calculations are given in the fol-
lowing sections.

A similar Monte Carlo scheme was extensively used by
Ichimura et al. ' and by Ichimura and Shimizu. ' How-
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ever, their algorithm simulated also the energy losses
along the electron trajectory. These authors calculated
mainly the energy distribution of backscattered electrons,
and eventually the backscattering correction in quantita-
tive Auger electron spectroscopy.

C. Nonrelativistic approach

The wave function describing the elastically scattered
electron can be expressed by a series of functions ui(r)
satisfying the following equation:

with the initial condition 5I(0)=0. The phase shifts are
determined from the asymptotic behavior of the phase
function

lim 5I(r) =5I .
f —+ 00

The right-hand side of Eq. (4) cannot be calculated at
r =0. Thus, the numerical integration of Eq. (4) should
be started from a different boundary condition. It can be
proved that (see Appendix)

1 (1 +1) 2m
V r ui =0,

dr r
(2) g&(Kr)cos51(r) ))RI(Kr)sin51(r)

do /dg= g (3)

where
oo

g (21 + 1)(cos25I —1)Pi(cos8),
2K (=o

QO

B =——. g (21+1)sin25&PI(cos6) .
2A ( o

One of the possible methods for calculating the phase
shifts was proposed by Calogero. The following expres-
sion is substituted into Eq. (2):

u/ cos5&(r)j 1(Kr)—sin5, (r)R' I(Kr)=K
cos51 ( rj)I(Kr ) —sin51( r )RI (Kr )

where ji(x) and R'I(x) are the linearly independent solu-
tions of the Riccatti-Bessel equation, and 5&(r) is the
phase function. After extensive derivation the following
first-order differential equation is obtained:

5I(r) = —— V(r)[jr(Kr)cos5I(r) R&(Kr)sin51(r)]—

(4)

with the boundary conditions

u, (0)=0,
u&(Kr) ~sin(Kr —lm/2+5I ) as r ~ co

where K =(2mE/A )' and all other symbols have their
usual meaning. The differential scattering cross section
corresponding to a given electron-atom interaction po-
tential V(r) can be expressed in terms of the phase shifts
6( only:

D. Relativistic approach

For the sake of completeness, the relativistic elastic
cross sections were calculated using a method similar to
that of Ichimura et a/. ' As was shown by Lin et al. ,
the elastic scattering problem is reduced to solution of a
differential equation of the form

dP — k=—sin(2$ —)+[W —V(r)] —cos(2$ —),dr r (5)

where W is the total energy of the electron, k = —(1+1)
for the "spin-up" case (+), and k =1 for the "spin-
down" case ( —). The energy is in units of
mc =511004.06 eV and the length r is in units of
A'/(mc) =0.003 861 6 A. The phase shifts 5& are calculat-
ed from

for small values of r. A new boundary condition can be
estimated from

tan5I(r) =5&(r) = —— f V(r')j I(Kr')dr' .
1 2m r

K g2 o

In the present work the scattering centers of the solid
were approximated by the Thomas-Fermi-Dirac (TFD)
potential. ' The Sarafyan-Butcher embedding formu-
la was used for integration of Eq. (4). The integration
procedure was continued until the radius ro of the TFD
potential was reached. However, the function 5&(r) was
becoming practically constant much earlier. Up to 80
phase shifts were necessary to obtain sufficient accuracy
of Eq. (3). The above algorithm requires a computer with
wide range of constants, i.e., 10* . It can be run using a
FORTRAN 77 compiler on an IBM PC.

Kj I+ &(Kr) j i(Kr)[( W+ 1)tang—&+— +( 1+1+k )/r ]
tanS~+ =

Knl+ &(Kr) —nl(Kr)[( IV + 1)tan/i —+(1+1+k) /r]

where K = W —1,j &(Kr) and ni(Kr) are the spherical
Bessel functions, and

PI—= lim (t(
—(r) .

In this work Eq. (5) was solved numerically using the

I

fifth-order Runge-Kutta algorithm (Nystrom formula,
Ref. 27, p. 50). The starting value of Pl—(r) for small r
was found by expansion of the potential into a series of
the form

V(r) = ——(Zo+Z&r+Z2r + .
) .

1
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+1[exp(2i5& )
—1]]P&(cosO),

g(8) = . g [exp(2i 5( )
—exp(2i5(+ )]P('(cos8),

2rK

where

dP((z)

dz

The energy dependencies of the total scattering cross sec-
tions calculated by integrating Eqs. (3) and (6) are practi-
cally identical with those calculated by Ichimura and
Shimizu. ' The corresponding elastic mean free path A, &

for the considered elements varies between 4 and 30 A at
energies in the range 300—2400 eV.

III. EXPERIMENTAL PROCEDURE

A four-grid retarding field electron energy analyzer
with an acceptance angle of 3.5' was constructed. The
plane circular stainless-steel grids were fixed by ceramic
rings in a stainless-steel tube (see Fig. 1). The analyzer
was mounted on a manipulator in a ultrahigh-vacuum
(UHV) chamber with a base pressure below 10 ' Torr
and could be rotated with respect to the sample. The
sample was placed on the rotational axis of the analyzer
at normal to the incoming electron beam. The angle of
the analyzer with respect to the surface normal could
then be adjusted externally by rotating the manipulator.

Experiments were performed on a polycrystalline Pd
sample and on a Si(111) single crystal which was bom-
barded with 5 keV Ar+ ions to destroy the crystallinity
of the sample. The samples were sputter cleaned by a
standard procedure which was previously found to pro-
duce samples with a surface contamination below 1%.
Reflection electron energy-loss spectra (REELS) were

lcm
Collector

Ceramics

~gi% NN.
I & I s

I
I
I I t I

I ~ ~

Retarding potential

FIG. 1. Schematic diagram of the analyzer.

The expansion coefficients Zo, Z, , Z2, etc. were calculat-
ed from the analytical fit of V(r) given by Bonham and
Strand. Calculations for all I were carried out starting
at r=0.05 (=0.000193 A) with an integration step of
h =0.025. Particular care should be taken in calculations
of the function j&(Kr) E.ventually, the differential elastic
cross sections were calculated from (Ref. 23, p. 228)

do /dQ= ~f(0)~ +~g(0)~

where

f(&)= . g I (I +1)[exp(2i5,+)—1]
1

2iK

recorded under variation of the primary electron energy
and the angle from the surface normal to the analyzer.
In each case, the analyzer axis was adjusted to give the
maximum height and minimum width of the elastic peak.
The peak shape was observed to be unchanged under
variation of the angle of analysis. Therefore, relative
areas of the elastic peak could be determined by con-
sistent use of a well-defined part of the peak, which was
sufficiently narrow not to include inelastically scattered
electrons.

IV. RESULTS

A. Comparison of elastic scattering cross sections

The present calculations of the elastic scattering cross
sections were performed in the energy range 200 —3000
eV for elements with atomic number varying between 13
and 79. Exemplary angular dependences of the
differential scattering cross sections are shown in Figs.
2(a) —2(d). As one can see, the first-order Born approxi-
mation (FBA) provides erroneous results from medium-
and high-atomic-number elements. The total scattering
cross section is overestimated by about 1 order of magni-
tude. These effects are much more pronounced below
1000 eV. Similar conclusions were reported by Ichimura
et al. ' and Ichimura and Shimizu, ' who compared the
relativistic PROEM scattering cross sections with the
screened Rutherford and the FBA cross sections. Thus
the partial-wave expansion method must be used for cal-
culating the elastic backscattering probabilities at the en-
ergies considered here.

The relativistic and nonrelativistic cross sections are
practically identical for low- and medium-atomic-number
elements. A noticeable difference is observed for gold.
This effect, found for higher-atomic-number elements will
be a subject of a separate study.

It has been decided that the theoretical and experimen-
tal investigations reported in this work are limited to the
elements with low and medium atomic numbers. All the
calculations of the backscattering probabilities reported
in the following sections were made within the nonrela-
tivistic approach.

B. Angular distribution of elastically
backscattered electrons

The elastically backscattered intensities were measured
for silicon and palladium by the analyzer shown in Fig. 1.
The experimental results are shown in Fig. 3 for exit an-
gles o. =45 and 75' with respect to the surface normal
and for energies between 300 and 1200 eV. For each of
the primary energies, the area of the elastic peak has been
normalized to the peak area recorded at a=15. The
thin solid lines through the experimental points are to
guide the eye. The intensity of backscattered electrons
depends on both the solid and the primary electron ener-
gy. Thus, for both solids, the relative elastic intensity is
higher for a=45 than for a=75, whereas the intensity
varies unsystematically with the electron energy.

Within the P, approximation, Eq. (1) is valid. Since
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the dependence on atomic number and energy only enters
through the factor containing A. , and A. , it follows that the
flux of elastically backscattered electrons relative to the
flux at a = 15 is independent of both primary energy and
atomic number. Thus

0 9

Silicon
Exp. a= 45

(a)

N

N
0.6

C
~ ~

=45

Exp. a=75

J&(a) ~ cosa+3/2cos a .2

The ratio Jl(a)/JI(15') is also shown in Fig. 3 (thick solid
lines) for a=45' and 75'. It is evident that although the
P a roximation does account for the general trend in, approxim

fatal to de-the experimental data as a is varied, st does fai o
scribe the detailed variation. Thus the experimentally ob-
served intensity depends strongly on both the element as
well as the energy. This is not predicted by the P, ap-
proximation which deviates by up to a factor of 4 from
experiment.

The angular distribution of electrons elastically back-
scattered from silicon and palladium was then calculated
using the proposed Monte Carlo algorithm. The input
parameters for the Monte Carlo calculations are the pa-
rameters specifying the geometry of the experiment, the
elastic scattering cross sections, and the inelastic mean
free path of electrons. In the present calculations, it has
been decided to use the values of IMFP resulting from
theoretical calculations, since the usual experimental
methods provide actually projections of IMFP on the
direction of analysis. Thus, the input values of IMFP

30were taken from papers by Penn and Ashley and
Tung.

It turned out that, indeed, the angular distribution of
elastically backscattered electrons could not be described
with one universal curve. Histograms of the angular dis-
tribution of 500-eV electrons backscattered from silicon
and palladium are shown in Fig. 4. Both histograms are
also normalized to unity at +=15'. As one can see, much
better agreement between the calculated histograms and
the experimental data is observed than in the case of the
P approximation. Good agreement is also observed ata
other energies. Figures 5(a) and 5(b) show the energy
dependence of the elastically backscattered intensity at
+=45' and 75. The shape of the experimental depen-
dence is closely reproduced. The experimental intensities
measured for silicon are somewhat overestimated by
theory. However, this effect can be due to an error in the
input values of the IMFP, since these values are known
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FICx. 3. Energy dependence of the elastically backscattered
al.intensity at diA'erent exit angles a towards the surface norma .

Circles, experimental values for (a) silicon and (b) palladium.
Thin solid lines are to guide the eye through the experimental
points. Thick solid lines, P, approximation. All data are nor-
malized to the intensity at a= 15'.

Escape angle c(. (deg)
FIG. 4. Comparison of the Monte Carlo calculated angular

distribution of elastically backscattered electrons at energy 500
eV with experimental intensities. Solid histograms are the
theoretical values. Circles and triangles are the experimental
values for palladium and silicon, respectively. All data are nor-
malized with respect to the intensity at a= 15'.
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12 —--
(a)

Silicon

tice that the shape of the histograms is practically the
same for values of IMFP taken from Penn and from
Ashley and Tung, ' despite the fact that they differ con-
siderably in some cases (e.g. , by -30% in the case of Cu).

c 06- 0 750 C. Energy dependence of elastic backscattering probabilities

O
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O 01-
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I

1000 1500

FIG. 5. Energy dependence of the elastically backscattered
intensity at different angles a towards the surface normal. Cir-
cles, experimental values; triangles, Monte Carlo calculations.
(a) Silicon and (b) palladium. All data are normalized with
respect to the intensity at e= 15'.

with relatively poor accuracy.
The excellent agreement obtained between theory and

experiment, in Figs. 4 and 5, has stimulated the present
authors to perform the Monte Carlo calculations of the
angular distributions for systems studied experimentally
by other authors. The histograms for Al, Cu, and Ag re-
sulting from the present calculations at 400 and 1000 eV
electron energy are shown in Figs. 6(a) —6(f). Also shown
are the distributions determined experimentally by
Bronshtein and Pronin. Note the excellent agreement
between theory and experiment in all cases shown. Simi-
lar agreement was obtained at other energies. Slightly
larger differences were observed at 200 eV energy, which
may be due to the fact that the depth of electron penetra-
tion is rather low and elastic backscattering of electrons
may be influenced by surface contaminations and surface
roughness. Also at low energies the Poisson process ap-
proximation may also become less valid. All the histo-
grams and all the experimental distributions were nor-
malized to the intensity measured at a =25'. One can no-

Bronshtein and Pronin published the energy depen-
dence of the elastically backscattered intensity measured
in the energy range 100—2000 eV for several elements in
the direction at +=25' towards the surface normal. The
experimental plots of intensity versus energy exhibited
maxima for medium-atomic-number elements (see Fig. 7,
solid lines). The algorithm proposed in the present work
was used to calculate the elastically backscattered intensi-
ty in the same direction. The results are compared with
the experimental data in Figs. 7(a) —7(c). The data of
Bronshtein and Pronin were published in arbitrary units.
The same scaling factor was used to the calculated inten-
sities resulting from the IMFP published by Penn or
Ashley and Tung, ' and this accounts for the observed
scatter. The shape of the experimental and the theoreti-
cal dependences is practically the same. Also the theory
predicts very accurately the position of the maximum.

Schmid et al. [10] reported extensive experimental data
on the reflection probability in a we11-defined solid angle,
i.e., within the solid angle of the retarding field analyzer
(from a=6' to 52'). Experiments were performed in the
energy range 60—2500 eV. In the present work the calcu-
lations of the reflection probability were performed for
the same solid angle. Results are shown in Figs.
8(a) —8(c). Again, a very good agreement is observed be-
tween the experimental and theoretical energy depen-
dences. Note that in this case, however, we compare the
absolute values of the probabilities. The observed agree-
ment is thus a very convincing proof for the validity of
the presented theory.

Bronshtein and Pronin and Schmid et al. ' noticed
that the position of a maximum on energy dependences
shifts toward higher energies with increasing atomic
number. These authors did not attempt to explain the
observed effect. The energy dependences calculated in
the present work also exhibit the shift of the maximum.
This can be obviously attributed to the corresponding be-

havior of the elastic scattering cross sections.

V. DISCUSSION

It is evident from Fig. 3 that the P
&

approximation
very roughly accounts for the general behavior of the an-
gular distribution of the elastically backscattered intensi-
ty. However, it completely fails to describe the detailed
variation of the observed intensity for a given energy and
element. The differential elastic scattering cross sections
exhibit a strong resemblance to the experimental angular
distribution of elastically backscattered electrons. In par-
ticular, in both cases we observe the presence of minima
and maxima. This shows that the region of the elastic
peak in the energy spectra is dominated by a single
large-angle elastic scattering event. The P, approxima-
tion is expected to be insufhcient when an electron has
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FIG. 6. Comparison of the calculated and experimental angular distributions of elastically backscattered electrons. Solid histo-
gram, the input IMFP values taken from Ashley and Tung (Ref. 31); dashed histogram, the input IMFP values taken from Penn (Ref.
30); solid line, experimental distribution of Bronshtein and Pronin (Ref. 9). (a) Aluminum 400 eV, (b) aluminum 1000 eV, (c) copper
400 eV, (d) copper 1000 eV, (e) silver 400 ev, and (f) silver 1000 eV. All distributions are normalized with respect to the intensity at
+=25 .

undergone a few scattering events, and this explains the
failure to describe the elastic backscattering from sur-
faces.

The Monte Carlo algorithm based on theoretical elastic
scattering cross sections is proved to be a powerful tool
for predicting the characteristics of elastic backscatter-
ing. An excellent agreement is observed between the
theoretical prediction and the experimental data arising

from three different laboratories. This agreement cannot
be fortuitous. In an earlier paper an attempt has been
made to describe the elastic backscattering within the
first-order Born approximation. " It turned out that the
FBA provides reasonable results for low- and medium-
atomic-number elements at energies exceeding 2000 eV.
The limit of validity seems to be much lower when the
elastic scattering cross sections are calculated within
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PWEM. Comparison of the results of calculations with
the experimental data shows that 200 eV can be assumed
as a lower limit of validity. At lower energies diA'erent
theoretical models should be applied. Probably the in-
teraction of an electron with several neighboring scatter-
ing centers should be considered rather than a series of
collisions of a given electron with single scattering
centers. However, the former model involves consider-
able computational difhculties.

The Thomas-Fermi-Dirac potential is found to de-
scribe adequately the scattering centers of a solid in the
energy range considered in the present work. In fact, this
potential was extensively used in elastic scattering calcu-
lations. "" Ichimura and Schimizu compared, in the
energy range up to 20 keV, the total scattering cross sec-
tions for aluminum resulting from Hartree-Fock (HF)
and TFD potentials. They were found to be practically
identical. In principle, it would be possible to perform
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calculations of elastic scattering cross sections within the
PWEM using published data on HF potentials. ' Such
calculations, however, would be much more complicated.
Furthermore, the published HF potentials cover only a
limited range of atomic numbers.

The differential elastic scattering cross sections calcu-
lated in the present work may not be reliable at small
scattering angles since the TFD potential has a trunca-
tion point. On the other hand, the small-angle col-
lisions have negligible effect on the electron trajectory,
particularly when the phenomenon of elastic backscatter-
ing is dominated by a single large-angle collision.

Figures 7 and 8 indicate that the calculated reflection
probabilities depend considerably on the input values of
the IMFP. The calculated probabilities can easily be ad-
justed to the experimental values by the proper choice of
the input value of the IMFP. Such a procedure would
provide the values of IMFP in a wide energy range. Ac-
tually, the values of IMFP are usually known with poor
accuracy, and a suggestion has already been made to
determine the IMFP from the measured elastic back-
scattering intensities. However, the theoretical models
involved in published calculations have not been as accu-
rate as those in the present work.

In conclusion, the elastic backscattering of electrons
from surfaces at energies relevant for surface electron
spectroscopies can be surprisingly well described by the
multiple elastic scattering model based on differential
elastic scattering cross sections resulting from the
PWEM. This theoretical model is not universal and has
two limitations. Firstly, it requires a considerable
amount of computer time. The calculations associated
with scattering cross sections can be run on an IBM PC.
However, the access to a large computer is recommended
when performing the Monte Carlo simulations. Second-
ly, the theory is applicable to polycrystalline or amor-
phous solids, since the diffraction effects are neglected.
Description of the electron trajectory by the Poisson pro-
cess involves an assumption of random positions of
scattering centers in a solid.
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APPENDIX

The Riccati-Bessel functions exhibit the following be-
havior near the origin (Ref. 24, p. 199):

I I I I

50 100 200 500 1000

Energy (eV)

2000
I

(2!+1)!!

&((x )~—(21 —1)!!x
(A 1)

FIG. 8. Energy dependence of the reAection probability into
the solid angle of the retarding filed analyzer (RFA). Solid line,
experimental dependence taken from Schmid et al. (Ref. 10);
circles, calculated values, the IMFP taken from Ashley and
Tung (Ref. 31); triangles, calculated values, the IMFP taken
from Penn (Ref. 30).

Suppose that the scattering potential V(r) is approxirnat-
ed by the function Vor™for small values of r. We have
(Ref. 24, Chap. 3)

21+3
1 2m

V
(Kr)

(A2)
K fi [(2l —1)!!](21+3—m )
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From Eqs. (Al) and (A2) we obtain for r ~0
1 )((K I +2 I +3—m

sin5t(r)R't(r)~ Vo
K fi [(21+1)!!](21+3—m)

I+2
c os5 (tr)jt(r) r

Thus the relation

j (Kr )cos5I(r) ))nt(Kr )si n5t(r)

is valid if m (2. For the TFD potential we have
~o

———Ze'and m = l.
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