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Charge-density oscillations in intermediate-valence and Kondo systems
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Spatial variation of conduction-electron charge-density perturbation around 3d or 4f impurities
in normal metals is investigated within the single-orbital Anderson model. Using the perturbation
theory we calculate 6p, (r, T) in various points of the parameter space. The Kondo region, the
valence-fluctuating region, and the nearly-empty-orbital region are discussed. We also discuss the
relevance of our results for the explanation of the experimentally observed features of charge-
density oscillations in some dilute alloys.

I. INTRODUCTION

Experimental studies' ' of charge-density oscillations
(CDO) around transition-metal or rare-earth impurities
in norma1-metal hosts have revealed two principal
features.

(i) The amplitude of CDO in the vicinity of the impuri-
ty can be considerably reduced with respect to the values
predicted by Friedel's asymptotic expression

5p, ( r) — cos(2kF r + tb ) .
277 l"

(ii) In Kondo (or "magnetic") alloys, CDO exhibit the
same strong temperature dependence as the electric resis-
tivity or thermoelectric power. '

Expression (1) was an early attempt to understand the
phenomenon of CDO in dilute alloys, and has persisted
ever since in the literature as a standard reference to
compare the experimental and theoretical results with, as
well as for its simplicity. It was obtained by the partial-
wave analysis of scattering of free conduction electrons
on the localized impurity potential, for T=O and for
large distances from the impurity. ' ' The amplitude
a—:~a~ and the phase P are related to the conduction-
electron scattering phase shifts g&(c, ), evaluated at the
Fermi energy c.F, as

transition-metal or rare-earth impurities, the electronic
properties are presumably dominated by the strong reso-
nant scattering of conduction electrons on the unfilled d
(or f) shell of the impurity, and within the context of the
phase-shift analysis, the 1=2 (or 3) phase shift dom-
inates. If the eftects of other phase shifts are neglected,
the Friedel sum rule (3) reduces to ril(eF ) =HZ/2(21+ 1)
and the amplitude and phase of expression (1) become
a=( —1)'(21+1)[singt(EF)] and P=gt(sF), i.e. , they are
uniquely determined by the charge-neutrality condition
alone.

Deviations of the experimental data from Eq. (1) indi-
cate that (i) the energy dependence of phase shifts,
neglected in Friedel s derivation, has to be taken into ac-
count, and (ii) rather than extrapolating the asymptotic
expression down to the distances that are accessible to ex-
periment, one should explicitly calculate the spatial
dependence of CDO for all relevant distances. Also, one
needs a finite-temperature theory to account for the
strong temperature dependence of CDO.

To study the CDO around 3d or 4f impurities in nor-
mal metals, we assume that the essentia1 electronic prop-
erties of such dilute alloys are sufficiently well described
by the nondegenerate single-orbital Anderson model.
The Hamiltonian is defined as

H„= g sknk + g ( Vkdcz cd + Vdkcd ck )

k, o. k, o

cte'~= g (
—1)'(21+1)[sing&(eF)]e

1=0
(2) +Ed y nd + Undtn„(, (4)

The phase shifts satisfy the Friedel sum rule, ' i.e., the
charge-neutrality condition

(21+1)gi( E)F=~Z/2,
1=0

(3)

where Z is the total screening charge (in units of e), equal
to the excess charge of the impurity. In case of

where all the symbols have the usual meaning. The index
d is meant to denote a localized orbital of any kind, not
necessarily an l =2 shell, and is used whenever the orbit-
al quantum number I is irrelevant. The model assumes
the dominance of a single resonant phase shift which,
however, has an intricate energy and temperature depen-
dence. Thus, the conduction-electron scattering matrix is
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Given the scattering matrix, one can calculate the
conduction-electron charge-density (CD) perturbation
due to the presence of the impurity, 6p, , , as a function of
distance from the impurity and temperature.

At T =0 and for large distances, the CD perturbation
turns out to be given by

(
—1)'(21+ 1) sin(~nd /2)

6p, (r, T =0)=—
277 T

Xcos(2kFr +irnd/2)+0(r ),
where nd is the average number of localized electrons at
T =0. The leading ( ~ r ) term in (6) neglects the ener-

gy dependence of the conduction-electron scattering ma-
trix, i.e. , it is obtained with Gd (E iO+)=Gd ( iO+). It
coincides with Friedel's asymptotic expression (1) with
a =( —1)'(21+ 1) sin(and /2) and /= hand /2, that is, with
only a single phase shift riI(e~) different from zero (the
one corresponding to the symmetry of the localized orbit-
al) and equal to irnd/2. Here nd=Z/(21+1), since in
the Anderson model with the infinite and constant host
conduction band and constant Vkd the total screening of
the excess impurity charge is done by the localized elec-
trons alone. [That is, 6p, (r, T) is, strictly speaking, not
the screening charge ].

The higher-order ( ~ r, etc. ) terms in (6) originate
from the energy dependence of both the scattering matrix
and the unperturbed Green's function of conduction elec-
trons. For most values of the model parameters, the en-

ergy dependence of the former gives the dominant contri-
bution to the r 4 term.

Anyhow, the leading term of (6) becomes dominant for
large enough values of r In the Hartr. ee-Fock (HF) ap-
proxirnation one obtains that "large enough" means

kFr &)kFRHF =(Ez/4)»n(~nd /2) . (7)

Since c.F /6 = 10 for aluminum- and copper-based al-
loys, it would be tempting to conclude that Friedel's
asymptotic expression (1), which altogether neglects the
energy dependence of the conduction-electron scattering
matrix, is valid everywhere except at the first few neigh-
boring shells around the impurity. This conclusion, how-
ever, is contradicted by the experimental data, which in-
dicate that the scattering matrix must be a rapidly vary-
ing function of energy. Thus, the energy dependence of
tkk. is not to be neglected even for distances much larger
than those predicted by the HF criterion (7). Further-
more, if one does include the energy dependence, the one
offered by the HF approximation is insufhcient to ac-
count for the observed effects [even if no further approxi-
mations are introduced in the calculation of 5p, (r)].
Namely, even if most of the experimental results on the
so-called "nonmagnetic" alloys (like A1Sc)' could be ex-
plained within the one-electron approximation, the
"anomalous" behavior of "magnetic" alloys (like A1Cr,

simply related to the Careen's function of localized elec-
trons as

l

t i„(z)= g V„»m G„(z)V„,„. .

A1Mn, or A1Fe)" ' clearly defies such a simple theory.
This is even more so for the temperature dependence of

CDO. Just as in the case of therrnodynarnic and trans-
port quantities, the HF approximation here also fails to
reproduce the strong temperature dependence observed
experimentally. '

To include the many-body (MB) effects in the
conduction-electron scattering matrix, we calculate the
localized-electron Green's function using the finite-
temperature perturbation theory, developed first by Yosi-
da and Yamada for the symmetric Anderson model
(ed = —U/2) and extended so as to allow the discussion
of all the parameter space. ' In such an approach, the
mean-field part of the problem is solved first and the
effect of fluctuations due to the local Coulomb correlation
is treated as a perturbation. The expansion parameter is
u = U/7rh, where h=rr( Vkd~ )p, '(EF) is the half-width
(at half maximum) of the Lorentzian-shaped local-
electron spectral density for U =0. Here, rather than
characterizing the system by the parameters u and c,d /4,
as is usually the case, we find it convenient to define the
parameter space by u and the average number of local-
ized electrons nd =((ndt))+ ((nd()) at T =0. It is well
known ' that the properties of the model depend sensi-
tively on the values of u and nd. For nd-1 and u )&1
the Kondo effect is obtained, for nd between 0.7 and 0.5
and u &)1 valence fluctuations are observed, while for
nd &(1 and arbitrary u or u &&1 and arbitrary nd a sim-
ple resonant scattering of conduction electrons appears
on the impurity d or f shell.

Using a finite-order perturbation theory to discuss the
strong-correlation features of the Anderson model
deserves a word of justification. The method, described
in Refs. 33—35, has proven to be quantitatively correct
even for u =2.5 as regards the thermodynamic and trans-
port properties of the model. That is, the comparison of
our finite-order pertuibative results with those of the
Bethe-ansatz method " for the physical quantities that
can be obtained by both methods has shown good agree-
ment not only for u (1, but also for u ) 1. On the other
hand, the Anderson model has the remarkable property
that the smooth crossover from the weak-correlation
(u ~0) to the strong-correlation regime (u ~ oc ) takes
place for 1 ~ u ~2. The low-order perturbative results
are therefore able to describe correctly the transition to
the strong-correlation regime, as well as to give a rather
accurate account of the "lower edge" of the latter. The
results obtained for u =2. 5 reveal all the strong-
correlation features, which remain qualitatively un-
changed {and are only enhanced) with further increase of
u. Thus, the low-order perturbation theory allows the dis-
cussion of those parts of the parameter space where the
Kondo effect or valence fluctuations are observed.

Furthermore, while the Bethe-ansatz method'
gives only those bulk properties of the system which de-
pend on the electron states in the vicinity of the Fermi
level, the perturbation theory provides the single-
particle Green's function at arbitrary energy, which al-
lows the calculation of local properties, such as the spa-
tial distribution of the spin and charge density around an
impurity. The study of local properties requires the in-
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formation about the complete spectrum of single-particle
excitations in the system, not just those close to the Fer-
mi level.

We have no direct quantitative proof that our pertur-
bative method works equally well for the energy-
dependent quantities as it does for thermodynamical
averages. Our confidence is based on the physically
reasonable results for the spectral density of local single-
particle excitations for u as large as 2.5 and the qualita-
tive comparison of these results with the analytic ones
obtained for u = ~ ( V|,z =0).

One should mention here that the numerical
renormalization-group method ' has recently also been
generalized so as to enable the calculation of finite-energy
excitation properties for the Anderson model, in particu-
lar, the spectral density of local single-particle excita-
tions. These results could be used as an input to evalu-
ate the spin and charge density distribution along the
same lines as we do in this paper.

Local properties of an Anderson impurity and the sur-
rounding conduction electrons have also been calculated
by other methods, without direct reference to the finite-
energy spectral density, ' but none of these works was
specifically concerned with the charge density. Chen,
Jayaprakash, and Krishna-Murthy applied the pertur-
bative, thermodynamic scaling theory to the spin- —,

' Kon-
do model to study the zero-frequency spin-density
response function related to the extra Knight shift for
host nuclei. The method uses a combination of perturba-
tive scaling that extracts the spatial dependence and non-
perturbative methods such as the renormalization-group
technique to calculate local correlation functions and ex-
tract the temperature dependence. Gubernatis, Hirsch,
and Scalapino calculated the spatial and temperature
dependence of the correlations between the spin and
charge at the impurity and those in the conduction states,
within the symmetric single-impurity Anderson model
and using a quantum Monte Carlo procedure. Their re-
sults for the charge correlations exhibit the same general
trends as our present results for the charge-density per-
turbation: suppression of oscillations with increasing
Coulomb interaction and temperature. However, a more
detailed comparison is not possible since the physical
quantities in question are not the same.

While it is true that those correlation functions which
depend solely on the low-energy excitations of the system
exhibit the universal behavior for some values of the
model parameters (nz —1 and u »1), the situation re-
garding the local properties is more complicated. The
single-particle d-electron Green's function, which deter-
mines the charge- and spin-density oscillations, is charac-
terized by two distinct energy scales: the low-energy
scale k~ T~ and the high-energy scale A. The local prop-
erties depending on the total energy spectrum are not, in
general, expected to exhibit the universal features.

In this paper we show that the correctly evaluated
CDO exhibit the experimentally observed features. The
energy dependence of the scattering matrix, resulting
from the self-energy corrections caused by local Coulomb
interactions, accounts for both the preasymptotic reduc-
tion of the amplitude of CD(3 and the strong temperature

effects. In Sec. II we derive the general expression for the
conduction-electron CD perturbation in the Anderson
model. In Sec. III we obtain the analytic expression for
the low-temperature 5p, (r, T) at large distances from the
impurity. We find out that the corrections to Friedel's
asymptotic expression become negligible only for r ))R,
where R is larger by a factor of y than the mean-field es-
timate RHF, defined by Eq. (7). These results also indi-
cate that the behavior of CDO can be predominantly
determined by the low-energy scale k~ T~ for r —R,
which we term the "preasymptotic region, "but not in the
asymptotic region proper, as defined above. For small
distances, r «R, all energies contribute to 5p, (r, T), and
the high-energy scale 6 can dominate only if
B,Ikz Tz » l. Also, for small distances, the (single-
particle) effects of the band structure of the host and its
hybridization with the impurity orbital can be compara-
ble to or even stronger than the MB self-energy correc-
tions.

In Sec. IV we present numerical results for 5p, (r, T) for
small and preasymptotic distances and for arbitrary tem-
perature, obtained for l =2 (d orbital) and with the
scattering matrix evaluated by perturbation theory in
various relevant parts of the parameter space. We dis-
cuss the inAuence of temperature, asymmetry, and
Coulomb correlation on CDO. Section V contains a brief
review of the experimental methods used to investigate
CDO in dilute alloys and the discussion of some problems
pertaining to the interpretation of experimental data and
their linkage with theoretical results. Conclusions are
summarized in Sec. VI.

II. CALCULATIONS

where

5G|,|.(z)=G|,~ (z) —Gl, q (z),
G fz, (z) =5&1, (z —Ez)

and e„and gl, (r) are the energy eigenvalues and eigen-
functions of the electrons in the pure-host conduction
band. In the Anderson model the change of the
conduction-electron Green's function is given by

5G&|,.(z) = Gl, |,(z)r 1,1,. (z)G|,.|, (z)

1

Vz~ V~| G1 & (z)G|, z (z)G&~(z),
m= —1

and the localized-electron Green's function G& can be
written as

Gq (i cu„)= [i cu„—(Eq + (( nq )) U)

+idee„/~co„~ —Xq (ice„)] (10)

The change of the conduction-electron charge density
due to the presence of the impurity is given by

5p, (r, T)= +Im J -dE f(E!k~T)2

X g g„(r)fq(r)5G[„.(E+i0+ ),
k, k'
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one has

Vk =N ' V(k)Y) (k) . (12)

Furthermore, we neglect the ~k dependence of Vk by
replacing V&(k) with its RMS average over k. These ap-
proximations result in

P&(k k ')
6Gkk. (z) =

Io) G& (z), (13)

where PI is the Legendre polynomial. Inserting expres-
sions (11) and (13) into (8) and evaluating the angular part
of the k and k' integration, one can write the expression
for 6p, as

21+1 6 kF

2'' EF (kFr)

X Im J dE f (E/k& T)g) ( Er)G& (E+ iO+) .

(14)

For a given angular momentum I, the function g&(E, r)
is defined as

x'j, (x)dx
g&(E, r) =-

x —
( kr)' i 0+—

where j&(x) is the spherical Bessel function and

k = k (c, )—:kF(1+ v. /EF )'

Equations (14), (15), and (10), together with the exact ex-
pression for Xz (8+i 0+ ), provide the formal solution for
6p, (r, T) within the Anderson model. We evaluate the
self-energy of localized electrons using the perturbation
technique described in detail in Refs. 34 and 35. Once
Xz (E+iO ) is obtained, the CD perturbation at a dis-
tance r from the impurity and temperature T is calculat-
ed by numerical integration of Eq. (14).

There are a few points to be noted.
(i) The energy is measured from the Fermi level, so that

the bottom of the host conduction band is at —cF.
(ii) k (E) is real for E & —EF and becomes imaginary if

e & —eF. Consequently, g)(c tr) changes its functional
form at E = CF.

(iii) The integration over E in (14) is not restricted to
the conduction band (as it derives from the summation
over Fermi frequencies co, and has nothing to do with
ck's). The cutoff at high energies is provided by the Fer-
mi function f (E/kB T), and that below —cF by the func-
tion g, (e, r)

(iv) The specific form of gI(e, r), which enters the calcu-
lation of 5p, (r, T), depends rather strongly on the as-
sumptions regarding the hybridization matrix element
Vk and the unperturbed conduction-band Green's func-
tion Gkk.

where 2& is the self-energy one has to calculate. Assum-
ing the spherically symmetric impurity potential and the
simple plane-wave dispersion in the pure-host conduction
band,

cy —) /2e ik r

[m/2] 1
n

)
—2(n + I )

(m 2n )!— (17)

For ~k (s)r~ && 1, i.e., if
~
1+8/EF

~
&)(kFr), the leading

term is given by

i ( kr —Im. /2) f ) CF

(
—1) (I +m +2)!

g) E, r ~ t

o m!(2m +4)!!(I—m —2)!
(kr)

if c( —CF . (18)

Thus, if (and only if!) kFr ))1, g&(E, r) can be replaced by
its asymptotic form (18) for almost all energies, with the
exception of the narrow interval around the bottom of
the conduction band. If, however, kF r is not large
enough, this substitution means using a wrong integrand
in Eq. (14) in a large part of the domain of integration,
which leads to a completely wrong result for 5p, (r).

As an example, in Fig. 1 we compare 5 p(r, T =0) for
u =2.5 and nz =1 evaluated with the exact function

5pc (r )
I I

i

I I I !
f

I I I I

04 I

U = 2.5
nd=1
T=O O.OC—

0.2—
with g2(e, r )

0.02—

ith g„(c, r)

0.0

I I
'I (

I

I

I
~ I

4x

-0.02—

I I I I I I I I I I I t

5 10 15

k„r

FIG. 1. Comparison of 5p, !r,T =0)—:[kF'!21+1)A/
2rr e„]'5p,!r, T =0) for u =2.5 an.d n„= I calculated with the
exact function g, (c, r) (solid line) and with its asymptotic form
g„(c, r ) = —e ' "'" (dashed line).

For even I the function g)(c, r) is calculated by contour
integration as

( )
i(kr —lrr/2) y t (I + )'

(k )
—m

o (2m)!!(I—m)!

(
—1) (I +m +2)!+I

o (2m +4)!!(I—m —2)!
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g2(E, r)=(kr) I[3—3ikr —(kr) ]e'""—3] (19) III. ASYMPTOTIC REGION

(solid line) and with its asymptotic form gz, (E, r) = —e' '"

(dashed line). One can see that the results obtained with

g2, deviate appreciably from those evaluated with g2 for
kFr as large as -4~. This is no wonder since, as we show
in Sec. III, the replacement of gI with g&, under the in-

tegral (14) for 5p, ( r ) becomes justified only for
kF r ))1(1+1), that is, for k~r ))6 in the 1 =2 case.

This also illustrates the fact that the results for 5p, (r)
are rather sensitive to the specific form of g((e, r), which,
for its part, depends rather strongly on the single-particle
model parameters V& and c.z.

g2(& r) ( 1)le(2k(E(r . 1(1+1) +0(r )k(e)r (21)

into the integral (20) and make use of the formula

For T =0 the Fermi integral in Eq. (14) for the CD
perturbation reduces to

f g, (E, r)Gd (e+iO+)dE . (20)

In order to obtain the asymptotic expression for
5p, (r, T =0) in the limit of large kFr, we insert the ex-
pansion

i 2k (E)rF
(

0 i 2kpr
e

kFr „ (i kFr

n

1+
E,F

1/2 n

1+
CF

1/2

F(E, r)
@=0

obtained by repeated partial integration, with

. 1(1+1)F(e, r) = 1+i + 0 ~ ~

k(e)r Gd (e+iO+) .

The integral (20) can thus be expanded as

1(1+1)+—,
'

F /2 FkP

Gd (iO+)
kFr kFr

where

@=1 —[BXd (e)/Be], z- o . (24)

Gd (iO+)= —b, ' sin(irnd/2) exp(ivrnd/2), (25)

where nd is the solution of the transcendental equa-
46, 47, 33

At T =0 the value of localized-electron Green's function
at the Fermi energy is determined solely by the charge-
neutrality condition, viz. ,

EFQ+ G ('0+)+0( )
kFr cot(&md�/2) =(Ed/b. )+(urn„/2)u +X„(iO+ )/b. . (26)

(23)
Inserting (25) into (23) and taking the imaginary part of
the resulting expression, one finally obtains

(
—1) (21+ 1) sin(vrnd l2)

5p, (r, T =0)= — (cos(2kFr +vrnd /2)2' f
—(kFr) '[(eF/b, )y sin(~nd/2) sin(2kFr +7rnd )

+[1(1+1)+—,'] sin(2k r+Fn ir/2d)]+0(r )) . (27)

The leading term of this large-r expansion is recognized
as Friedel's asymptotic expression, as it should be. The
first (kFr) term originates in the energy dependence
(first derivative at EF ) of Gd (c, +i 0 ). It is present al-
ready in the HF approximation, but y adds the self-
energy (correlation) effects. The second (kFr) term,
proportional to 1(1 + 1), comes from the "nonasymptoti-
city" of g((e, r), i.e., from its first-order deviation from
exp[i(kr —17rl2)]. Finally, the third (kFr) term, pro-
portional to —,', comes from the energy dependence of k in
the asymptotic expression for gi(e, r). It is obtained even
if one neglects both the energy dependence of

G„(c.+iO ) and the "nonasymptoticity" of g, (e, r), but
has usually been omitted.

Terms of still higher order in (kFr) ', which involve
higher-order derivatives of the Careen's function, cannot
be written or interpreted so neatly. They are, however, of
no importance here, since the expansion (27) is an asymp-
totic one and, consequently, cannot describe 5p, (r)
correctly at small distances, no matter how many terms
are taken into account. The first correction to the lead-
ing term, given in expression (27), suffices to define the
asymptotic region.

One should also mention that 5p, (r) comprises the
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aperiodic terms as well, originating from the part of
g&(E, r) that is not proportional to exp(ikr) [the second
line of Eq. (17)], but those terms are of the order of
(kFr) and higher, which is neglected in expression (27).
This contribution shows up, however, at small distances
from the impurity, disturbing the oscillatory nature of
CD perturbation, as sho~n in Sec. IV.

It is obvious from expression (27) that the first-order
corrections to the asymptotic term become negligible for

r &) r, =max I R, r, + ,' kF—
where the radii R and r& are defined as

k R =(E /A)y sin(wn /2),
k r, =l(l+1),

(28)

(29)

(30)

while the "nonasymptoticity" of g&(c, r) can be neglected
for

r&)r, . (31)

The first of these two criteria defines the asymptotic re-
gion of 6p, (r, T =0), where Friedel's expression is a good
approximation, while the second one defines the distances
for which the asymptotic form of g&( er) becomes
justified under the integral (20). For most of the physical-
ly interesting cases this is not one and the same.

Which of the two radii, R and rj, is larger for reason-
able values of model parameters? Since y ~ 1 and
eF/5 &) 1, and if l is not too large (l =2, 3), one has
R & r& for most values of n& except for n& &(1 and
2 —nz «1 (almost empty and almost full localized orbit-
al). Thus, apart from these two extreme cases, the
asymptotic radius r, is equal to R, and the (kFr) term
originating from the energy dependence of the Green's
function is the dominant correction to 6p, (r)

The inclusion of MB eA'ects caused by the local
Coulomb correlation pushes the onset of the asymptotic
behavior of 6p, (r, T =0) to distances larger by the factor
of y than those predicted by the HF approximation [Eq.
(7)]. That is, R /RHF =y & 1, where y:—y(u, nz), defined
by Eq. (24), is the well-known MB enhancement factor
which rejects the Fermi-liquid properties of the Ander-
son model at low energies and/or temperatures. As a
function of n&, y has the maximum for nz = 1, i.e., in the
case of electron-hole symmetry. As a function of u, y in-
creases monotonically with the increase of u. This rise is

the quickest for n& =1, where it becomes exponential for
u ~ 1. As an example, in the symmetric case one has
R /R H„=2.506, 4.181, and 7.166 for u =1.5, 2, and 2.5,
respectively, which shows that the HF approximation
can underestimate the asymptotic radius by quite a large
factor, depending on the region of the parameter space.

One should note that the asymptotic expression for
6p, (r) itself bears no trace of the local Coulomb correla-
tion. It is the deviation from the asymptotic expression
that is proportional to y, and therefore the local
Coulomb correlation creeps in 6p, (r, T =0) as r is dimin
ished towards R. Its infIuence on the CD perturbation
reaches its full strength for distances r R, but in that re-
gion it cannot be expressed by a single parameter like y.

In other words, y sets the low-energy scale A=A/y,
which shows up in those properties of the system that de-
pend solely on the low-energy local single-particle excita-
tions. As a functional of G& (c.+iO+), 5p, (r, T =0) does
not single out a particular energy region unless r ~ ~, in
which case it averages out all energies except those in the
immediate vicinity of the Fermi level. Since Friedel s ex-
pression depends only on the value of 6& exactly at the
Fermi level, it does not contain any local energy parame-
ter at all. The first one that appears in 5p, (r, T =0) as r
is diminished towards R is 6, featured in the amplitude
of the first-order correction to 5p, (r) in the form of the
ratio c.F/h. As r is diminished further, below R, all ener-
gies become important, and one cannot say that the low-
energy scale 6 simply gives way to the high-energy scale
6, unless b, /A=@ ))1.

In the case of electron-hole symmetry (n& =1},the ex-
pansion (27) simplifies to

6p, (r, 0)=[{—1}'(2l+1)l(2rr r')]
X I [1—(R /r)+ ] sin(2kFr)

+[(r, + —,'kF ')/r+ . . ]cos(2k~ r) j, -

(27')

with kFR =(EF!b,)y(u, nz= 1). This expression clearly
shows the preasymptotic reduction of the CDO amplitude
whenever R & r&.

Fermi-liquid properties can also be expected to show
up in the temperature dependence of 5p, (r, T) as T~O
The low-temperature T correction of 6p, comprises two
terms:

5p, {r,T) 6p, (r, O) = ——2l +1 kF'

EF (kFr)

'2
~k~ T

Im I g,'(E, r)G~ (E+i 0+,0)[ ,' UA'+$(E }]dE—

r}[g, (E, r) G~ (E+ iO+, 0) ]+ lh', +O(T') . (32)
Bc

The first term is due to the temperature dependence of the Green's function,

Gq (E+iO+, T) —Gq (s+iO+, 0)=Gq (E+iO+, 0)[—,
' UA+g(E))(vrk~T/6') +O(T ),

where jV and g(E) are defined by

(33)
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nd(T)=nz+(vrk~T/b. ) A'+0(T ),
X~ (E+iO+, T) =Ed (E+iO+, 0)+(~k~ T/6) 4( E)+ 0( T ),

(34)

(35)

(
—1)'(2l + 1) sin(rrnd /2)

2' P'

while the second one originates from the Sommerfeld expansion of the Fermi integral in (14), i.e., from the energy
dependence of g&(c. t r) and Gd (E+i0,0) in the vicinity of the Fermi level. In the limit of large kFr, the integral in (32)
can be expanded in powers of (kFr) ' along the same lines [Eqs. (21)—(25)] as has been done for 6p, (r, O), with the result

2
~k~ T

T] sin( vend /2)

X —
I [—,

' UJV+Reg(0)] cos(2kFr +rrnd )
—Imt(0) sin(2kFr +vrnd )+0 (R Ir) I

1
(36)

For the derivative term of (32) we obtain

( —1) (21+ 1) sin(7rnd /2) 1 ~k& T
T2= (kFr)

277 T 6 cF

X [cos(2kFr+7rnd /2)+(R Ir)[sin(2kFr + end ) —(rt /R) sin(2kFr+rrnd /2)]+0 [(R Ir) ] I (37)

The comparison of these two contributions shows that the ratio of their leading terms is

'T& I'Tz —[6(EF!b) sin(7rnd /2)
~

—,
' UK+ $(0)

~
b, ']/(kpr)

so that one can expect that 'T, && 'i2 for large kFr.
In the symmetric case, nd = 1, we know JV and 0'(0) exactly,

A'=0, 4'(0) = —i ~ Ay „d„,

(38)

(39)

5p, (r, T) —6p, (r, O) =7, + V~
2

(
—1)'(21+1) . , 2 a T

sin(2kFr) —,'(kF r)'
2'll I" C, F

and the low-temperature T correction assumes a more transparent form

X t 1+(R Ir)[1+(rl /R) cot(2kFr)]+ +3(R /r) (y„ddly ) + (40)

where the last term represents the contribution of T, .
The ratio of the two contributions for r ))R becomes
simply

the next correction originates in the energy dependence
of Gd (c.+iO+).

Thus, in the asymptotic region proper,

'T, /'T, -3(I',~„ly )'(R Ir)' .

It is well known that in the symmetric case

oasu 0
C

1 as u~~

(41)

(42)

5p, (r, T) =5p, (r)[1—
—,'(kFr) (rrk&TIEF) + ] . (43)

This low- T asymptotic expression is valid if both
(kF r)(kz T/eF ) &(1 and r ))R, that is, for

(kBT/6) sin(and/2) &(R /r (&1 .

and that the large-u limit of 1 is approached very quickly
for u 1. Consequently, for u ~0, 'T&/%2~0 irrespec-
tive of r, while for large u, i.e. , in the Kondo region,
'7&/'72~3(R Ir) . Thus, in the asymptotic region, where
the R /r expansion makes sense, the low-temperature
correction originating from the energy dependence of
both g&(E, r) and Gd (e+iO+, T) is much larger than the
one due to the temperature variation of Gd (E.+i 0+, T)
itself. Even in the Kondo limit, where T, is maximal, it
is of the order of the quadratic correction to the leading
term of 'T2 and can therefore be neglected within the ac-
curacy to which we know 'T2.

As for Tz alone, one should note that the leading term
comes from the energy dependence of gi(E, r), while only

Just like Friedel's expression, 6p, (r), the low Tcorrec--
tion in (43) lacks any parameter pertaining to the local-
ized state. However, it exhibits some general features
which characterize 5p, (r, T) at all distances, viz. , (i) that
the increase of temperature reduces the amplitude of
CDO, and (ii) that this eAect is enhanced with increasing
distance from the impurity.

On the other hand, were it only for the temperature
dependence of the localized-electron Green's function,
i.e. , of the conduction-electron scattering matrix, one
would have

5p, (r, T) —5p, (r, O) cc (uk' TID, ) (g„dz/y) [1+0 (R Ir)]
(44)
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for r ))R, with y,dd/y 1 in the Kondo limit. That is
what Gruner and Hargitai and Zlatic and Gruner ob-
tained assuming the low-temperature Gd (iO+, T) in the
Fermi-liquid form

Gd (iO+, T)= —(i/h)[1 —,'(~—k~T/5) + ]

and neglecting the contribution of the energy variation of
g&(E, r) and Gd (e+iO, T), which manifests itself
through the Sommerfeld expansion of the Fermi integral
in (14). We have shown, however, that at distances
r ))R, where the asymptotic expansion is valid at all, the
latter contribution is larger by the factor of (r/R) .

One should bear in mind that the above conclusions,
based on the large-r expansions of Y, and T2, are valid
for the asymptotic region proper, i.e. , when r ))R. For
smaller distances, r ~ R, the term T, could become com-
parable to Tz or even dominant, as suggested by the ex-
perimenta/ results of Gruner and Hargitai and Gruner,
which point to the low-temperature behavior of 5p, (r, T)
of the form (44). The distances for which such a behavior
has been observed are determined by the nature of the ex-
perimental method (continuous-wave NMR) which mea-
sures the averaged-out effect of "distant" shells of host
nuclei. Beyond the tenth neighbors' shell the quadrupole
interactions are too small to have any discernible effect
on the resulting line shape, ' and for Al-based and Cu-
based dilute alloys this corresponds to kFr ~ 16 and 11,
respectively. (See the discussion in Sec. V.) Thus, the
distances contributing to the NMR signal from which the
temperature dependence of 5p, (r, T) was deduced are not
asymptotic in the sense of the criterion r ))R.

In summary, both the T =0 and low-T results indicate
that any "universality" (in the sense of scaling with a sin-
gle effective energy parameter like b, ) can be expected at
relatively large, but not truly asymptotic distances.
These are presumably the "large distances" covered by
the experimental data. For asymptotic distances, r ))R,
there is no local energy scale at all, while for smaller dis-
tances all energy scales are involved.

A remark on notation: In the Kondo hmit,
6~2k~ T~, where the Kondo temperature is defined as
[2~y( T =0)/(gp~ )'] ' k~ Tx. The Bethe ansatz'6
gi~es k~ T~/5 = &2u /~ exp( —

—,'~ u + 1/2u). The
Kondo temperature of Zlatic and Gruner, defined as
the half-width of the Kondo resonance in pd (e, T=0), is
twice larger than Tz and coincides with the low-energy
parameter I of Gruner and Hargitai and with the Kon-
do limit of 5 of the present paper.

IV. PREASYMPTOTIC AND SMALL DISTANCES

For distances r ~ R, the approximation in which
Gd (E+i0 } is replaced by its values in the immediate vi-

cinity of the Fermi energy, determined solely by nd and
5, ceases to be valid. The total structure of the spectral
density (SD) of local single-particle excitations,
pd (E)=+~ ' ImGd (E iO+}, is reflected in 5p„and
the CD perturbation deviates rather strongly from the
values given by the asymptotic expression.

The relevant energy scale characterizing 5p, (r) close to

the impurity site, deduced from the measurements of
CDO, seems to be given by A. However, when deducing
the model parameters from the experimental data, one
should have in mind that the proper theoretical value of
5p, (r) in the preasymptotic region has to be evaluated
with both the self-energy corrections and the exact form
of gt(c, r) taken into account. Note also that for the in-

termediate distances two energy scales, k~ T~ and 6, ap-
pear in the problem, which gives rise to the nonuniversal
behavior of local properties. Therefore, when discussing
the general r and T dependence of CDO, one cannot sim-

ply characterize the system by Tz. Rather, one has to
choose a few representative points in the parameter space
and follow their particular r and T dependence.

In the following, CDO are evaluated for the model pa-
rameters u =2.5 and nd=1, 0.7, and 0.3. Such a choice
is justified by our previous analysis which has shown
that it samples all the relevant parts of the parameter
space: the Kondo region, the valence-ffuctuating region,
and the nearly-empty-orbital region. We take c.z/6 = 10,
which is supposed to be a reasonable estimate for A13d
and Cu3d alloys, and, accordingly, we evaluate 5p, (r, T)
for I =2, i.e., with the function g2(c, r) given by Eq. (19).

The parameters nd=1 and u =2.5 lead to a typical
Kondo behavior. The SD has a triply-peaked shape: a
narrow Kondo peak of half-width 6 at cF and two broad
wings ofhalf-width 6 at cf and sf+ U. ' ' ' Numeri-
cal results for 6p, obtained with nd=1, u =2.5 and for
various temperatures are shown in Fig. 2 for distances
corresponding to the first few neighboring shells ( —10
for Al and —20 for Cu). Friedel's asymptotic expression
is shown by the dashed line. For larger distances,
kFr )4', the envelope of 5p, (r), just like Friedel's ex-
pression, nearly follows the 1/r law over many lattice
spacings, but with an amplitude which is smaller than in
the asymptotic region. As shown in Sec. III, for Kondo
systems the asymptotic form is obtained only for dis-
tances much larger than kFR =(sz/b, )y, and with
EF/b, =10 and y(u =2.5, nd=1)=7. 166 one has
kFR =71.66.

The reduction of 5p, below Friedel's values takes place
here mainly because the oscillating function gz(E, r) devi-
ates from the exponential form used to obtain Friedel's
expression. Although the effect of ffuctuations for
u =2. 5 is clearly seen in the SD, which is radically
different from its u =0 Lorentzian form, CDO do not
show an appreciable modification as u is increased from 0
to 2 ~ 5. This is just the opposite of what is obtained from
the asymptotic expressions (27) and (27'), where the
reduction of the amplitude of CDO from Friedel's values
is mainly due to the energy dependence of the scattering
matrix, enhanced by the local Coulomb correlation (y ),
while the influence of the "nonasymptoticity" of g&( c. t r) is
smaller by the factor of r&/R. The observed insensitivity
of 5p, (r, O} at small distances to the increase of u seems to
be the peculiarity of the symmetric case, since already for
nd =0.9 one obtains a notable u dependence of the CDQ
amplitude.

It would be interesting to study the behavior of
5p, (r, T) in the limit nd =1 and u ~ co, but the second-
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nd =0.7, u =2.5 (solid line), and u =0 (dotted line). The dashed
line is the envelope of Friedel's result.

FIG. 4. —6p, (r, T) plotted as a function of kFr for nd=0. 3,
u =2.5, and k~T/6=0, 0.5, l, and 3,4. The dashed line is the
corresponding result of Friedel with nq =0.3.

totic region, as indicated by the low-temperature expan-
sion (43) which gives —(kFr)'5pc (r, T=O)

10
[5p, (r, T) l5p, (r, O)] —l = —

—,'(kFr) (uk~ T/EF )

u=p

u =2.5

~ ~ ~ I

II
~ ~~ ~

~ y

30

I

1Q

I

20
-10

400
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FIG. 6. —(kFr)'6p, (r, T=0) plotted as a function of k„-r for
nd =0.3, u =2.5 (solid line), and u =0 (dotted line). The dashed
line is the envelope of Friedel's result.

an expression lacking any nd dependence.
Furthermore, the strong dependence of the tempera-

ture effect on distance shows clearly that there is no fac-
torization of 5 p(r, T) into a temperature-dependent and
a distance-dependent term. Such a separation would
necessarily imply a distance-independent temperature
variation of 5p, (r, T), contrary to what is observed in
Figs. 2—4. The low-temperature asymptotic expression
(43) shows that such a factorization cannot be expected to
occur even for large distances from the impurity and at
low temperatures.

To study the effect of the Coulomb correlation and the
approach of the oscillations towards the asymptotic form
in more detail, in Fig. 5 we have plotted the quantity
(kFr)'5p, (r, O) as a function of kFr for the case nd =0.7.
In such a way the behavior of the oscillations can be fol-
lowed in a large kF r interval since the decrease of
6p, ( r, 0) for kF r ~ 4~ is described rather accurately by
the (kFr ) power law. The dashed line in Fig. 5 is the
envelope of Friedel oscillations and the dotted line is the
result obtained for nd =0.7 but for u =0. Thus, the sys-
tems with the same local charge but different spectral
densities, a double-peaked structure for u =2.5 and a
simple Lorentzian for u =0, are compared. Note that
even for systems without any Coulomb correlation, the
charge density approaches the asymptotic form very
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slowly if the full expression (19) for g2 is used in Eq. (14).
The difference between the curves evaluated with u =2.5
and u =0 shows how the correlation reduces the magni-
tude of 5p, (r, 0) and pushes the onset of the asymptotic
behavior to much larger distances. Although the expres-
sion (kFr) 5p, oscillates around the impurity with an am-
plitude which is nearly constant over many lattice spac-
ings, it is clear that the asymptotic expression is not valid
for valence-fluctuating systems in any region of physical
interest. It is only in the case of a nearly empty orbital
that the asymptotic form is approached rather rapidly,
with the envelope of (kyar) 5p, becoming constant and
equal to that of Friedel's expression for
kFr ))maxI(EF/6) sin(end/2), l(l +1)+—,

' I, which is

not very large. For the case nd =0.3, shown in Fig. 6, the
asymptotic radius amounts to some 6kF, since (with our
standard choice of parameters) kFR =5.2- kFr, =6.5.

clear levels split only by the EFG, in zero external mag-
netic field. Using cw NMR and pure NQR as comple-
mentary techniques, one can extract information on the
values of the EFG up to some 10 shells of the host nuclei
surrounding the impurity, and these values can then be
related to the spatial distribution of the screening charge,
5p, (r). Neither of these two steps is straightforward.

As for the second one, the EFG is, in general, a func
tional of 5p, (r). Kohn and Vosko have found

5p, (r+r')
q(r) = —f d r' [3(r r ') —1][1+y(r')],

(45)

where y(r') is the so-called antishielding factor. For
large distances from the impurity this functional reduces
to the simple linear relationship

V. THEORY AND EXPERIMENT
q (r)~(8vr/3)p5p, (r), (46)

Finally, we would like to comment on the relevance of
our results for the understanding of the experimental
data. To that end, we first briefly review the experimen-
tal methods used to investigate CDO in dilute alloys, to
appreciate their capabilities and limitations, and discuss
some problems pertaining to the interpretation of the ex-
perimental data and their linkage with theory.

Experimentally, charge-density perturbation around
transition-metal or rare-earth impurities in normal-metal
hosts is studied most effectively by the continuous-wave
nuclear magnetic resonance' " (cw NMR) and the pure
nuclear quadrupolar resonance (NQR) using the field-
cycling technique, ' but other methods like Knight-
shift measurements' ' are extensively used as well.
While the first two methods provide information on the
total distribution of the screening charge density, includ-
ing all the electrons corresponding to different l states,
the third one reflects the contribution from the s states
only' (provided one excludes the contribution of core po-
larization).

In a pure metal with cubic symmetry, the electric field
gradient (EFG) on each nucleus is equal to zero and the
2I +1 Zeeman nuclear energy levels are equally spaced,
leading to a single absorption line. In a dilute alloy, the
redistribution of the electronic charge around an impuri-
ty, 6p, (r), destroys the cubic symmetry of the host and
gives rise to the EFG which interacts with the quadru-
pole moments of the surrounding host nuclei, causing
shifts in the nuclear energy levels and the consequent
changes of the quadrupolar transition frequencies. Each
successive shell of the host nuclei around the impurity ex-
periences the local value of the EFCs, which shifts the po-
sition and modifies the shape of the NQR lines corre-
sponding to that shell. The cw NMR then detects either
the weak satellite lines in the vicinity of the main line,
arising from the quadrupolar couplings acting as a per-
turbation on the Zeeman coupling in the external mag-
netic field or, for larger distances from the impurity, the
change in intensity and shape of the main line, arising
from the averaged-out effect of distant shells. The pure
NQR, on the other hand, detects transitions between nu-

q (r) =(8~/3)p5p, (r), (47)

where the local linear relationship (46) between the EFG
and the CD perturbation was extrapolated to small dis-
tances, while the asymptotic expression 5p, (r) was substi-
tuted by the best currently known theoretical expression
for 5p, (r).

To estimate the range of kFr's covered by the experi-
mental data obtained on the aluminum- and copper-based
dilute alloys, one should recall that both aluminum and
copper crystallize in the FCC lattice, with lattice con-
stants a~i =7.6371aH and ac„=6.8170aH (where
aH =Pi /me is the Bohr radius). The radii of the first
and tenth neighbors' shell in the FCC lattice are a/&2
and a&5, respectively. With the free-electron estimates
of the Fermi wave vector, kF ' =0.9245aH ' and
kFC" =0.7173aH ', one obtains kF r, =4.99 (3.46) and
kFri0=15. 79 (10.93) for aluminum (copper). Thus, any
available experimental data refer to the distances
5 ~ kFr ~ 16 for Al-based and 3.5 ~ kFr ~ 11 for Cu-based
dilute alloys. In both cases this falls short of the asymp-
totic region as defined by r &&R, at least for "magnetic"
alloys (which are the interesting ones). Moreover, the 10-

cal values of the EFG can be determined only for the first
four or five neighboring she11s, which should be regarded
as small distances, while the "wipe-out number" experi-

where p is the core enhancement factor depending on the
host, which measures the increase of q(r) over its value
in a plane-wave theory without antishielding. For small
distances from the impurity, the discrepancies between
the experimental values of q (r) and those given by Eq.
(46) can originate both in the deviation of the true 5p, (r)
from its asymptotic form 5p, (r) and in the fact that the
linear relationship between 5p, (r) and q(r) simply does
not hold at small distances. Nevertheless, relation (46)
has been extensively used in the interpretation of experi-
mental data even for small distances, where its
justification is doubtful, under the tacit assumption that
the former effect is dominant, while the latter one can be
neglected. That is, the experimental values of q(r) have
been compared with those given by
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ments, which give only the averaged-out amplitude of
CDO, reach up to the intermediate (preasymptotic,
r -R) distances at best.

For such distances one should not rely on the simple
linear dependence (47) of the EFG on 5p, (r), which is
certain to hold only in the asymptotic region. Instead,
one should return to the original expression (45) for the
EFG as a functional of 5p, (r), as already suggested by
Fukai and Watanabe and Berthier. Also, the data ob-
tained for largest distances accessible to experiment
should not be simply taken as "asymptotic. " This partic-
ularly refers to the "wipe-out number" results for the
temperature dependence of CDO.

On the theoretical side, one should bear in mind that,
in a real alloy, many effects can be comparable to or even
stronger than those due to the many-body processes
modeled by the Anderson (or any similar) Hamiltonian.
We have seen that even the theoretical results for 5p, (r)
at small distances (kFr ~4m) are rather strongly model
dependent as regards the assumptions about the band
structure of the host and its hybridization with the im-
purity orbital. ' In addition, the experimental results of
Minier and Ho Dung' on various impurities in alumi-
num indicate a strong anisotropy of the CD perturbation,
presumably due to the distortions of the Fermi surface of
the host appearing near its intersections with the first
8rillouin zone boundaries. They concluded that no
theory assuming an isotropic CD perturbation can ex-
plain the values of the EFG around the impurities in Al,
which may well be true if one aims at fitting the experi-
mental data with theoretical curves.

Also, for the closest shells (first, second, and third
neighbors), the phase shifts rla and q& can give a non-

negligible contribution to the EFG, ' so that the Ander-
son model, which is based on the dominance of a single
resonant phase shift, may fail to describe the local prop-
erties correctly in the immediate vicinity of the impurity.

Thus, the present state of the theory does not allow a
serious quantitative comparison with the experimental re-
sults. Nonetheless, the extensive experimental work on
the aluminum-based 3d alloys ' allows one to conclude
that the main qualitative features seen in the data are
reproduced by the theory. As shown in Refs. 10, 11, and
14, the EFG data on all the "nonmagnetic" A13d alloys
could be consistently described by assuming that the
conduction-electron scattering matrix has a Lorentzian
energy dependence, as in the U =0 Anderson model,
with b, =1 eV. For the "magnetic" A1Mn and A1Cr al-
loys, on the other hand, one would need 5=0.4 eV in or-
der to account for the "anomalous" suppression of the
preasymptotic screening charge. " While such a large
variation of the width of the virtual bound state across
the 3d series is hard to understand within the Anderson
model, it is clear from our results that the apparent
"reduction" of 6 is simply a manifestation of the strong
Coulomb correlations which are also responsible for the
apparent "magnetic" behavior of Mn and Cr alloys.
Furthermore, the complete behavior of CDO at all dis-
tances and temperatures cannot be accounted for simply
by a suitable choice of 6 within a single-particle theory.
5p, (r, T) is determined by the total energy spectrum,

which has a more complicated structure than a Lorentzi-
an of half-width b. Finally, the low-temperature scale
defined by the EFG data of A1Mn and AlCr alloys in the
preasymptotic region agrees, more or less, with the one
defined by the transport or thermodynamic measure-
ments, ' which is also obtained in our calculations.
Specifically, our large-kFr results show the existence of a
low-temperature term proportional to (T/T~), which is
dominated by other corrections in the asymptotic region,
but seems to become the leading one for r -R.

VI. CONCLUSIONS

In summary, we have shown that the CDO in the con-
duction band can be significantly affected by the
Coulomb interaction between 1ocalized electrons, but also
by the specific form of the function gI(E, r) which depends
rather strongly on the properties of the hybridization ma-
trix element and the pure-host conduction states. The
latter effect is most pronounced for relatively small dis-
tances from the impurity, that is, just in the region acces-
sible to experiment. This has to be kept in mind when es-
timating the parameters of the Anderson model from the
NMR data taken at the host nuclei.

Although the Hartree-Fock theory, which takes into
account the energy dependence of the conduction-
electron scattering matrix, substantially improves upon
Friedel s asymptotic result, it still overestimates the value
of 6p, in the preasymptotic region, except for nd «1 or
2 —nd «1. The onset of the asymptotic behavior, pre-
dicted by the Hartree-Fock theory at about
kFRHF =(EF/b, ) sin(end /2), is pushed by the correlation
effects to the distances r ~ R =yRHF. The MB enhance-
ment factor y can be considerably larger than unity.

Temperature reduces the amplitude of CDO, and this
effect is enhanced with increasing distance from the im-
purity and decreases with asymmetry. The latter de-
crease (nd dependence) becomes weaker for larger dis-
tances and presumably vanishes in the asymptotic region,
as indicated by the analytical low-temperature results.
There is no factorization of the spatial and temperature
dependence of 5p, (r, T) even in the asymptotic region, let
alone for smaller distances from the impurity.

Both the T=0 and low T results indicate that any
"universality, " i.e., scaling with a single effective energy
parameter like Tz, can be expected at relatively large
(r —R ), but not asymptotic (r ))R ) distances. For
r~ ~ there is no local energy scale at all, while for
r «R all energy scales are involved. Thus, the space
around the impurity can be divided into three regions,
viz. , the asymptotic region proper, for r )&R, the
preasymptotic region, around r-R, and the region of
small distances, for r «R.

In view of this division, the experimental data on CDO
around 3d or 4f impurities in normal metals cover the
distances up to r ~ R only, at least for the "magnetic" al-
loys, which exhibit the "anomalous" behavior and have
aroused interest in the first instance. On the other hand,
the model we use is too coarse to take into account all the
effects that may significantly influence the CDO in real
alloys. Therefore, a serious quantitative comparison be-
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tween the theoretical and experimental results still can-
not be made, but the main qualitative features of the ex-
perimental data are reproduced by the theory.
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