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We have studied the effect of relaxation of the second-nearest neighbors (NNN’s) in GaAs,Sb,_,
alloys by introducing a simple model which takes into account the difference in volume among the
various configurations of the basic cluster. Using state-of-the-art density-functional theory, the
ground-state properties of five different ordered structures have been calculated. It has been found
that none of them is thermodynamically stable. Fixing the NNN overestimates by about 50% the
strain energy and gives a miscibility gap of the disordered alloy larger than experiment, while upon
relaxing the NNN excellent agreement with experiment is obtained.

I. INTRODUCTION

In spite of the technological importance of semicon-
ducting alloys the present understanding of their thermo-
dynamic properties is far from satisfactory."> The exper-
imental determination of the phase diagram of these ma-
terials is a difficult problem, and it has been done only for
a very limited number of alloys. Recently, some theoreti-
cal calculations have been performed using a combined
electronic structure and statistical-mechanical ap-
proach.>* In these calculations the tetrahedron (four-site
and five-site tetrahedron for tern‘ary3 and binary* alloys,
respectively) is considered as the basic building unit; only
one of the fcc sublattices is allowed to relax (the unmixed
sublattice in the case of ternary alloys) to allow for the
bond length alternation. The second-nearest-neighbor
(NNN) relaxation in the mixed sublattice is thus com-
pletely neglected. This relaxation should not be confused
with the equilibrium volume relaxation introduced by
Zunger and co-workers,’ since in the latter the various
configurations are assumed to have the same volume.
Even so, the effects of the two relaxations are more or less
the same, but the involved approximations are very
different.

Previously, only phenomenological approaches were
undertaken. Balzarotti and co-workers® have studied the
thermodynamic properties of some ternary semiconduct-
ing alloys using elastic energies calculated by the
valence-force-field (VFF) method’ and chemical energies
extracted from the experimental values of the interaction
parameter. This approach gives a positive chemical con-
tribution to the formation energies of the ordered struc-
tures, contrary to the present understanding. More
refined calculations on the same line have been carried
out by Patrick, Chen, and Sher,® where more structural
relaxation (up to the third shell) is allowed and the chem-
ical contribution is calculated using Harrison’s bonding
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theory.” However, the most recent first-principles work
of Mbaye, Ferreira, and Zunger® has shown that proper
accounting for the chemical energy is essential and leads
to new features in the phase diagram.

Very recently the present authors have introduced!® a
new scheme for calculating the thermodynamic proper-
ties of semiconducting alloys from the total energy of five
ordered structures, which correspond to the different
tetrahedral configurations. This scheme is very similar to
the one described above, but here the lattice parameter
a(y) is assumed to be different for the various cluster
configurations. Previously, the cluster energies at fixed
composition were assumed to be equal to the formation
energy of the ordered structures having the same lattice
parameter a (y) of the alloy. The new scheme takes into
account the fact that in the disordered alloy the different
cluster configurations have different volumes, and thus al-
lows for the NNN relaxation. It should be noticed that
the vertices of the tetrahedra are still assumed to occupy
the ideal zinc-blende lattice sites. This is very important
since the cluster energies can be calculated self-
consistently without any additional effort.

Unlike other semiconducting alloys, several experimen-
tal investigations of the solid-solid phase diagram of
GaAs,Sb,_, have been carried out. It has been found
that this system has a large miscibility gap, 0.2 <y <0.8
at 1018 K,''"!% and around this temperature the solid-
solid and solid-liquid phase diagrams overlap. Recently,
ordered structures (AuCu-I and chalcopyrite type) have
been observed in GaAs, sSb, s alloy superlattice grown
on InP substrate!* (i.e., well inside the miscibility gap).
Ordered structures in other semiconducting alloy super-
lattices'>~2° have been also observed. The present under-
standing is that these ordered structures are metastable,
and the ordering is just a moderate tendency toward com-
plete segregation.

This work is devoted to study the effect of NNN relax-
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ation on the GaAs,Sb;_, alloys. The total energy as a
function of the structural parameters for the different or-
dered structures has been calculated using state-of-the-art
density-functional theory.?! It has been found that none
of these structures is thermodynamically stable, which
shows that the recently observed ordered structures!* are
metastable. The phase diagram of this material has been
constructed using the energies calculated above with re-
laxed and unrelaxed NNN distances. Both the modified
quasichemical approximation (QCA) of Guggenheim??
and the cluster variation method (CVM) of Kikuchi®>?*
have been used to calculate the configurational entropy.
It has been found that neglecting the NNN relaxation
overestimates by a factor of 2 the strain (positive) energy
and leads to a larger miscibility gap than experimentally
observed. Instead, the relaxed model gives excellent
agreement with experiment. This shows that the latter
scheme is much more realistic than the previous one, and
that earlier results®* obtained with fixed NNN distances
should be taken with caution.

The present work is organized as follows. In Sec. IT we
describe in detail the method to calculate the thermo-
dynamic properties of semiconducting alloys. In Sec. III
we give the computational details and results obtained for
the five different ordered structures. Section IV is devot-
ed to Monte Carlo calculations and results. In Sec. V we
report and discuss our results for the thermodynamic
properties of disordered GaAs,Sb,_, alloys. Section VI
contains a discussion of the accuracy of the proposed
model. Finally, in Sec. VII we draw our main con-
clusions.

II. METHOD

A. Basic assumptions

The calculation of the thermodynamic properties of al-
loys is a formidable problem since it requires the
knowledge of the partition function, defined as a sum
over the probability of all possible states of the system.
However, the calculation of these properties can be done
by introducing the following simplifying assumptions.?®

(1) The summation in the partition function is replaced

. by the most probable state which has the minimum free
energy. Thus the problem is reduced to find this state out
of a very large and unavailable set of states.

(2) Instead of dealing with the whole system, we con-
sider small clusters of sites (subsystems) known as basic
clusters. Of course, the accuracy will increase by increas-
ing the size of these clusters.

(3) The basic clusters in the alloy are energetically in-
dependent and the energy of each configuration can be
realized by coherently ordered structures containing only
this configuration. This is exactly the assumption which
allows for the use of the first-principles self-consistent
(SC) calculations.

According to the second assumption, the Helmholtz
or, equivalently in this case, the Gibbs free energy of mix-
ing can be written as

G=AE(y, T)—TS(y,T), (1)
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where S is the configurational entropy, and AE is the
enthalpy of mixing given as

AE= 3 zyAEy, . )
ivjrk,!

Here the four-site tetrahedron is considered as the basic
cluster and summation is over all its possible config-
urations. z;;; and AE;;, are the concentration and the
formation energy of the ijkith cluster, respectively. The
configurational entropy S is also a function of the basic
cluster concentration z. Therefore, the equilibrium Gibbs
free energy of mixing, G.(y,T), the entropy, and the
variables z are determined by minimizing G with respect
to the independent variables z at a fixed point in the (y, T)
plane. The equilibrium lattice parameter a.q(y,T) can be
calculated by minimizing G, with respect to a.

Up to now, in all SC calculations of the formation en-
ergy of the cluster configuration, the tetrahedron is taken
as a basic cluster. For pseudobinary semiconducting al-
loys, such as 4B,C,_,, where only one of the sublattices
is alloyed, a four-site tetrahedron similar to that of the
fcc lattice can be considered. This is not the case for
binary semiconducting alloys.* For the four-site
tetrahedron there are 2* configurations. However, not all
of them are different, but only five, A4,, where
n=0,1,2,3,4 is the number of B atoms at the vertices.

B. Cluster energies

The formation energy of each configuration, 4,, is
determined from a SC total-energy calculation performed
for the ordered structure having this particular
configuration. The prototype ordered structures which
contain few atoms per unit cell (up to eight) are shown in
the inset of Fig. 5. It is worth mentioning that in this cal-
culation only the inside atom is allowed to relax, in order
to accommodate the difference in length of the alloyed
bonds, while the mixed sublattice is kept fixed. Using
symmetry arguments, the distortion of the inside atom is
thus determined by a single scalar parameter 8, defined as
d /d,, where d is the length of the bond along the relaxa-
tion direction in the case of the cubic structure, and the
Ga-Sb interplanar distance in the case of the tetragonal
structure. The formation energies of the periodic
structures—which are considered as those of the corre-
sponding tetrahedral configurations—as a function of the
structural parameters are

n (4—n)

AE, =AE, (a,8)= | E 5+

where E 5 and E . are the energies of the pure materi-
als at their equilibrium volumes. The cluster energies of
the disordered alloys, AE,;,(y), are the key quantities in
the thermodynamic calculations. In the following we will
describe and discuss two models to determine AE;;,(y)
from the formation energies calculated for the ordered
structures.
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1. Model A

EXAFS measurements have shown that the NNN re-
laxation of the alloyed atoms, the anions in the present
case, is small compared to the first nearest-neighbor (NN)
relaxation. For example, in the case of?’ Ga,In;_,As the
relaxation parameter for the AB bond, defined as
€4=(R 3—RY)/(R% —RYc) and similarly for the
AC bond, is equal to 0.85 for the InAs bond near the
GaAs end, and 0.76 for the GaAs bond near the InAs
end. In the case of a similarly defined relaxation parame-
ter for the In-In and Ga-Ga NNN distances, the estimat-
ed values are 0.18 and 0.29, respectively. For this reason
the NNN relaxation is completely neglected in the previ-
ous calculations®* (i.e., the different tetrahedral
configurations are assumed to have equal volumes). In
this case the cluster energy as a function of y can be given
as

(4—n)
4 EAC ’

AE,(»)=E,(a(y),8,4)— %E,,B+

n=0,...,4 (4

where a (y) is the lattice parameter of the alloy which fol-
lows closely Vegard’s law; 8., is the equilibrium relaxa-
tion parameter of the nth configuration calculated at
a(y).

Since the different clusters are assumed to have the
same volume, which is in fact not the case in real alloys,
this model overestimates the strain energy and gives a
miscibility gap larger than the experimentally determined
one, as it will be shown later.

2. Model B

The main artifact of model A is that NNN distances
between the alloyed atoms are kept fixed. In the model
we propose here, this assumption is relaxed simply by as-
signing different values of a(y) to the different
configurations at fixed y. So Eq. (4) is rewritten as

(4—n)

E )
4 ac

AE,()=E,(a,(y),8,4)— %EAB-i-

n=0,...,4. (5

The variation with y of the lattice parameter of the
tetrahedral configurations, a,(y), is assumed to be linear.
All a,(y) are assumed to be parallel and equally spaced;
ay(0) and a,(1) are equal to those of the corresponding
pure materials. The interspacing distance can be deter-
mined from the constraint (see Sec. IV) that the calculat-
ed average NNN distances coincide with the experimen-
tal values, if possible, or with the distances calculated
from a much more relaxed calculation using, for instance,
the valence-force-field model.?’

The advantage of this model is that it allows for the
NNN relaxation using state-of-the-art density-functional
theory without any additional effort. The proposed
method avoids lengthy and costly calculations on large
supercells to include NNN relaxation. Note carefully
that even in the latter case, the relaxation is structure
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dependent (i.e., does not simulate the random alloy). As
will be shown later, in this model the relaxation energy is
reduced by a factor of 2 and the calculated phase diagram
is in excellent agreement with experiment.

C. Configurational entropy

Taking into consideration our basic clusters, an ap-
proximate entropy can be calculated using QCA or
CVM. In QCA the basic clusters are assumed to be sta-
tistically independent and the entropy is given as®

SQA=—kp [y Iny;+ 3 (zF) Inz{f)
7 ik,

T Zijki lnzijkl ) (6)

where y; is the concentration of atom i (B or C). The su-
perscript B refers to the Bernoulli distribution (complete-
ly random distribution of the B and C atoms in the al-
loyed sublattice). In CVM, the entropy for the four-site
tetrahedron is given as??

SM=—kp (53 y;Iny;— 63 y{P Iny/?
i 0]

+2 3 zjylnzg, |, @)
ijyk,1

where y? denotes the concentration of the NNN pairs.
The appearance of the concentration of the subclusters in
the SCYM expression, which are the overlap regions be-
tween the basic clusters and the subclusters of nonvanish-
ing contribution, introduces some statistical correlation
between clusters in the alloy. Therefore SCVM is com-
monly believed to be more accurate than QCA; however,
for disordered alloys at high temperature, both approxi-
mations give the same results.

Once the cluster energies are calculated and an entropy
expression is adopted, the Gibbs free energy of mixing, G,
can be minimized with respect to the independent vari-
ables z to calculate Geq, z, and S, from which other ther-
modynamic functions can be easily determined.

D. Basic equations and definitions

In the last two subsections the framework for calculat-
ing the cluster energy and the configurational energy was
presented. Here we describe in more detail how the cal-
culation of the thermodynamic properties is performed.
As discussed above, the independent cluster variables z;;;
and the entropy can be determined by minimizing G with
respect to z;;;. This should be done under the con-
straint .

> (n;jk —4Y)z;5, =0 , (8)
ij k!
where n,;; is the number of B atoms in the ijklth cluster,
which takes into account both the fixed concentration
and the normalization condition (the sum of the variable
z is equal to 1). Therefore the free energy to be mini-
mized is
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G(y, T)= 2 zijkI (y, T)AEijkl - TS(y, T)
i,j,k,1
tA 3 (njy—4y)z(y,T) , ©
i,j,k,1

where the formation energies AE;;; are calculated ac-
cording to Egs. (4) or (5) and A is the Lagrange parame-
ter. In the case of QCA, the minimization of G with
respect to z;, is straightforward and gives

g("ijkl —4y)e -‘AE[jk,/kBT

Zijt (9, T)= s £, RE Ty T (10)
ij k1
—A/kyT . . .
where £=e is a positive and real quantity, which

can be determined by solving the fourth-order polynomi-
al equation

> (nj0

i,jik,1

(nyjy —49) , —BE;

ijkl /kB T

—ay)E =0. (11

For the case of CVM, minimizing G with respect to the
independent variables z,;, gives

y-5/8 Y§/2§<""f"’ ~4)/2 Ay /2kg T
Zya 9, T)= S Yy Y1/2§(nijkl )2, —AE;y /2kpT
ik, 2 ‘
(12)
where
Y=y y;yi¥i
and

Y=y ity yidviivid

The subcluster variables y and y‘® are dependent vari-
ables which can be written in terms of independent vari-
ables z. The system of nonlinear equations, Eq. (12), can
be solved self-consistently using the natural interaction
method of Kikuchi,? starting with guess values for the
dependent variables and solving a fourth-order polynomi-
al similar to Eq. (11) during every iteration. Having cal-
culated the tetrahedral concentration z, the thermo-
dynamic functions can be calculated easily. The entropy
and the Gibbs free energy are given as in Egs. (6) or (7)
and Eq. (1), respectively.

From the equilibrium Gibbs free energy G, the phase

eq?
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diagram (miscibility gap and spinodal curve) can be easily
calculated. The instability region in the (y,T) space,
bounded by the spinodal curve, is the region where

3G, (y,T)
.—qy_<0 ,
8y2

while the miscibility gap, above which disordered alloys
are stable, can be calculated from the values of y at which
G,(y) have common tangent at fixed T.

The excess Gibbs free energy of mixing is given as

Gy, =Gy, T)—kgT[y Iny+(1—y)In(1—y)],
(14)

(13)
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the second term being the free energy of mixing of the
ideal system. From G°®(y,T) the interaction parameter
is calculated as

Qy, T)=G%y, T)/y(1—y) . (15)

Finally, as a measure of the deviation from randomness
(clustering) we follow Jones et al.?® in defining the clus-

tering parameter

A(y, )‘J’(lzz)_y(l_y)=zzlzij_y(l;y) > (16)
hj

which is the excess mixed NNN pair probability distribu-

tion.

III. COMPUTATIONAL DETAILS AND RESULTS
FOR THE ORDERED STRUCTURES

The prototypical structures which realize the different
tetrahedral configurations are shown in the inset of Fig.
5. The total energy as a function of the structural param-
eters, a and §, for the above structures is performed in
the framework of density-functional theory (DFT),?! us-
ing the local-density approximation?® (LDA) and norm-
conserving pseudopotentials.’® For the exchange and
correlation we use the data of Ceperley and Alder,*! as
parametrized by Perdew and Zunger.>?> The pseudopo-
tentials are taken from the tabulation of Bachelet et al.>?
The special-k-point technique of Baldereschi®* is used to
integrate over the Brillouin zone; the two Chadi-Cohen*
special points are used for the zinc-blende structure,
while an equivalent set of points®® has been used for each
of the other structures. The one-particle wave functions

TABLE 1. Theoretical values of the equilibrium lattice parameter, bulk modulus, formation energy,
relaxation parameter, and relaxation energy for the five considered ordered structures.

Lattice Bulk Formation Relaxation
parameter modulus energy Relaxation energy
System (A) (Mbar) (mRy/atom) parameter (mRy/atom)
GaSb 5.96 0.53
Ga,SbsAs 5.86 0.58 1.41 0.963 —1.91
Ga,SbAs 5.76 0.74 2.11 1.064 —1.93
Ga,SbAs; 5.63 0.83 1.50 1.032 —1.40

GaAs 5.56 0.61
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are expanded in plane waves with a constant energy
cutoff E_,, =12 Ry. Such cutoff is found to give excellent
results for the Si-Ge system.?’

The total energy of each of the above ordered struc-
tures as a function of a has been calculated as follows.
The equilibrium relaxation parameter 3., and the relaxa-
tion energy AER have been calculated at some selected
values of a. It has been found that 8., has a weak a
dependence; for example, in the case of the tetragonal
structure, corresponding to y =0.5, the calculated 84 is
1.076 and 1.060 at a =10.4 and a =11.4 a.u., respective-
ly, while AE® is found to vary considerably with a.
However, the difference between the equilibrium relaxa-
tion energies calculated with a fixed value of &.,,—
calculated at @ =ya (eg'aAS) +(1—y)a Lg“s") —and the exact
AER, is found to be very small, of the order of 107>
Ry/atom. Therefore, to determine the ground state
properties of the considered ordered structures, a fixed
value of 84 is assumed; the total energy is then calculated
as a function of the lattice constant at six points in steps
of 0.2 a.u. around equilibrium and fitted to the
Murnagham’s equation of state®

BV | (Vy/V)By
0 0 0

E(n=—2 ,
BO Bo—l

> a7

where V) is the equilibrium volume, and B, and B are
the bulk modulus and its pressure derivative at V,. The
results of the fit are shown in Table I for the five ordered
structures, each corresponding to a different composition
y (multiple of 0.25): the variation of the lattice parameter
is found to fulfill Vegard’s law. The experimental values
of B, are 0.56 and 0.75 Mbar for GaSb and GaAs, re-
spectively. The small difference between theoretical and
experimental values in the bulk moduli of GaAs and the
unusual variation are artifacts of the rather small E_, we
are forced to use. It has been shown* that this has negli-
gible effects on the calculated thermodynamic properties.

The positive sign of the formation energies of the or-
dered structures reflects the instability of these structures
toward segregation. Similar results have been obtained
by Boguslawski and Baldereschi®® for the tetragonal
structure, where also the ¢ /a relaxation is included. This
leads us to the conclusion that the recently observed or-
dered structures in GaAs,Sb, , alloy superlattices are
metastable. Our results confirm further that the reported
ordered structures in semiconductor alloy superlat-
tices’”3%4 are not thermodynamically stable, and the or-
dering is just a moderate tendency toward complete
segregation.

A contour plot of the valence charge density of the un-
relaxed tetragonal structure in the plane of the two bonds
is shown in Fig. 1(a). In Fig. 1(b) we show a similar plot
for pure GaAs (left panel) and GaSb (right panel) calcu-
lated at the same lattice parameter of the tetragonal
structure. The important feature to notice is the large
similarity between the bond charge density of Ga—As
and Ga—Sb in the pure materials and the mixed struc-
ture, which demonstrates the transferability of the bond
charge density. Similar results have been obtained for the
Si-Ge system.>’ In Fig. 1(c) we show the non-zinc-blende
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charge density Ap of the tetragonal structure, which is
the driving force of the structural relaxation,*' defined as

(r)+pg(r)
Ap=pAB(r)__E)A—éﬂ?_L_]_ , (18)

where A (B) are GaAs (GaSb). The important features to

'IIIIIII
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FIG. 1. Contour plot of the valence charge density (electron
per zinc-blende unit cell) in the plane of the two bonds, in steps
of 4, for (a) the unrelaxed tetragonal structure, (b) pure GaAs
and GaSb. The non-zinc-blende charge density [Eq. (18)], in
step of 1, is shown in (c). Dashed lines, negative; solid lines,
positive.
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note are the localization of Ap around the As and Sb
atoms and the large magnitude of Ap compared with the
result of Ref. 42. By relaxing the inside atom, a charge
transfer from the less ionic Ga—Sb to the more ionic
Ga—As bond occurs: before relaxation the maximum
bond charge densities (in units of electron/zinc-blende-
unit-cell) are 24.65 and 30.57 for Ga—Sb and Ga—As
bond, respectively. After relaxation they are 23.65 and
31.35. Similar results are obtained by Srivastava et al.*?
The calculated Ga—As and Ga—Sb NN distances for
GaAs and GaSb are shown by open circles in Fig. 2(a),
and the average values (V3a /4) are shown by solid cir-
cles in the same figure. The relaxation of the above bond
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2.60 - A

3 ~3
a ]
! -
-+ .
2 F sl -
T 250k ]
- Ga—As :

270 == ]

X (®) 3

— . Ga—Sb -
= F II:
2.60 [ =

8 C j<f
= C N N
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FIG. 2. First-nearest-neighbor (NN) distances as functions of
composition y. (a) Self-consistent results. (b) Valence-force-field
results. Open circles, ordered structures; solid circles, order
structures averaged; solid lines, model A averaged; short-dashed
lines, model B averaged. Compared with Vegard’s law (long-
dashed lines), Monte Carlo results (dashed-dotted lines), impuri-
ty model (diamonds), and EXAFS measurements (Ref. 47) (solid
symbols). '
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is found to be smaller than experiment. This point is dis-
cussed in Sec. V.

IV. MONTE CARLO CALCULATIONS

The crucial assumption of model 4 is that the alloyed
atoms are kept on the ideal zinc-blende sites and the five
different basic structures have equal volume. This con-
straint raises the formation energy of the alloy to an ex-
tent which depends on the excess strain energy stored in
each ordered unit. Any structural relaxation of the
mixed sublattice will certainly lower this energy. The
simplest way of doing this, while preserving the local
symmetry, has been proposed in Sec. IIB. To estimate
the concentration dependence of the lattice parameter of
the cluster configuration, a,, we have generated the alloy
lattice positions by means of a Monte Carlo simulation.
The calculation was made using VFF. We write the elas-
tic energy per tetrahedron as?

: Ea:[A(rrri)]2+ZEBU[A(ri.r})]Z ,

Eel__: -~
8rd s Gj

(19)
where a; and f8;; are bond-stretching and bond-bending
force cor‘lstants,Tlrespectively, r; is the bond length of the
ith bond around the s base atom; and r° is the equilibri-
um bond length. We have carried out the alloy simula-
tion for an arbitrary composition y by minimizing the
elastic energy of randomly generated large clusters. In

T T T T
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3.8 4.0 42 4.4 4.6

Distance (A)

FIG. 3. Anion-anion NNN distances distributions for
GaAs sSbg s calculated by Monte Carlo.
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FIG. 4. Monte Carlo results for second-nearest-neighbor dis-
tances. Open squares, Sb-Sb; solid squares, As-As; solid circles,
As-Sb; open circles, Monte Carlo average; solid line, Vegard’s
law; dashed lines, calculated average using model B.

order to nullify the cluster size effect, we have relaxed
7-8 shells of atoms around the central one. Averaging
over 1000 configurations has been carried out in order to
achieve good statistical convergence. The distribution of
NNN distances for y =0.5 are shown in Fig. 3.

To estimate the interspacing distance, required in mod-
el B, we have fitted the scaled calculated average NNN
distances to those obtained by the Monte Carlo simula-
tion. The interspacing distance which gives the best fit is
found to be 0.06 a.u. In Fig. 4 we show the Monte Carlo
results for NNN distances in the alloyed sublattice com-
pared with the fitted results of model B. The fitting is
good, showing a perfect matching of the two calculations.
The deviation observed in the As-As distances at low As
content is attributed to the stiffer and shorter Ga—As
bond with respect to that of Sb. This effect, found in
EXAFS experiments on impurities in a larger host ma-
trix,* is known as “core size effect.” The approximations
involved in the SC calculations do not produce such be-

5993

|
' °© o
o o

o
)

Excess Probability 107 AP
p —
o o

|
o
()

100
0.0 0.5 1.0
Composition y

FIG. 6. Excess probability distributions of the tetrahedral
configurations as functions of composition y. (a) Results of
model A; (b) results of model B.

havior. Unfortunately, we can not compare our Monte
Carlo results with EXAFS data because the latter are
unavailable. For In,_,Ga,As (Ref. 26) and Cd,_,Zn,Te
(Ref. 44) alloys, where this comparison is possible, they
provide a good estimate of the structure of real alloys.

V. THERMODYNAMIC PROPERTIES
OF DISORDERED GaAs, Sb,_, ALLOYS

Using the formation energy of the ordered structures
calculated in Sec. III, the cluster energies of mixing
AE, (y) as a function of the composition y, calculated ac-
cording to the model A (solid lines) and the model B
(dashed lines), are shown in Fig. 5 for the five different
tetrahedral configurations. The remarkable feature to
notice is the large reduction (about 50%) of the strain en-

© 8¢
£ -
> 6
© N
€ 4k
s 2F
= r
g r
0
0.0 0.5 1.0 0.5 1.0 0.5 1.0

Composition y

FIG. 5. Cluster formation energy as a function of composition y. Solid lines, model 4; dashed lines, model B. For (a) Ga, and
Gay,; (b) Gay; (c) Ga, and Ga,, where n is the number of Sb atoms at the vertices. The corresponding ordered structures are also

shown.
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ergy calculated according to model B. Starting from the
above calculated AE,(y), the tetrahedral concentrations
are calculated using Eq. (10) after solving Eq. (11) for the
case of the QCA, and solving Eq. (12) self-consistently
starting from random (Bernoulli) distribution of the
dependent variables y and y'?. In Fig. 6(a) we show the
results of model A for the excess probability distribution
AP,(y) [where P, are the tetrahedral concentrations z
times the degeneracy factor (#)] at T =700 K. In Fig.
6(b) similar results obtained using model B are shown.
The important feature to notice is that the NNN relaxa-
tion not only affects the magnitude of AP, but also the
sign in some composition range, which is configuration
dependent. This can be understood as a consequence of
the large reduction of the strain energy in model B.

The calculated phase diagrams are shown in Fig. 7(a)
using model 4 and in Fig. 7(b) using model B, compared
with the experimentally determined miscibility gap. It is
evident that the miscibility gap calculated using model A
at T=1020 K is in the range 0.06 <y <0.93, while ex-
perimentally it is within the range 0.2<y <0.8.!1713
This is expected since the strain energy is overestimated
within this model. On the other hand, the agreement be-
tween the experimental and calculated miscibility gap us-
ing model B is excellent. The small asymmetry of the
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FIG. 7. Calculated phase diagram of GaAs,Sb,_, alloys, us-
ing (a) model 4 and (b) model B. Solid lines, miscibility gap;
dotted lines, spinodal curve. The experimental results for the
miscibility gap of Refs. 12 (plus), 11 (open circle), 13 (cross), and
45 (open square) are also shown.
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FIG. 8. Interaction parameter as a function of composition y,
calculated using model A4 (upper curves) and model B (lower
curves). Solid lines, T"=1020 K; dashed lines, T'=700 K.

theoretical phase diagram should not be considered as an
artifact of the calculation, since the experimental results
of Pessetto and Stringfellow'? and of Takenada et al.®
do not show an asymmetric phase diagram as those of
Gratton et al.!! and Mani et al.!®> However, the most re-
markable feature here is the large effect of the NNN re-
laxation on the phase diagram of these materials which
has been underestimated in previous theoretical calcula-
tions.>* The above results demonstrate the astonishing
high predictive power of our approach. The importance
of this result comes from the fact that the experimental
determination of the phase diagram of the semiconduct-
ing alloys is difficult, and experimental results exist only
for a few selected alloys.

In Fig. 8 we show the interaction parameter ( calcu-
lated as a function of y at T'=700 and 7'=1020 K, using
the above two models. The remarkable features are the
large difference between ) calculated within the two
models and the small temperature dependence. The
latter is expected since the excess probability distribution
AP, is small (see Fig. 6) and it has small T dependence.
In the case of model B, at x =0.5, Q is equal to 4.75
kcal/mole compared with the experimentally estimated
values 4.0, 4.27, and 4.5 kcal/mole,*® which is another in-
dication of the superiority of model B over model A.

The calculated average GaAs and GaSb NN distances
using the SC relaxation parameter and the probability
distribution at T =1020 K are shown in Fig. 2(a) using
model 4 and model B, compared with the Vegard’s law
variation, the Monte Carlo results, the experimental re-
sults,*” and the results of the impurity model.** The im-
portant features to notice are the following.

(i) All the theoretical approaches are unable to explain
the observed large relaxation of the NN distances. In
contrast, the Monte Carlo calculation or even the impuri-
ty model is able to provide excellent agreement with ex-
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FIG. 9. Clustering parameter A as a function of composition
y at different temperatures, calculated using (a) model 4 and (b)
model B. )

periment for many other ternary systems, such as
Ga;_,In,As (Ref. 25) and Cdl_yZnyTe.44 We remark,
however, that EXAFS data taken in the transmission
mode on dilute systems could be affected by considerable
errors, particularly in the case of powdered samples, such
as glose measured here, which have a limited homogenei-
ty.
(ii) The average NN distances, calculated using model
B, are the same as those for the ordered structures. In
fact the deviation found in model A4 is an artifact of the
model (see Sec. VI). For sake of comparison, we show in
Fig. 2(b) similar results obtained using VFF to determine
the relaxation in the ordered structures. Notice the
agreement between the Monte Carlo results and the bond
lengths of the ordered structures.

It should be noticed that the calculated NN distances
are very sensitive to the equilibrium relaxation parameter
8.y which is calculated at a fixed volume. As already
mentioned, the related change in energy is very small to
affect our calculated thermodynamic properties.

In Fig. 9 we show the calculated clustering parameter
[Eq. (16)] as a function of the composition y for various
temperatures, calculated using model A [Fig. 9(a)] and
model B [Fig. 9(b)]. It is clear that the effect of the NNN
relaxation is also significant in this case.

VI. DISCUSSION

To discuss the accuracy of the calculated phase dia-
gram using the two models described previously, we show
in Fig. 10(a) the enthalpy of mixing calculated using the
VFF model (both bond stretching and bond bending in-
cluded), starting from ordered structures—exactly as in
the first-principles calculations—within model 4 (solid
line) and model B (dashed line). The result of the Monte
Carlo, which simulates the real alloy, based on the same
model and force constants (see Sec. IV) is also shown
(dashed-dotted lie). It is evident that the result of model
B is much closer to the Monte Carlo result than that of
model A. This shows the power of model B, and demon-
strate the validity of the results obtained using this mod-
el. For comparison we show in Fig. 10(b) similar results
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FIG. 10. Calculated enthalpy of mixing as a function of com-
position y, using (a) valence-force-field model; (b) self-consistent
density-functional theory. Solid lines, model A4; dashed lines,
model B; dashed-dotted line, Monte Carlo results. The forma-
tion energies of the ordered structures are also shown (solid cir-
cles).

obtained using first-principles cluster energies. It is
worth mentioning that the formation energies calculated
using VFF are due to elastic deformations (elastic contri-
bution). The difference between SC and VFF energies is
due to the charge density redistribution (chemical contri-
bution). The latter contribution can not be directly ex-
tracted from the figure, since the internal relaxation is
not the same in both cases (larger in VFF).

Another important point to discuss is the spread of the
NN distances. In model A4, the NN distances are calcu-
lated using 8.4 of each tetrahedral configurations at the
alloy lattice parameter a(y). In Fig. 11(a) we show the
calculated values, using this model, of the Ga-As (dashed
lines) and Ga-Sb (dashed-dotted lines) NN distances as
functions of composition. The important features to note
are (i) in the unmixed configurations the Ga-As and Ga-
Sb NN distances coincide with the Vegard’s law variation
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FIG. 11. Distribution of nearest-neighboi' distances as a
function of composition. (a) Model 4; (b) model B. Dashed
lines, Ga-As; dashed-dotted lines, Ga-Sb; solid lines, Vegard’s
law.
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FIG. 12. Nearest-neighbor distances in GaAs, sSb, s calculat-
ed by Monte Carlo method.

and (ii) the large spread of the calculated distances. Both
are in disagreement with experiment. Because of (i) the
average bond lengths are closer to the Vegard’s behavior
than experimentally observed. To overcome this, the
bond-bending contribution to the elastic energy has been
completely neglected in previous VFF calculations.”® In
Fig. 11(b) we show the distances calculated using model
B. For the sake of comparison, we show in Fig. 12 the
distribution of the NNN distances obtained by the Monte
Carlo simulation. It is clear that the distribution is in
much better agreement with experiment. This leads to a
more relaxed average NN distances (see Fig. 2), as ex-
pected.

VII. CONCLUSIONS

The thermodynamic properties of the GaAs,Sb;_,
pseudobinary alloy have been determined from a com-
bination of ab initio total energy calculations and the
modified quasichemical approximation. It has been
verified that the cluster variation method gives the same
results as QCA. The formation energies of five different
ordered structures, corresponding to the various
tetrahedral configurations, have been calculated within
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the framework of the density-functional theory. The
thermodynamic properties of the above alloys are calcu-
lated with fixed (model A) or relaxed (model B) NNN
anion sublattice. The latter is simply accomplished by al-
lowing the volume of each configuration to vary so that
the average NNN distances reproduce the fully relaxed
distances generated by the Monte Carlo simulation. We
draw the following main conclusions.

(i) The formation energy of the ordered structures is
found to be positive, leading to their disproportionation
into the constituent binary compounds. This suggests
that the recently observed'* ordering in GaAs, sSb, s epi-
layers is due to the presence of the substrate, and it is a
moderate step toward complete segregation.

(ii) The strain energy is strongly reduced (by about
50%) by relaxing the NNN distances (model B) in the al-
loyed sublattice. The calculated miscibility gap using this
model strictly reproduces the experimental gap, which
lies approximately in the concentration range
0.2 <y <0.8, without any adjustable parameter as usually
done in semiempirical models. The interaction parameter
Q=4.75 kcal/mole is also very close to the experimental-
ly estimated value of 4.0—4.5 kcal/mole.

(iii) The calculated bimodal distribution of NN dis-
tances within model B is in better agreement with the
EXAFS measurements than that obtained using model
A.

(iv) The tendency to cluster is moderate and strongly
dependent on the strain energy. The estimated clustering
parameter is too low to explain the miscibility gap asym-
metry, as suggested in Ref. 13.
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