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Electron transport in a disordered semiconductor superlattice
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The transport properties of a disordered superlattice in the presence of an applied electric field
are studied numerically using the transfer-matrix approach. The effect of disorder on the transmis-
sion coefficient as the length of the system and the field is varied is discovered. The existence of
Stark ladders in a disordered system is also investigated. The paper concludes by considering trans-
port in a superlattice with a weak magnetic field applied perpendicular to the electric field.

I. INTRODUCTION

Layer-by-layer growth techniques, such as molecular-
beam epitaxy (MBE), have made it possible to fabricate
structures comprised of alternating layers of two semi-
conductor materials. By using materials which have
different energy-band gaps (for example, GaAs and
Al, „Ga As), quantum wells can be formed in the layers
of the wider —band-gap material and barriers in the
narrower —band-gap material. Because it is possible to
select the widths of the wells and barriers by controlling
the number of layers that are grown of each material, the
bandwidths and band gaps of the resulting device can be
predetermined within certain limits. These structures,
though, are characterized by very narrow bands which
result from the poor coupling between neighboring wells.
In some cases this coupling can be so small that the de-
generacy between the states in each well is unaffected and
consequently no bands are formed.

These multiple —quantum-well structures, termed su-
perlattices, were first introduced by Esaki and Tsu in
1970.' Because they are no more than micrometers
thick, large electric fields can be produced perpendicular
to the layers with use of applied voltages of only a few
volts. Experimentally two effects have been found to
occur when an electric field is applied across a superlat-
tice. In the first, the field is not dropped linearly across
the sample, but only affects a part of it resulting in the
formation of a high-field domain. This was discovered by
Esaki and Chang and has also been observed by Choi
et al. and Vuong et al. It manifests itself as periodic
oscillations in the voltage-current ( V-I) characteristics as
the high-field domain expands and encompasses more
quantum wells. To prevent the formation of a high-field
domain, Capasso el; al. used a structure of the n+-i-p+
type, where i is the superlattice. This structure has a
built-in bias and so a linear field already exists across it.
The field can then be changed by applying a reverse bias
and a current produced by illuminating the sample with
light.

For a disordered superlattice we will only be consider-
ing the second situation in which the field is dropped uni-
formly across the system. However, in the investigation
of a superlattice in a magnetic field both situations will be
studied.

The application of an electric field has been shown to
result in distortions of the bands resulting in the forma-
tion of new eigenstates. It was shown by Zener that the
bands of a periodic system slope in the presence of an
electric field where the gradient of the bands is given by
eF, where e is the electronic charge and F is the electric
field strength. This results in the confinement of the elec-
trons within a length W/eF, where W is the band width,
now called the Stark length I.z. Wannier later intro-
duced the concept of a Stark 1adder showing that the en-
ergy levels within a sloping band were spaced at intervals
of eFa where a is the lattice constant of the periodic sys-
tem. Stark ladders from different bands can then interact
with one another enab1ing the electrons to Zener tunnel
across the band gap. " In most systems, though, the
bands are fairly wide, which results in a Stark length that
is longer than the system. However, because a semicon-
ductor superlattice has such narrow bands, the confining
effect of the sloping bands is greatly enhanced. Therefore
conduction resulting from Zener tunneling between Stark
ladders becomes more important. This type of conduc-
tion in superlattices has been studied by Movaghar' and
Leo and MacKinnon. "

The growth of superlattices and multiple —quantum-
well structures by MBE, however, does not result in per-
fect interfaces between the barriers and wells. Even in
the best devices the control of the growth is only accurate
to about two monolayers. Indeed, this has also been
shown to be the case in numerical simulations of MBE.by
Ghaisas and Madhukar' and by Clarke and Vvedensky'
where Auctuations in the growth front are found. There
has, however, been some progress in this area with
Madhukar et al. ' demonstrating experimentally and
Clarke and Vvedensky' showing via their numerical
work that interruption of the growth process can allow
the surface to relax, resulting in smoother interfaces.
However, this can then a11ow impurities that may be
present in the growth chamber to deposit onto the sur-
face which can result in further roughening.

The disorder which is induced by these fluctuations in
the barrier and well widths can effect the extended Bloch
states found in the minibands resulting in the 1ocalization
of the electrons and consequently a deterioration in the
current that can How. The effect the application of an
electric field has on the localizing properties of the disor-
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der has been studied to some extent analytically by Leo
and Movaghar' in the asymptotic limit and numerically
by Cota et al. ' and Schwartz and Ting. '

In this paper we shall continue on from the approxi-
mate analytical work in Ref. 16. We shall use the same
recursive transfer-matrix method formulated in that pa-
per to numerically study a finite one-dimensional super-
lattice in an electric field with different amounts of disor-
der in the thickness of the barriers and the wells.

where

(Mtt —1)
S(n —1)=

(M1V —2)

and

m1z(n)mzz(n —1)
a (n) =m „(n)+

m1z(n —1)

II. THK RKCURSIVE TRANSFER-MATRIX METHOD b (n) =m, z(n)mz, (n —1) (9)

—(x) &x&1

This method was formulated in Ref. 16 where it was
used to deal with electric-field-dependent transfer ma-
trices analytically. This allowed an asymptotic form for
the transmission coefficient of a one-dimensional disor-
dered chain of square barriers in an electric field to be de-
rived. We shall now briefly review this method.

In the transfer-matrix method, the superlattice undei
investigation is embedded in an infinite, perfectly ordered
system. The wave functions for a single electron in the
ordered regions are written

IkpX gkpx+o=e +re (la)

m12(n)mzz(n —1)m11(n —1)

m1z(n —1)

The terms in Eq. (9) relate to the matrix m (n ) given by

m»(n) m, z(n)

m21(n) mzz(n)
(10)

(M )», and ultimately lnT, can now be found by iterated
application of Eq. (7).

ik~ x0'~=te ", x &1V (lb)
III. THE CHAIN OF SQUARE BARRIER POTENTIALS

so that the disordered region extends from x =1 to
x =X. We now connect the plane waves on either side of
the superlattice using the transfer matrix M to give

0 — r

r and t are the reAection and transmission amplitudes, re-
spectively, and M is the transfer matrix for the whole
superlattice and can be written

m,.

m; is the transfer matrix for a single barrier and is posi-
tion dependent in the presence of an electric field. The
transmission coefficient for an electron impinging on the
superlattice is given by

(4)

where kz and ko are the electron's final and initial
momentum, respectively. We can rewrite T as

koT=

To model a superlattice we shall use a one-dimensional
chain of square barrier potentials and to simulate the
type of disorder induced by MBE, we shall randomly
vary the widths of the barriers whilst keeping their period
constant. We use a square probability distribution rang-
ing from +D to —D, where D characterizes the amount
of disorder. To include the effect of the electric field, eFx
must be subtracted from the potential profile of the bar-
riers. This affects the barriers and wells in two ways. It
shifts each unit cell, consisting of a well and barrier, rela-
tive to its neighbor by eFa and also alters the shapes of
the barriers and wells. We can, however, neglect this
second effect and only include the shifting of the wells
relative to each other, as it is this effect that introduces
the essential physics of the problem. In fact it was shown
by Emin and Hart' that the alteration in the shapes of
the barriers and wells can be incorporated into the
periodic potential of the unperturbed system. This has
been termed the ladder approximation and been used suc-
cessfully by many authors (e.g. , see Cota et al. '7 and Leo
and Movaghar' ).

The matrix elements for m(n) within this approxima-
tion are

where (M )» is the (1,1)th element of M . The logarith-
rnic average is now given by

(lnT) =in(k1v/ko) —(ln~(M )1, ~ ) .

As we only require the first element of M to find the
transmission coefficient, we derive the recursion relation

] Ik2b, , —ik2bM 1 1 4k (a21 32 +a21a32
3

i ( k 13na —k13 b /2)Xe
—k, ik2b —Ik2b

M1z =
k

(az1a3ze +az1a32e '
)

4k3

(M )„= a (n)+ (M )„,N b(n)
S n —1

(7)
13 13

—i (k na —k bl2)
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and az, = 1+k2/k„a2i= 1 —k2/ki, a32 1+k3/kp,
a3q = 1 —k3/k~,

k/3 k$ +k3y k ]3 k$ k3

ki =[E+F(na b/—2)],
kz = [E —V„+F(na —b/2)],

k3 = [E+F(na +b/2)] .

(12)

E is the incoming energy and the k's represent the
momentum of the electrons in the barrier and wells.
Note also that Mz& =M

&2 and M&2 =M, i.
A further approximation used in Ref. 16 was the

random-phase approximation (RPA). It is valid for
strong fluctuations in the disorder and reproduces the
gross features of the results but it is not sensitive to small
effects which might not be producible in experiments
anyway. It does this by neglecting multiple rejections
from the barriers, which in turn simplifies the calcula-
tions. Then the direct product m (n ) m ( n ), within the
RPA, is

(13)

We can now use the recursion relation of Eq. (7) to find
~(M )&i~ instead of(M )ii by substituting the above ele-
ments of the matrix into Eq. (9).

IV. TRANSMISSION THROUGH A SYSTEM
OF VARYING LENGTH

To find the form for the transmission coefficient as the
length of the system is varied, we numerically iterated
Eq. (7) for three amounts of disorder and at various elec-
tric fields for a system that ranged between 24 barriers
and 50 barriers long. To produce two bands the height of
the barriers was set at 0.4 eV, the widths of the barriers
set at 2.5 nm and the period at 10 nm. The incoming en-

ergy of the electron was set at 0.06 eV, which put it ap-
proximately in the center of the lower band. The electric
field was varied between 0 and 0.05 in renormalized di-
mensionless units. A field of 0.05 would correspond to
about 2x10 V m '. This means that at the greatest field
and at the end of the sample the electron has gained
enough kinetic energy to give it a total energy that is
three times the height of the barrier.

We first studied the zero-disorder case as a kind of
reference to compare later results with. Figure 1 displays
the results for this case. Each graph in Fig. 1 displays
data for a few fields. Figure 1(a) contains the curves for
the lowest fields while Fig. 1(c) contains the highest fields.
To understand how the electron is affected as it moves
through the system in an electric field, we must study
each curve on the graphs, following through from one
field to the next. Figure l(a) shows lnT for the zero-field
case. As expected, the zero-Geld curve is hardly changed
as the length is increased. Increasing the field results in a
linear decrease in lnT corresponding to an exponential
decrease in T. However, there is a visible plateau preced-
ing the slope. The last curve on Fig. 1(a), F =0.008, and

the first curve on Fig. 1(b), F =0.01, show that this de-
crease comes to an end, resulting in the formation of
another plateau. But further increases in the field results
in another decrease in lnT. This can be seen clearly at
F =0.02. The curve in Fig. 1(c) shows that this decrease,
like the previous one, again ends in a plateau.

To understand the origin of these plateaus and the ex-
ponential decreases, we calculated the energy the electron
had gained from the applied field at the beginning and at
the end of the slopes. The start of the first slope in Fig.
1(a) coincides with the electron having gained enough en-
ergy to leave the first band. The slope therefore occurs
when the electrons is Zener tunneling from one band to
the next. The end of this tunneling period coincides with
the electron entering the second band. We therefore con-
clude that the exponential decrease in the transmission
coefficient results from the electron traversing the energy
gap between the bands and when the electron is moving
through a band the logarithm of the transmission
coefficient remains constant.

To illustrate this point further, we plotted lnT against
length for a system that was 2500 unit cells long at a field
of 0.008 (Fig. 2). The plateaus and the slopes are clearly
visible and their positions exactly coincide with the edges
of the bands. The last decrease in lnT actually occurs
above. the barriers, which means that there is a forbidden
energy region located there. We shall return to this point
later.

We shall now consider the effect disorder has on the re-
sults obtained for the ordered case. We randomly varied
the widths of the barriers by up to 10' (D =2.5 A) of
their original width. We, however, kept the period con-
stant so as to not effect the length of the system. As a
way of discovering the effect a specific amount of disor-
der has on the system, we measured the localization
length given by the reciprocal of the gradient of a lnT-
versus-length plot at zero field. In the absence of an elec-
tric field the localization is exponential and characterized
by a localization length which turns out to be 37 periods
long for 10%%uo disorder. We therefore consider this to be
the weak-disorder case. The analysis that was carried out
in the zero-disorder case is repeated. Figure 3 displays
the three graphs showing the results at different fields.
The same features that were visible in Fig. 1 for the zego-
disorder case clearly still exist. Namely, the plateaus re-
sulting from the electron moving through the bands and
the exponential decrease in T characterizing tunneling
through the gap. At the very low fields (F-0 001) the.
transmission coefficient is not unexpectedly smaller for
the disordered case than it was for the ordered one.
However, as the field is increased further, there becomes
little difference between the transmission coefficient of ei-
ther the ordered or the disordered superlattice.

Let us now study the stronger-disorder regime. In this
case the widths of the barriers were varied by up to 50/o
{D= 1.25 nm). Experimentally this would correspond to
a very poorly grown MBE sample or a sample consisting
of very narrow barrier. From a lnT-versus-length plot
for the zero-field case the localization length was mea-
sured to be —1.4 periods, which confirms that this is the
strong-disorder case. However, when we start increasing
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the field, we can see from Fig. 4 that the same plateaus
and the same slopes that were present in Figs. 1 and 3 are
again present here and that their position with regard to
the energy gained by the electron from the field is also the
same. It should be noted that an extra decrease in lnT is
visible in both Fig. 3(c) and Fig. 4(c). It occurs when the
energy of the electron is above the wells and is caused by
a small energy gap that exists there. This is the same gap
that can be clearly seen in Fig. 2.

%'e therefore must conclude that the form for lnT as
the length is varied is only very weakly dependent on the

disorder in the presence of an applied electric field. The
fact that the positions of the plateaus visible in lnT are in
the same place regardless of the amount of disorder is
very interesting but not totally surprising. The disorder
that was introduced does not entirely destroy the band
structure, but instead reduces the transmissivity of the
states within the band and also produces some new states
around the edge of it. Namely, all the states within the
band become localized with a localization length that de-
pends on the amount of disorder. In three dimensions a
mobility edge may exist in the band, separating localized
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FIG. 1. lnT as a function of length for a 50-period ordered superlattiee plotted at several fields.
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obtain general forms which are especially applicable in
the asymptotic limit.

In similar studies made by Cota et al. ' and Schwartz
and Ting' of lnT against length in a disordered one-
dimensional chain of square barriers, they found jumps in
lnT. In the paper by Cota et al. they attributed this to
one of two possible causes, Zener tunneling or the energy
of the electron matching a special "delocalization' point
in the spectrum. By studying their data one finds that the
jumps always occur when the electron has gained a par-
ticular amount of energy. On the other hand, Schwartz
and Ting believe their jumps are caused by tuning the
electron's energy to the energy of a localized state. The
jumps are exactly analogous to the slopes in our data.
They are caused by the electron Zener tunneling through
the band gap and therefore always occur at the same elec-
tron energy. The jumps in the data of Cota et al. are
probably caused by the energy gap that is present far
above the tops of the barriers (e.g., the last slope in Fig.
2).

FIG. 2. lnT as a function of length for a 2500-period ordered
superlattice at a field of F =0.008. Notice the sharp plateaus
separated by regions of exponential localization.

states from extended states. When an electric field is ap-
plied such that the Stark length becomes less than the
length of the system, whether the states are either local-
ized or extended becomes unimportant because the bands
are now sloping. This effectively localizes all the states,
even in an ordered system. Consequently, the important
quantity here is the density of states which, by showing
where energy states exist, gives the starting and ending
points of the plateaus and slopes in lnT. For an averaged
system, the width of the density of states is hardly
affected by the disorder. Therefore, the positions of the
plateaus and slopes, in turn, remain unchanged.

In Ref. 16 the RPA was used to incorporate the disor-
der into lnT after it had been neglected in the asymptotic
limit. It also allowed results to be obtained more simply
as ~M

& & ~
could be found from a 2 X 2 matrix instead of a

4X4 matrix. RPA produces no similar simplification in
the numerical calculation as a 2X2 matrix is already be-
ing considered. However, it is still used so that a com-
parison can be made with the exact results.

Figure 5 displays the numerical results using the RPA
at different fields. The first thing to notice is that the lo-
calization length, obtained from the zero-field curve, is
less than 0.34 penods even though a disorder in the bar-
rier of 50% was used. Therefore disorder has a much
stronger effect when used within the RPA. This is be-
cause multiple rejections that can increase the transmis-
sion of the propagating wave are neglected. This also
means that no bands are produced and so we do not ex-
pect to observe the plateaus in lnT. Nevertheless, from
Fig. 5 it can be clearly seen that the overall form for lnT,
especially in the asymptotic limit, is similar to that given
in Figs. 1, 3, and 4. We therefore conclude that although
RPA enhances the effect of disorder and does not repro-
duce the effects due to the bands, it can still be used to

V. TRANSMISSION THROUGH A SYSTEM
%'ITH A VARYING FIKI.D

A question that may be more pertinent to experiment
when the V-I characteristics of a device are under con-
sideration is the effect varying the field has on the
transmission coeKcient. We shall first consider the ideal-
ized case of a perfectly ordered superlattice. It has al-
ready been mentioned that the application of an electric
field results in the formation of a Stark ladder in each
band. These ladders of energy states move apart when
the field is increased and it was shown in Ref. 11 that at
specific values of the field, ladders belonging to different
bands come into resonance. We can expect the same
kind of effect if we vary the field while the incoming ener-

gy of the electron is kept constant. Indeed Fig. 6 shows
that as the field is varied, resonances occur in lnT. We
have set the incoming energy of the electron to be in the
gap between the two bands so that the effects due to only
one band are observed. The distance between the reso-
nances increases, which points to the possibility that they
could be caused by the states in the Stark ladders. This is
because the position of the levels in a Stark ladder are
given by '

E„=eFan +Eo, (14)

F„=
nea

(15)

For aH the resonances given in Fig. 6, we plotted F,
against 1/n (Fig. 7). Apart from the first section of the
graph, the points lie on a very good straight line. The de-
viation from the straight line at low fields is caused by
boundary conditions. At the edges of the sample the dis-
tance between Stark levels is not eFa but is much larger.
This, coupled with the fact that the resonances at low

where n is the Stark label and Eo is the energy origin of
the ladder. Therefore, resonance between the Stark levels
and the initial energy E; occurs when the field is given by
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fields are caused by the electron using these edge states as
paths of conductance, results in the curve in Fig. 7.

We repeated the above calculation but this time we
moved the initial energy of the electron so that it lay
below both bands. In Fig. 8 the consequences of having
to traverse both Stark ladders can now be observed with
two sets of resonances present and superimposed upon
each other. The resonances resulting from the Stark
ladder in the higher band start at a much higher field
(-0.008) and are initially visible as much weaker reso-

2

+ V(x) eFx—V(x) =EV(x) .
2Ill

(16)

nances.
The introduction of disorder into the system must

clearly affect the Stark resonances. To understand how,
we shall return to the derivation of a Stark ladder in an
ordered system. Schrodinger's equation for a periodic
system in the presence of an electric Geld is
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FICx. 3. The arithmetic average of lnT as a function of length for a 50-period weakly disordered superlattice plotted at several
fields.
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If we now translate (16) by a lattice constant a, we get

+ V(x) eF—x III(x +a) =(g+e+g)III(» +I3) .
2ptg

Therefore, if an energy level exists at E, then another ex-
ists at E+eFa W. e can now translate Eq. (16) by any

number of lattice constants to give a ladder of energy lev-
els with a separation of eFa between the levels [Eq. (14)].
However, with disorder in the system V(x + a ) no longer
equals V(x). Therefore, translating (16) by a now gives

r

2

+ V(x)+ V'(x) eF—x %(x +a)2' *

=(E+eFa)III(x +a), (18)
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FICx. 4. The arithmetic average of lnT as a function of length for a 50-period strongly disordered superlattice plotted at several
fields.
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where V' is the extra potential caused by the disorder. If
we write

V'(x)%(x +a) =a%(x +a),
we obtain an addition of a random energy c to E+eFa.
Nonetheless, the important result is that the Stark ladder
sti11 exists, albeit somewhat modified, even in the pres-
ence of disorder.

To confirm this we plotted lnT against field for two
samples, one with strong disorder (50%%uo) and one with

weak disorder (10%). The electron was injected between
the two bands so that the effect of just one Stark ladder is
observed. No averaging was carried out on these samples
so that the numerical results we obtained would give an
indication of the type of output that might be observed
experimentally when every sample is unique and not an
average.

Figure 9 shows that the results in the weak-disorder
limit are not very different from the results in the ordered
case given by Fig. 6. The difference is now that the posi-
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FIG. S. The arithmetic average of lnT as a function of length for a SO-period strongly disordered superlattice plotted at several
fields within the RPA.
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FIG-. 10. lnT vs electric Geld for a strongly disordered super-
lattice.

degree or extent. Much work has instead been channeled
into the situation where the magnetic field is applied
parallel to the quantum-well interfaces (i.e., perpendicu-
lar to the two-dimensional electron gas in the wells). This
has provided some very interesting physics (i.e., Klitzing
et al. ).

The e8'ect a magnetic field has on a
GaAs/Al, Ga As superlattice structure has been stud-
ied experimentally by Davis et al. Their superlattice,
however, was not uniform but consisted of two super lat-
tices coupled together via a thick barrier. Consequently

-10

-20

H =[p„+p, +(p —e8x) ] eFx+—V(x) .1

2m*
(20)

If we now make. the ansatz that the solution to
Schrodinger's equation with the above Hamiltonian has
plane waves in the y and z directions, we can write

2
px eBx

eFx + V(x—)+
2111

xp 4 (x)eB

=E 4 (x), (21)

where v labels the Landau levels. Therefore the applica-
tion of an electric field results in two extra terms in the
Hamiltonian, a quadratic "oscillator" term and a linear
term. This linear term can be absorbed into the electric
field so that

most of the bias was dropped across this one barrier,
misaligning the superlattice minibands on either side.
Apart from this effect, the bands themselves were fairly
unaffected by the electric field (i.e., they did not slope).
The V-I characteristics of this structure at zero magnetic
field were found by Davis to contain a region of negative
difFerential resistance (NDR) resulting from the misalign-
ing of the minibands. The application of the magnetic
field perpendicular to the electric field was observed to
have two e6ects on the NDR. At low magnetic fields it
moved to higher biases, but as the magnetic field was in-
creased to over 10 T the NDR completely disappeared.
Similar work has been carried out by Eaves et al. ,
Hickmott, and by Lebens et a/. who studied tunnel-
ing through a single-barrier system with crossed electric
and magnetic fields.

Let us first consider the full three-dimensional super-
lattice where the superlattice period is in the x direction,
and the electrons are plane waves in the other two dimen-
sions. The application of magnetic field B in the z direc-
tion results in the following Harniltonian in the Landau
gauge:

eBeF ~eF+ py (22)

-70

If we now make the approximation that B is
suSciently weak such that the cyclotron radius ao, where
ao =R/e8, is much greater that the width of the barrier
layers b, then the e6'ect B has on the matrix elements be-
tween neighboring wells can be neglected. Therefore, the
only effect Eq. (21) has is to shift the energy of one well
with respect to its neighbor by

-110 2 2e B 2 eBb

"8.oo 0.01 0.02 0.03 0.04 0.05 0.0$ 0.07 0.08 0.00 0.10

P I.CTRIC FlP &

FIG. 11. The arithmetic average of lnT plotted against elec-
tric field for a disordered superlattice within the RPA.

Note that now the energy the electrons gain by crossing
the barrier between the two wells is no longer just a func-
tion of position but also a function of its transverse
momentum p~.

The above formulation can now be incorporated into
the transfer-matrix method by simply modifying the k
momenta in each well and barrier section given in Eq.
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(12) by the amount given in Eq, (23). The linear term
now exaggerates the effect of the electric field term to fur-
ther increase the kinetic energy of the electron as it
moves through the system. However, there is also a posi-
tive quadratic term which reduces the energy of the elec-
tron. In the limit of a weak magnetic field we expect that
over several quantum wells the linear energy terms will
dominate. However, the quadratic positive term will
eventually take over, causing the localization of electrons
into cyclotron orbits. Because of the importance of the
perpendicular momentum p„ in this type of calculation,
electrons with py ranging from zero to the Fermi energy
will be allowed to contribute to the current.

Two types of structures were investigated using this
technique. Both were superlattices consisting of ten bar-
rier well periods, but the electric field affected them both
in different ways. In the first sample, all the .field was
dropped across the last barrier. This could therefore
represent a double-barrier structure or a system similar to
Davis's. Figure 12 shows the results obtained for four
magnetic fields, 0, 1, 2, and 3 T. The period of the struc-
ture corresponded to about 10 nm and an electric field of
one unit was equivalent to about 5 X 10 V/cm.

At zero magnetic field the peak caused by the align-
ment of the bound state in the last well and the incident
energy of the electron is clearly visible at F = 15. As 8 is
increased two effects are observed in complete agreement
with that found by Davis. First the peak becomes much
broader as the bound state becomes resonant with elec-
trons at different p . This obviously strongly effects the
NDR. Then as the magnetic field is increased further up
to 2 T, the peak moves to higher biases and becomes even
more broad as the bound state becomes resonant with

even more electrons, all with different transverse momen-
turn. Finally an increase of 8 to 3 T was found to further
exaggerate these features.

The plateau formed on the now-broadened peak is
caused by the sum over the transverse momentum p„ in
the following way. An electron with a particular p„will
form a particular V-I curve. Studying an electron with a
different p is equivalent to studying an electron with the
previous p but at a different electric field [this can be
seen from Eq. (22)]. Therefore the electron with this new

p produces the same shape V-I curve as the electron
with the previous p but it is now shifted along the elec-
tric field axis. Consequently, peaks in the V-I curves are
formed into plateaus.

In the second structure the field was allowed to drop
uniformly across the whole system. This would result in
the formation of the now familiar Stark states and Stark
ladder, although now, because the system is so short,
these states may be strongly affected by the boundaries.
Figure 13 shows the results obtained for zero magnetic
field and for a field of 1 T. At 8 =0 the same Stark reso-
nances that were observed in Fig. 6 are again visible. The
application of the magnetic field causes a broadening out
of the resonances to such an extent that the ones at low
biases almost disappear completely. However, the reso-
nances at the higher biases turn into groups of seven
miniresonances. These exist because the magnetic field
makes it possible for electrons with different p to tunnel
resonantly via other Stark states. In a real system these
resonances would be smeared out by scattering.

An effect observable in Fig. 13 and which is contrary
to the features in Fig. 12 and the observations made by
Davis is that the broadened NDR has moved to lower
biases instead of higher biases, resulting in a negative

8=0 T
8=1 T

-10
8=1 T

-12
-13 -42

-15

-17

10 20 30
~ &CTRIC R& &

-54
0 2 3
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FIG. 12. lnT vs electric field for a ten-period superlattice
with all the electric field dropped across the last barrier. The
resonance is displayed for four magnetic fields.

FIG. 13. lnT vs electric field for a ten-period superlattice
with the electric field now dropped uniformly across the whole
structure. The Zener resonances are shown for two values of
the magnetic field.
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magnetoresistance. This results from the fact that the
linear terms in (23) are dominating over the quadratic
term. In Fig. 12 the opposite was true.

VII. CONCLUSION

We have studied the effect disorder has on transport in
a semiconductor superlattice in an electric field. By in-
vestigating the dependence of lnT on the length of the
system, we have discovered that it is not the amount of
disorder which is important if the electric field is large
enough such that the Stark length is less than the system
size. What effects the transport properties much more is
the number of bands and their widths. This is because
lnT has two functional dependences on position depend-
ing on whether the electron's energy puts it in one of the
bands or one of the gaps when it has reached the end of
the system.

To relate the numerical work more closely to experi-
ment, in particular the voltage-current characteristics,
the system size was kept constant and the electric field
was varied. In the absence of disorder, aperiodic reso-
nances were discovered in lnT as the field was increased.
These were found to result from the Stark levels in the
bands lining up with the electron s initial energy to pro-

duce an enhanced conductance path. After introducing
disorder into the system, we found that it did not totally
destroy the Stark ladder structure but merely modified
the positions of the levels within the ladders by a random
amount. This consequently showed up as resonances in
lnT with slightly random positions. We therefore note
the possibility of using the Stark resonances that might
exist in the current as an indicator of the amount of dis-
order in a particular sample.

We also found that the application of a weak magnetic
field perpendicular to the electric field could be incor-
porated very simply into the formalism. Although the
technique was very approximate, the initial results we ob-
tained reproduced the essential features observed experi-
mentally. The limiting factor in the calculations was the
cyclotron radius which can become comparable to the
well-barrier period at fields of 3 T or less.
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