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We solve exactly an approximate model for inelastic resonant tunneling in the presence of a boson
field. The model is based on the many-body tunneling Hamiltonian formalism, which, in the ap-
propriate limits, is shown to precisely reproduce the elastic resonant tunneling results of ordinary
single-particle scattering theory. Bosons coupling with arbitrary strength to the resonant level
broaden the energy dependence of the effective transmission probability. Applications to resonant
tunneling in quasi-one-dimensional GaAs-Al„Ga& „As heterostructures in the presence of LO pho-
nons and to resonant tunneling in three-dimensional heterost;ructures in the presence of electromag-
netic fields {laser beam or ac voltage) are discussed.

I. INTRODUCTION

An early triumph of quantum mechanics was the pre-
diction that electrons may pass between two reservoirs
through a classically forbidden region. Manifestations of
tunneling through a barrier were soon observed experi-
mentally, first in the context of field-induced ionizations
of atoms. Later, tunneling developed into an important
field also in solid-state physics, well elucidated in the ex-
tensive early review by Duke. ' Today the old subject of
tunneling is again in focus, partly due to the recent spec-
tacular advances in semiconductor technology and elec-
tron tunneling microscopy.

We shall here be concerned with resonant tunneling.
This is when the electron tunnels via a localized state in
the barrier, whose energy matches (resonates with ) ener-

gy levels in the reservoirs. The tunnel current is greatly
enhanced when this resonant condition is met. This is
why resonant tunneling is an important phenomenon in
such diverse areas as scanning tunneling microscopy
(STM) and the physics of transport in semiconductor het-
erostructures. In the former case the formidable spatial
resolution of the STM has made it possible to probe tun-
neling from a metal surface to the sharp metal tip of the
instrument via localized levels in a single adsorbed mole-
cule. The tunnel current will show resonances as the ap-
plied tip-to-metal voltage is varied and the discrete ener-
gy levels in the absorbed molecule are scanned through.
In particular STM has been used to study how the elec-
tronic energy level(s) interact with boson fields (rotational
and vibrational "phonons"). We are referring to what
has become known as inelastic electron tunneling spec-
troscopy.

In the field of semiconductor heterostructures the
peculiar transport properties brought about by resonant
tunneling, as well as the possibility of controlling the en-
ergy of the resonant level by some gate voltage, has
opened up potentially very fruitful device applications. "
By letting a potential switch the position of the localized
level in and out of resonance the current can be turned
"off" and "on" in a three-terminal resonant-tunneling
(RT) device. This leads to potential applications both in

terms of fast transistors and functional logical devices. '"'
As a two-terminal device a RT structure such as that in
Fig. 1 has a region of negative di8'erential resistance
(NDR). This happens when the applied voltage is such
that a further increase brings the localized level out of the
resonance condition and hence diminishes the current.
When the device is biased in the NDR region it is intrin-
sically unstable, and perhaps the main potential applica-
tion of resonant tunneling in semiconductor heterostruc-
tures is to use the microwave radiation generated by the
resulting current and voltage Auctuations. Other possi-
ble applications for RT devices such as mixers and detec-
tors are also due to the nonlinear current-voltage charac-
teristics. Detection has been demonstrated at 2.5 THz
(Ref. 5) and microwave generation at 18 GHz. In order
to develop these applications further it is important to
understand resonant tunneling in the presence of elec-
tromagnetic fields (photons).

A corn~on feature of the resonant-tunneling systems
described above —all of considerable current interest —is
that the tunneling electrons couple to a boson field. This
field may be due to phonons or photons (the electromag-
netic field of a laser beam to be detected or the oscillating
ac voltage in a microwave generator, for instance). The
coupling to the boson field leads to an exchange of energy
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FIG. 1. A schematic resonant tunneling structure, where five

regions {1—5) of different potential energy are indicated. The
position of a resonant level in region 3 and bands of occupied
electron states in regions 1 and S are shown.
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between the electrons and the bosons and hence to inelas-
tI'c resonant tunneling. Recently we and others have
discussed the effect of inelastic scattering on resonant
tunneling in semiconductor heterostructures. This effect
obviously bears on the performance of RT devices, but is
of general interest as well, for instance, in the context of
interpreting data from inelastic electron tunneling spec-
troscopy. Using a phenomenological model for the in-
elastic phonon scattering we conclude in Ref. 6 that in-
elastic scattering, which destroys the phase coherence, is
an important effect that strongly reduces the probability
for coherent tunneling of the Fabry-Perot type. As a re-
sult, the tunneling will be mainly incoherent (sequential).
However, in a model calculation we found that the tun-
neling current, which is related to the integrated tunnel-
ing probability, does not depend on which of the two
mechanisms dominate as long as the resonant energy is
well defined.

In the present paper we wish to go beyond the phe-
nomenological description of the phonon scattering and
consider an approximate microscopic model that is exact-
ly solvable. We shall also extend the discussion to cou-
plings with boson fields other than those of phonons.
The main assumptions in the model are that the boson
field couples only to the localized (resonant) state and
that no momentum is transferred to it. The coupling
strength may be arbitrarily large. We shall apply the re-
sults obtained to three cases of current interest where
these assumptions are reasonable: (i) resonant tunneling
in a quasi-one-dimensional semiconductor structure in
the presence of LO phonons, (ii) resonant tunneling in a
three-dimensional heterostructure in the presence of a
laser beam or, (iii) an ac component in the applied volt-
age. The first case relates to the quasi-one-dimensional
GaAs/Alp 2~Gap 7~As/GaAs/Alp 2gGap 75As/GaAs struc-
ture recently studied by Reed et ah. The second and
third cases correspond to the RT devices studied in Refs.
4and 5.

Our strategy will be to map the problem onto the well-
known problem of a localized electron (here an electron
in a quantum well) interacting with independent bosons
(phonons). This problem was solved almost 40 years
ago' and the solution can be found in a textbook. " The
same approach was recently applied by Glazman and
Shekter' to the problem of inelastic resonant tunneling
via a pointlike resonance center in an insulating barrier.

Although our discussion is more widely applicable, we
find it instructive to refer to a specific resonant-tunneling
structure. As in Ref. 6, our model structure consists of
two barriers (regions 2 and 4) separating three regions of
lower potential energy (regions I, 3, and 5) as shown in
Fig. 1. We have in mind a crude model for the conduc-
tion band in a GaAs-Al Ga& As double-barrier hetero-
structure. The paper is organized as follows. In Sec. II
we introduce the tunneling Hamiltonian formalism and
discuss its applicability to a resonant-tunneling system.
The model for coupling of the tunneling electron to a bo-
son field is presented and solved under general conditions
in Sec. III. In subsequent sections the implications for
resonant tunneling in specific physical systems are dis-
cussed.

II. TUNNELING HAMILTONIAN DESCRIPTION
OF RESONANT TUNNELING

Hi = g E(k, )ck ck
kl

g2k 2 g2K2E(k)= + =E,(k)+E (K) .
2m 2m II

(2)

The Hamiltonian H3 describes the electrons in the quan-
tum well. As the electrons are free to move in the paral-
lel direction we find

H3= g (Ek ) 3)~ ccrc
"3

(3)
E(k3)=E,(k3 )+Eii(K3)=E„+Eii(K3)

Energies are again measured from the bottom of the band
in the emitter. For simplicity we assume that there is
only one resonant level E„with respect to the motion per-
pendicular to the heterostructure. The intrinsic reso-
nance energy E, is lowered by the applied voltage V. As-

The tunneling Hamiltonian formalism has been suc-
cessfully applied to describing tunneling between weakly
coupled normal and superconducting metals. ' Whether
it can be applied to resonant tunneling in semiconduc-
tors, where the voltage drop over the tunnel structure is
of the order of volts rather than millivolts, is not obvi-
ous. "' We shall therefore first establish that we can
rederive the usual expression of scattering theory for the
resonant-tunneling current of free electrons in the ab-
sence of interactions. This is a generalization of the cor-
responding well-known result for a single barrier, ' which
in addition brings out the effects of possible relaxation
phenomena among electrons in the resonant levels.
These may occur in a system such as a three-dimensional
GaAs-Al Ga& As heterostructure where the electrons
in the quantum well have degrees of freedom perpendicu-
lar to the tunneling direction.

Referring to our model system in Fig. 1, we now use
the tunneling Hamiltonian formalism to separately de-
scribe the current, I,3, from the emitter (region I) to the
resonant level in the quantum well (region 3) and the
current, I35, from the quantum well to the collector (re-
gion 5). The actual tunneling current I» is then obtained
by demanding these two currents to be of equal magni-
tude.

We consider first the tunneling into the well. The
proper Hamiltonian for this process is

HT =H)+H3+Hi3,
where H, describes the electrons in the emitter. Here,
and in the rest of the paper we use a simple effective-mass
approximation where the potential energy is one dimen-
sional and the electron kinetic energy is the sum of paral-
lel and perpendicular parts, corresponding to a decompo-
sition of the wave vector k into a component k perpen-
dicular to the heterostructure and a component K paral-
lel to it, k=(k, K). Measuring energies from the bottom
of the conduction band in the emitter, it follows that in
our simple model system
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suming that, say, half of the total voltage drop occurs be-
tween the emitter and the well, the voltage dependence of
the resonant level can be explicitly given as
E„=E„—eV/2. It goes without saying that in a com-
plete treatment of the resonant-tunneling problem the po-
sition of the resonant energy level as well as the entire po-
tential energy structure would have to be calculated self-
consistently.

In the conventional discussion of single-barrier tunnel-
ing'" the subsystem Hamiltonians H& and H3 are con-
sidered to be strictly independent and commute term by
term. Thermal equilibrium at different chemical poten-
tials p& and p3 are assumed to exist on each side of the
barrier. The interaction comes from the tunneling part of
the Hamiltonian H&3, where

' The prescription for calculating the tunneling matrix
element has been given by Bardeen. ' "" It involves the
wave functions 4i, in the emitter (calculated in the ab-

sence of well and collector) and the wave function 4i, in
3

the well (calculated in the absence of emitter and collec-
tor),

fi
T~ i,

= J ( %i, V +i*, —H. c. ).d S .
2m

The integral is taken over any surface in the barrier. The
parallel momenta will be, and the total energy is assumed
to be conserved in the tunneling process. One readily
finds that for a free-electron model

H]3 g (Tz & cir cz + H. c. )

k)k3

(4) 16k, k3~2
3 j 3 (k2+ir2)(k2 +~2)

Q (Ti, i, ci, ci, —H. c. ) .
kl, k3

(6)

The current I» from the emitter to the quantum well
is defined as the average value of this operator,
Ii3 = —e (N, ), and can be obtained by linear-response
theory with the tunneling term H, 3 treated as the pertur-
bation. We refer to Ref. 11 for details of the derivation.
The result is that

17 3

dE,
X A3(k3, s) A, (k„s+p, —p3)2K

X[nF(E)—nF(s+p, —p3)] .

The current is here expressed in terms of the spectral
functions in the emitter (region 1) and in the quantum
well (region 3), respectively. A factor of 2 accounts for
the spin summation and nz(e)=[exp(e/k&T)+1] ' is
the Fermi factor.

In principle the spectral functions in Eq. (7) could de-
scribe interacting electrons, as long as the interactions do
not couple electrons in the different regions. This is, of
course, the advantage of the formalism and will be used
when we introduce the electron-boson interaction below.
For the moment we stay with the free-electron system de-
scribed by Hi and H3 of.Eqs. (2) and (3). The corre-
sponding spectral functions are"

A, (k, , s)= A, (k;, s)=2ir5(s —E(k;)+p;), i =1,3 .

The tunneling current through the barrier (region 2) is
expressed as the rate of change of, say, the number of
electrons N, in the emitter (region 1). This rate is found
from the commutator of X, with the tunneling Hamil-
tonian,

Xi =—[Xi, Hr )=—[X„H,3], Xi = g ci, cq . (5)
1

The commutator is easily evaluated and one finds

1 1X U(k, )U(k3)—
eff

(10)

At this stage it is convenient to introduce the energy
r». Later we will be able to relate it to the width of the
resonant level and hence also to the escape rate 1/~ from
the quantum well through the left barrier to the emitter.
We define it as

2AI,3= = U(k3)T, 3 .
7 deff

(12)

Note that we can interpret U (k3 )/2d, ir as an attempt fre-
quency and T&3 as a probability for escaping through the
left barrier.

We can now use Eq. (12) and the free-electron expres-
sions Eq. (8) for the spectral functions to express the
current I,3 of Eq. (7) as

As usual U. (k) =erik/m', f2=[2m (U2 E, )/A ]—', U2 is
the average height, and bz is the width of the barrier (re-
gion 2). (We approximate the potential in the barrier by
its average in order to be able to give an explicit expres-
sion. )

We recognize the first factor of Eq. (10) as the
transmission probability through. the barrier (region 2) in
the limit when the electron energy is well below the top
of the barrier. We denote it by T&3. As for the rest of
Eq. (10), we note two differences in comparison to the
case of tunneling through a single-barrier structure (i)

ointly one value of the perpendicular momentum k3 is al-
lowed, viz. , the one that corresponds to the resonant con-
dition, E,(k, ) =E,(k3 ) =E„and (ii) the perpendicular
part of the wave function +k is not a simple exponential.

3

The corresponding normalization factor is therefore not
1/L but rather I/d, s, the inverse effective width of the
quantum well. The effective width differs from the physi-
cal width d because of the penetration of the wave func-
tion into the barriers (regions 2 and 4),

d,ff=d + +1 1

K4
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Iis Q g u (ki )I i3 ir5(E„E—,(ki ))
L Kk,

X[nF(E(k, ) —p, ) —nF(E(k, ) —ps)] .

(13)

An analogous expression gives the current through the
second barrier. As current is conserved, the current out
of the quantum well, I35 must equal the current into it,
I i3 By glancing at Eq. ( 13) for Iis we can immediately
write down the expression for I35 as

I„=—g g u(k, }1ssm.5(E„—E,(k, ))
K k5

X [nz(E(ks) —ps) —nF(E(ks) —ps)] .

(14)
I

Equating the two currents leads to a constraint on the
I

Fermi factor in the well, nF(E(k) —ps}. This point mer-
its a small digression. In free-electron models such as we
use here for the emitter and collector, the existence of a
scattering mechanism is implicitly assumed in order to
maintain thermal equilibrium. This unspecified scatter-
ing mechanism is, for instance, responsible for the energy
relaxation of electrons elastically scattered into high ki-
netic energy states in the collector down to the chemical
potential. If we insist that resonant tunneling occurs
without any scattering in the barrier region there is no
mechanism for obtaining thermal equilibrium in the
quantum well. In this case there is no equilibrium Fermi
distribution of electrons in the well and nF(E(k) —p&)
should be interpreted just as a number to be determined.
This number, let us call it f&, is readily obtained by ad-
justing the quantum-well occupancy in each K channel
separately. Hence fs

=fs ( K ). After converting the sum
over perpendicular momentum, k, (ks) in Eq. (13) [Eq.
(14)] to an integral over E,(ki ) [E,(ks )], one finds

I isnF(E„+E~~(K)—p, }+IssnF(E„+E~~(K) —ps)f3(K)=
13 35

(15)

Substituting this value in Eq. (13) and observing that
the difference in chemical potential between the emitter
and the collector is the applied voltage, one finds that the
actual tunneling current I,5 can be written as

Iis =—g g u(k)T, s
K k

X [n„(E(k) p) —nF(E(k) —p—+eV)],
(16)

where

Tis = ,' T'i's'risen(E„'-,'eV E,(k)—)——

13 35 13 35

(T +T )
(18)

The sums in Eq. (16) are over the momenta in the emitter,
nF(x)=[ exp(x/kii T)+ I] is the Fermi factor and all
energies are measured from the bottom of the band in the
emitter.

Equations (16)—(18) are precisely the weak-tunneling
limit of the scattering-theory result, obtained by solving
the Schrodinger equation in regions 1 —5 of Fig. 1 and
matching the wave function and its derivative (i.e., con-
serving the current) at the boundaries. This result was
also derived by Payne, ' in a less-general, single-particle
framework. In the scattering theory the above result ob-
tains when the transmission probability through the
whole structure, T,5, can be approximated by a delta
function. In fact, it can be approximated by precisely
the delta function of Eq. (17) where I",s is the width of
the (actual) resonant level and Tis' is the transmission
probability at resonance. This maximum transmission

probability is unity if the barriers are equal, i.e., if the
transmission probability through the left barrier, T13,
equals the transmission probability through the right bar-
rier, T35 Otherwise it is smaller than unity, which for
the model of Fig. 1 will be the case for all finite applied
voltages.

Before we conclude this discussion we shall elaborate
somewhat on how scattering changes the expressions for
the tunneling current. We have already noted that
scattering events that couple electron states in different
subsystems fall outside the validity of Eq. (7) with the
tunneling matrix element given by the Bardeen relation
Eq. (9). Taking them into account amounts to generaliz-
ing the tunneling matrix element to a vertex func-
tion. "" Scattering within the subsystems can be de-
scribed by the spectral functions A; and we will have
more to say about that below. Here we want to em-
phasize another effect of scattering, which is perhaps less
obvious: If scattering is present in the quantum well
the nonequilibrium distribution f3(K) of Eq. (15) will
be changed towards an equilibrium distribution,
nF[E„+E~~(K)—ps]. If the equilibrium distribution was
reached, the chemical potential p3 would have to be such
that the current in and out of the quantum well was the
same. We have both electron-electron scattering and
elastic and inelastic impurity and phonon scattering in
mind. Perhaps this point is best illustrated by a
simplified example. If the lattice temperature is zero we
could envisage a situation where all states in the emitter
below the Fermi level EF were occupied and no state of
corresponding energy was occupied in the collector
(again referring to Fig. 1). Furthermore, we might take

13 I 35 l independent of energy. For the case with
no scattering it then follows from Eq. (15) that
fs(K)=0.5 for all k with 0(Ei(K)((E~ E„). With—
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elastic scattering present in the quantum well the equilib-
rium distribution in the same case would be
nF(E„+E~~(K)—p&} with p&=(EF E—„)/2, i.e., nz= 1

for 0 & E~~(K) & (EF E—„)/2 alld nF =0 for E~~(K)) (EF E„—)/2 for the zero-temperature case.
One might ask under what circumstances the equilibri-

um distribution is reached. This is not straightforward to
answer. Certainly the time scale for scattering would
have to be compared to the time scale for re'sonant tun-
neling. However, the latter time scale is itself affected by
the former. In fact the two time scales seem to be the
same and in general we therefore do not expect an equi-
librium distribution to fully develop. To the extent that
the tunneling matrix element Tk k depends on the paral-

1 3

lel energy E~~(K) in addition to the perpendicular energy
E,(k), it matters how the electrons in the well are distri-
buted in K. Such a dependence may arise even in an
effective-mass approximation, simply from a space-
dependent effective mass. '

We have in this section demonstrated that the tunnel-
ing Hamiltonian formalism is applicable to resonant tun-
neling. The strength of the many-body tunneling Hamil-
tonian formalism is that it is suitable for including in-
teractions. We shall now proceed to investigate how
electron-boson interactions affect the tunneling current.

III. RESONANT TUNNELING IN THE PRESENCE
OF A BOSON FIELD

In the previous section the tunneling current was ex-
pressed in terms of the electron spectral functions
A (k, e) on each side of the tunnel barrier. This is useful
as it allows us to describe interacting electrons as long as
the interactions do not couple electron states on different
sides of the barrier. We shall now discuss resonant tun-
neling in the presence of a boson field, i.e., inelastic tun-
neling, using the formalism introduced above.

Consider first the customary model Hamiltonian for
electron-boson interactions,

H, ph= QMqp„(a +a )+ Qirico a a

of the electron energies depends on the electron disper-
sion and is largest for a localized electron (i.e., no disper-
sion, infinite effective mass). Hence we keep the
electron-boson interaction in the quantum well only.

For a three-dimensional heterostructure the approxi-
rnations outlined above do not lead to an exactly solvable
model for a general case. The difhculty comes from the
momentum transfer between bosons and electrons in the
direction parallel to the heterostructure. Of course, the
problem may be treated by approximate methods. Rath-
er than doing so here, we shall discuss several cases
where additional restrictions on the model are justified
and enable us to find an exact solution. The first case is a
(quasi-) one-dimensional semiconductor heterostructure.
Here, -the resonant level is localized in all three dirnen-
sions, and momentum is not a good quantum number.
With one resonant level only, the electron density opera-
tor should be written as

pz= f dr ~%';(r)~ exp(iq. r)c, c, =f;(q)etc; . (20)

Po= g cKcK
K

(21)

In order to be able to discuss the general aspects of the
different models alluded to above, we introduce a Hamil-
tonian for the quantum well, including the electron-boson
interaction, of the form

The form factor f;(q) in Eq. (20) carries the informa-
tion that only bosons with wavelengths longer than the
spatial extent of the resonant eigenstate, 4';, couple to the
resonant level.

Another situation that can be described by an exactly
solvable model in three dimensions concerns coupling to
photons. Here, the momentum of the photons can be
neglected, and only the zero-momentum component of
the electron density operator enters and the density
operator is diagonal in the parallel rnomenta, K. In the
long-wavelength limit, furthermore, the form factor cor-
responding to f;(q) in Eq. (20) is unity and one has

Pq
—~ Ck+qCk

k
(19)

H = g E(k)+ gM (a +a ) czcK+ gficoa a
K

(22)
where p, here expressed in plane-wave representation, is
the electron density operator. The interaction matrix ele-
ment M will depend on the type of interaction we may
want to consider, and will be discussed below.

To fully incorporate the interaction described by Eq.
(19) would be intractable. As a first approximation we
therefore neglect coupling of electrons in different regions
(emitter, well, collector) by the bosons. As a second ap-
proximation we neglect the electron-boson interactions in
the emitter and collector altogether. Hence in regions 1

and 5 or Fig. 1 we keep the free-electron form of the
spectral functions A (k, E) as given in Eq. (8). Including
the effect here would broaden the states in the emitter
and collector by a small amount. This is not very impor-
tant. The effect is larger on the (partly} localized states in
the quantum well. We recall" that the renormalization

Here the electron energy is E(k)=E„+E~~~(K) and the
phonon energy A~ has no dispersion. The form of the
matrix element, M, will depend on the particular physi-
cal system and for the quasi-one-dimensional problem the
summation over K drops out.

We shall now proceed to solve the resonant-tunneling
problem with electron-boson coupling given by the Ham-
iltonian, Eq. (22), exactly. The Hamiltonian can be exact-
ly diagonalized (see Ref. 11 for details). A canonical
transformation,

M
H=e'He ', s = g (a —a~) gcKcK

gives
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MH= ymo,'o, + yc'„c„[E(k)—&], &= g
q K q

(& ) =1, (s') =E(k, ),
((E ) —(e) )' =A'co[g(2%+ I)]'

(30)

(24)

The spectral function A i(k3, s) for electrons in the
quantum well changes from the simple delta-function
form A i(k&, s) of Eq. (8) to a more complicated expres-
sion" involving a distribution of free-electron spectral
functions,

A3(ki, E)= g S„Ai(k3,e+b, —negrito), (25)

where the peak labeled by n has a strength S„given by

g( 2N—+ I )I ( 2g [~ (~ + 1 ) ]
1 /2 )e n PA' co/2 (26)

In Eq. (26) I„ is a modified Bessel function, g is a dimen-
sionless coupling strength, and N is the Bose factor,

M

( fg~)2 Aco

1

exp(Pkco)+ 1
'

(27)

Before we return to discussing the particular physical
systems brieQy introduced earlier we shall comment on
some general features of the spectral function, Eq. (25),
which in the expression for the tunneling current will
play the role of an eft'ective transmission probability. As
usual the spectral function A (k, e) is interpreted as the
probability for an electron wave vector k to have energy
e. Here the spectral function describes coupled electron-
phonon states where the index n corresponds to the num-
ber of bosons involved, negative (positive) n correspond-
ing to absorption (emission) of bosons. In order to
characterize the gross features of the spectral function we
calculate its moments,

(e )= I c, A (k, s). (28)

By manipulating the modified Bessel functions as given
17

(z/2) +"
I„(z)=

0 k!I (n p++1)
where

for n =0, 1,2, 3, . . .
1 1

(29)

and

1 =0 for n = —1, —2, —3, . . . ,r(n +1)
we have calculated the three lowest moments. As ap-
propriate for a probability function the zeroth moment is
unity. The first moment, i.e., the average electron energy
is found to be unaffected by the interactions, while the
second moment of the spectral function, and hence the
rms value of its width, depends on the strength of the in-
teraction, g, as well as the temperature through the Bose
factor N. We find

There are three independent parameters in the model:
temperature, boson frequency, and electron-boson cou-
pling strength. The results for the three moments in Eq.
(30) are independent of the parameter values, but the de-
tailed shape of the spectral function is of course not. In
particular the spacing, strength, and envelope of the
peaks will vary. We shall now comment on how the spec-
tral function, Eq. (26), depends on each of the parame-
ters.

Temperature. Temperature has two effects on the spec-
tral function. One is through the Bose factor N, which
multiplies the dimensionless coupling constant g. A
larger temperature corresponds to a stronger effective
coupling constant. The other effect comes through the
factor exp(nPfico/2)=[(%+1)/N]" of Eq. (26). As the
modified Bessel function I„(z) is even in the index n, only
this exponential factor provides an asymmetry with
respect to positive and negative values of n. This asym-
metry is expected as we are talking about absorption and
emission of bosons. Also as expected the asymmetry van-
ishes in the limit of infinite temperature (P=O). For zero
temperature, on the other hand, all occupation factors
are zero, N =0, only positive values of n contribute, and
Eq. (26) for the peak strengths reduces to
S„=exp( g)g "—/n!.

Boson frequency. The boson frequency enters explicitly
in the spectral function. It also appears in the dimension-
less coupling constant g and the energy shift A. In the
high-frequency limit, g and 5 both tend to zero. Hence
the limiting value for the spectral function, which is the
free-electron result, A3(k3, s), is given by the n =0 term
of Eq. (25). This is the familiar behavior of a harmonic
oscillator driven at a frequency much higher than its res-
onance frequency; the oscillator cannot respond at all. In
the opposite limit of vanishingly small frequency, the
coupling constant g and the energy shift 6 both diverge.
This implies contributions for large values of n. On the
other hand, the energy positions of different terms in the
sum over n are closely spaced. One can show" that the
limiting form of the spectral function is a Gaussian,
whose width is given by the rms value of Eq. (30).

For very low frequencies we have to reexamine the va-
lidity our analysis. In this case we would expect the
correct result to be more like the free-electron value of
the spectral function evaluated at an instantaneous value
for a time-dependent electronic energy. ' ' Instead, our
formalism contains, as it were, a thermal averaging over
all positions of this energy. This can be the correct result
only for frequencies larger than the inverse resonant-
tunneling time, so that the resonantly tunneling electron
sees many periods of the boson field.

Electron-boson coupling strength. The strength of the
interaction enters the coupling constant g and the energy
shift h. For zero coupling strength we recover the free-
electron result while for very strong coupling we again
get a Gaussian distribution of peaks. In contrast to the
zero-frequency limit discussed earlier, the distribution is
not continuous in energy as the boson frequency may
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have any value.
Further comments on how the results of the model de-

pend on the parameter values will be given below, where
we apply our model to three specific physical systems.

IU. APPLICATIQNS TC) SPECIFIC PHYSICAL SYSTEMS

We shall in this section apply the above analysis to
specific physical systems. We first consider resonant tun-
neling in a quasi-one-dimensional GaAs-Al„Ga& „As
heterostructure, still referring to Fig. 1. Recently Reed et
ah. have observed resonances in the tunnel current
through such a structure and attributed it to a discrete
spectrum of resonant levels in the quantum well. We
may apply our model to investigate the efFect of coupling
of one resonant level with LO phonons. Within a disper-
sionless Einstein model the following expression for the
matrix element" applies:

0.8-
g=0.16

0.6
T=77 K

phonon (n =0) contribution. At 300 K we see the one-
phonon loss and gain contributions (n =1 and —1). The
value g =0.16 was chosen rather than 0.08 to better illus-
trate the weak one-phonon peaks. For the larger cou-
pling strength a number of peaks appear even at 77 K.

As a second application we consider resonant tunnel-
ing in a three-dimensional GaAs-Al„Gai As hetero-
structure in the presence of a laser beam. In Sollner's ex-
periment the laser frequency U was 2.5 THz, while the
intensity I of the beam was not specified. Already a low

M 1M =- —, M =2me A'co
q ~ 2 I0

q Qo Eo
(31)

0.4-

The structures used in the experiment were about 1 pm
long and 1000—2500 A in diameter. From the point of
view of the phonons they can be considered three dimen-
sional. We assume that the phonon wave vectors are uni-
formly distributed in a sphere of radius qD =(6m )'~ /a,
where a is the lattice spacing. The dimensionless cou-
pling constant g and the energy shift 6 can be calculated
from a modified version of Eq. (27) where we have to in-
clude the form factor f, (q) of Eq. (20). The form factor
is approximated to give a cutoA' at wave vectors corre-
spond to the width of the quantum well, d, and to the
width of conducting channel, I.„respectively:

f (q) =8(m /L, —Iq„ I )e(~/L,
I q, I

)e(~/—d —Iq, I ) .

0,2-

0 0 ~ ~ %ra I ~ E~

0.8-

0,4-

~ 8 I

g=0.16

T=300 K

Without the form factor and using parameters for GaAs
(Ref. 20) a value of g = l. 3 obtains. With the form factor
and the values d =50 A, I,= 130 A suggested by the ex-
periment one finds a smaller value, g =0.08. As de-
scribed above this comes about because phonons whose
wave length is shorter than the spatial extent of the reso-
nant state do not contribute to the coupling. Apparently
the physical situation at hand corresponds to the weak-
coupling limit of the electron-boson interaction. In Fig. 2
we plot the quantum-well spectral function A3(k3 e).
We emphasize again that this spectral functions plays the
role of an effective transmission probability. Results for
g =0.16 at T=—77 and 300 K as well as for g =1.3 at 77
K are plotted. For the GaAs LO phonon energy of 36
meV, the Einstein temperature is 419 K. Hence tempera-
tures of 77 and 0 K give essentially the same result. For
the lower coupling strength we are clearly in the weak-
coupling regime. From Eq. (26) one readily finds that the
limiting behaviors of the relative strengths of successive
peaks, S„and S„+„are related as S„+I /S„
=g(N+1)/(n +1)((1 for positive n. The relation be-
tween the emission and absorption peaks of the same or-
der is in the same limit given by 5 „/S„=[N/(N +1)]".
The spectral function is hence dominated by the no-

0,2-

0.4-
g=1.3

T=77 K

0.2-

0 0 ~ ~ ~ I ~ a

-200 -100
Fl s ~ ~

100 200

e - &c& (meY)

FIG. 2. Electron spectral function 3 (c)/2m for the coupled
electron-phonon system in the quantum well of a quasi-one-
dirnensional GaAs-Al„Ga& „As heterostructure as a function of
energy c. The height of the spikes gives the weight of the shift-
ed free-electron values A (m+6 —nkvd) for different n, cf. Eq.
(25). Results are shown for several values of the dimensionless
coupling strength g and temperature T. The LO-phonon energy
is taken to be 36 meV, corresponding to GaAs. For other pa-
rameters, see text.
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1 eI=—
2 p

(33)

The energy content per unit volume, Q, of the beam is
I/c, where c is the velocity of light. This can be related
to the photon energy and the number of photons N as

(N+ —') .
c Q

(34)

Solving for N we find that for I = 10 W/m, v=2. 5 THz,
p = 1, and e = 10.9 (for GaAs) there are 2 X 10 photons in
a volume of (100 A) X(1 mm ). In other words, the elec-
tric field can be treated classically. In the Hamiltonian
this corresponds to letting

intensity means, however, that the electromagnetic field
can be treated classically. To see this we recall the rela-
tion between intensity and field strength 6, which in SI
units is

1/2

is to the case of an ac modulated voltage across a tunnel-
ing structure. Much of the previous discussion concern-
ing the laser beam still holds, but the numbers will
change. The amplitude of the voltage fluctuations, 8' in
a RT device used as a microwave generator is of the or-
der of 50 meV. For this amplitude the effective coupling
strength g scales with frequency as g=74 (1 THz/U) .
The photon energy scales as hu =4. 1 [U/(I THz)] meV.
For microwave frequencies we are clearly in the strong-
coupling limit. As we remarked above, our analysis is
really only valid for frequencies larger than the inverse
tunneling time. Of course the tunneling time, and hence
the lower frequency limit, is strongly dependent on the
particular system we are considering. The tunneling time
is strongly dependent on material and design of a hetero-
structure, but a typical value for a GaAs-Al Ga& „As
heterostructure is a picosecond. Hence we should only
consider frequencies larger than 1 THz or so. In Fig. 4

(a +a )~2&N cos(cot), Mz ~ end
2&N '

N~ oo (T~ oo, P—+0) .
(35) 1.0

The Hamiltonian will now contain a term 8'cos(cot),
where 8' = end is the amplitude of the potential energy
modulation in the quantum well. Similar model systems
have been studied earlier by numerical solution of a
Schrodinger equation' and in the framework of classicial
perturbation theory. ' In our formalism we can simply
read off the answer from the general result, Eq. (25). Us-
ing Eqs. (27) and (37) to make conversion

g(2N+ 1 )=2g&N(N+1)=2gN~ —=g,1 8'
2 hU

0.8 -.

0.6 "

0 4

0.2-

00) w ~ ~ I ~ a

b, =ghU~0 . (36)

We find that the spectral function is a set of delta func-
tions symmetric around the unperturbed electron energy.
For d =100 A, U =2.5 THz, and the electric field calcu-
lated from the beam intensity as above, the effective di-
mensionless coupling strength, g scales with the laser in-
tensity as g =0.3(I/Io), where IO= 10' W/m . We note
that the chosen frequency corresponds to a photon ener-
gy of 10 meV. Many laser experiments are done with in-
tensities of the order 10 —10 W/m . For such intensities
one is again clearly in the weak-coupling limit. We could
easily imagine considerably more powerful laser beams,
however. In Fig. 3 we plot the quantum-well spectral
function for three values of the intensity, I =1I0, SIo,
and 15IO. Our results are consistent with the numerical
results of Ref. 19 for a double-barrier transmission
coefBcient in g related model. On the other hand the
shape of the envelope of the peaks differs from what was
found in R.ef. 18, where essentially the same model as in
Ref. 19 is studied. There the strength of the peaks de-
pended on the ordinary Bessel function J„(z),which is an
oscillating function of the index n, while or strengths de-
pend on the modified Bessel function J„(z), which is a
monotonic function of n.

A third and final application of our general discussion

0.4-

0.2-

0.0'

0.4- &5 I,

0.2-

0.0'
-50 -25 25 50

e —~) (meV)

FICz. 3. Eiectron spectral function A (c, )/2m for the coupled
electron-photon system in the quantum well of a three-
dimensional GaAs-Al Ga& As heterostructure as a function of
energy c. Results are shown for different intensities of a laser
beam that interacts with system. The intensity is given in units
of Io =10' W/cm . The frequency of the laser beam is 2.5 THz.
For other parameters see text.
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we plot the quantum-well spectral function for U = 1,2. 5,
and S THz. The width of the Gaussian is from Eqs. (30)
and (36) always 8'/+2. What varies is the density and
strength of the peaks. Finally, we add that in p model
that includes, say, an additional elastic scattering mecha-
nism, the free-e1ectron delta-function form of the spectral
function, A 3 (k3, e ), in Eq. (2S) is anticipated to acquire a
finite width.

V. CONCLUSIONS

We have in the preceding section exactly solved an ap-
proximate model for inelastic resonant tunneling. The

e —cc& (me V)

FIG. 4. Electron spectral function A (c, )/2m for the coupled
electron-photon system in the quantum well of a three-
dimensional GaAs-Al Ga& As heterostructure as a function of
energy c. Results are shown for different frequencies of a modu-
lating ac voltage over the quantum well. The amplitude of the
modulation is 50 meV. For other parameters, see text.

model is applicable when there is no momentum transfer
between the tunneling electron and the boson field. The
key quantity that plays the role of an effective transmis-
sion probability and hence controls the tunneling current
is the spectral function for electrons in the resonant level.
The initially sharp level'broadens into a set of distinct
peaks in the presence of a boson field. As the strength of
the electron-boson coupling increases the envelope of the
peaks tend to a Gaussian, while the separation between
peaks increases with the boson frequency. Several physi-
cal situations, where the model might be applicable, have
been discussed. Our intention has not been to furnish a
detailed solution in any of these cases, but rather to point
to some general features of the solution. Certainly,
corrections due to the existence of several resonant levels
and to a self-consistent treatment of the charge distribu-
tion may be important. Nevertheless it is interesting to
consider the consequences of our model for the current
voltage characteristics of a RT structure, such as that of
Fig. 1. The analysis of Eq. (16) which gives the tunnel
current, is greatly simplified by the observation that for
parameters corresponding to a typical experiment all fac-
tors of the integrand except the transmission probability
T&5 vary slowly around the resonance energy. They vary
on the scale of the chemical potential in the emitter. The
e8'ective transmission probability will in our theory be
proportional to the spectral function A3(k3, c, ). Without
electron-phonon interaction this is a delta function, and
the fu11 weight of the spectral function contributes to the
current if the delta function falls with the emitter band.
It is well known this leads to an essentially linearly in-
creasing tunnel current for applied potentials in the inter-
val 2(E„EF)(eV &—2F.„. For larger applied voltages
the resonant level drops below the bottom of the emitter
band and the current is drastically reduced. This is the
region of negative difFerential resistance, which is of great
interest for device applications. The effect of the
electron-boson interaction is to broaden the spectral
function. This broadening was described phenomenologi-
cally in Ref. 6 by a Lorentzian with a width related to the
inelastic mean free path. In this paper we have calculat-
ed the broadening microscopically. The picture in Ref. 6
that the tunnel current is affected only when the width of
the transmission probability or spectral function is of the
order the Fermi energy in the emitter is confirmed. The
energy scale of the broadening of the spectral function in
our theory is set by the boson energy, the temperature,
and a dimensionless coupling constant. We feel that the
theory provides a framework for more detailed calcula-
tions relating to the performance of various resonant-
tunneling structures. These we hope to do in the future.
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