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Dynamical correlations from mobile vortices in two-dimensional easy-plane ferromagnets
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Assuming an ideal gas of unbound vortices above the Kosterlitz-Thouless transition temperature,
we calculate the dynamic form factors for both the in-plane and out-of-plane correlations. In both
cases central peaks are predicted which are, however, produced by quite different mechanisms, de-
pending on whether the correlations are globally or locally sensitive to the presence of the vortices.
For the in-plane correlations the wave-vector dependencies of the width and intensity of the peaks
are very well supported by the central peaks, which are observed in a combined Monte Carlo
molecular-dynamics simulation of the XY model. Therefore the parameters of the theory (root-
mean-square vortex velocity and mean vortex-vortex separation) can be fitted and turn out to agree
rather well with independent theoretical estimates. Recent inelastic neutron-scattering experiments
on the in-plane correlations for BaCo2(As04)2 and Rb&CrC14 also show central peaks. Their temper-
ature and wave-vector dependencies are consistent with our results, but their widths are larger than
the theoretical estimates. Therefore, these peaks are interpreted to result, at least partially, from a
gas of vortices. For the out-of-plane correlations our simulations also show a central peak. Howev-
er so far it cannot be identified unequivocally as a vortex contribution.

I. INTRODUCTION

The increasing emergence of examples of well-
characterized quasi-two-dimensional (2D) magnetic ma-
terials has been prompted by technical advances in
artificially structured, layered, and surface-layer materi-
als. More recently there has also been renewed attention
to accurate inelastic neutron-scattering measurements at
low frequencies and long wavelengths in quasi-2D mag-
nets. It is therefore an appropriate time for detailed stud-
ies of 2D spin dynamics. One particularly interesting case
concerns materials with easy-plane symmetry, where we
can probe dynamics associated with strongly nonlinear
collective structures such as vortices and domains. For
example, in pure easy-plane symmetry we expect that a
Kosterlitz-Thouless' (KT) type of topological phase tran-
sition will occur, with vortex-antivortex pairs beginning
to unbind above a critical temperature T, . In this regime
it is then natural to ask whether there are dynamical sig-
natures of the low density of unbound vortices. This is
the principal concern of the present work.

Candidate materials are increasing rapidly and include
K2CuF4, RbzCrC14, BaM2(XO~)2 (M =Co,Ni, . . . ;
X =As, P, . . . ) and other layered magnets; magneti-
cally intercalated graphites, e.g. , CoC12 graphite inter-
calation compound (GIC) prepared with various stag-
ings; and magnetic surface layers (e.g. , magnetic lipids or
magnetic epitaxial layers). Treated within localized
(Heisenberg) spin models (below), the ratio of inter- to in-
traplane magnetic coupling constant is typically
10 —10 . Furthermore, a great variety of magnetic in-
teractions can be tuned by varying the material —from
ferromagnetic, to antiferromagnetic [e.g., BaNi2(PO4)2],

to competing nearest and next-nearest neighbors [e.g. ,

BaCo2(AsO&)2]. These can have various degrees of
(crystal-field) symmetry breaking in the easy plane, lead-
ing to domain patterns which compete with the charac-
teristic vortex structures of the easy-plane symmetry.

Clearly this field is very rich in terms of materials and
raises some fundamental questions with regard to non-
linear spin dynamics —in much the same way that quasi-
1D magnets have challenged theoretical frameworks in
the last decade. ' Although dynamics associated with
KT theory has been studied successfully in the topologi-
cally equivalent problems of 2D superfIuids, ' supercon-
ducting granular films, " and 2D Josephson junction ar-
rays, ' comparable studies have not been made for 2D
magnets, except for some renormalized spin-wave ap-
proaches' ' and partial vortex-spin-wave "phenomeno-
logies" (below).

Since the scenario of vortex-antivortex pair unbinding
introduced by KT has been so successful for thermo-
dynamic properties, it is important to test its predictive
power for dynamics. Therefore we will focus here on the
phenomenology of an ideal, dilute gas of free vortices
above T, moving in the presence of renormalized spin
waves and screened by the remaining vortex-antivortex
bound pairs. Such an approach, explicitly incorporating
the nonlinear coherent excitations, is similar in spirit to
"soliton-gas" approaches for 1D magnets and has al-
ready been advocated by Huber. ' However, he calculat-
ed only vortex autocorrelation functions, leading to dy-
namic form factors without any wave-vector dependence.
Here we will calculate full form factors S (q, co), and com-
pare them with recent simulations' [Monte Carlo
molecular-dynamics (MC MD)] as well as inelastic
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neutron-scattering data' '' ' —both simulations and ex-
periments have found anomalous "central peak" struc-
tures (i.e. , scattering intensity near ~=O) for T) I;., and
indeed scattering from a vortex gas will be identified here
as one mechanism for such a central peak.

In this paper we consider only the simplest situation of
pure easy-plane spin symmetry. (Results for more gen-
eral cases will be presented elsewhere. ) However, dynam-
ics necessarily involves some out-of-plane spin motion.
Therefore, we treat explicitly the anisotropic Heisenberg
model with classical Hamiltonian

(m, it)

( SmS n +S rnS n +gS mS n
) (F 1)

S„(r)-r ' 'exp[ —r/P T)], T ) T, (1.2)

where (m, n) label near-neighbor sites on a 2D square lat-
tice, J is a ferromagnetic coupling constant, and the clas-
sical spin vector is S =(S„,S„',S,"'). The XY and isotro-
pic Heisenberg limits correspond to A=O and 1, respec-
tively. Note that X=-0 does not correspond to the "pla-
nar" limit' where spins are strictly confined to the LY
plane. However, critical properties for the in-plane spin
components (S,. or S, ) are still those of KT theory —e.g. ,
with static spin-spin correlations changing from exponen-
tial to power law as T is decreased below T, . By contrast
the static correlations for the out of plane c-om-ponent

(S, ) are exponential both above and below T, (possibly
with higher-order signatures at T, and the specific-heat
maximum at T, ) T, ). ' The variation of T, with k is ex-
perimentally important. Both vortex theory and MC
results ' show that T, is only weakly dependent on k ex-
cept for A, very close to 1, when T, ~O. Thus even ma-
terials with very weak easy-plane anisotropy (e.g. ,
X=0.99 in K,CuF4) have a substantial KT transition
temperature and 2D fluctuation regime —the true order-
ing, sufTiciently close to the actual transition, is of course
3D in real materials. For the materials mentioned above,
coupling constants have been estimated from fits to, e.g. ,
linear spin-wave theory, and k values are in the range
0.4 —0.99, where T, is still close to T, (X=O). .

We v ill need to make use later of thermodynamic re-
sults of KT theory. Assuming we can adopt planar limit
results as a guide, the relevant information for our pur-

22 —25poses primarily concerns the static correlations

compare it with fits of g to our numerical data (below).
Ultimately a direct estimate of n„ from numerical sirnula-
tions (following individual vortex dynamics) may itself be
possible, cf. Ref. 26.

As in 1D easy-plane magnets, careful distinction must
be made between in plan-e and out of p-lane dynamic
correlations. In addition to the remarks concerning criti-
cal properties above, we will find in Sec. II that a central
peak for S „(q,cv) is predicted to arise above T, from a
vortex gas. The correlations reveal the mean vortex-
vortex separation 2g and the rms vortex velocity u. These
phenomenological parameters are determined by fitting
the width and intensity of the predicted central peak to
the corresponding quantities from our MC MD simula-
tions. The results are compared with theoretical esti-
mates: g from (1.3) and u from the velocity autocorrela-
tion function of Huber. ' (In our publication of prelim-
inary results we did not fit the parameters but rather used
the theoretical estimates. )

Besides the central peaks, our MC MD results also
show spin-wave contributions. Above T, these are
strongly softened for S (consistent with the "universal
jump" prediction ), but not for S„. Moreover, there
seem to be multimagnon contributions, especially for S„.

In Sec. III our results are compared with recent inelas-
tic neutron-scattering experiments. So far central peaks
in S„(q,ro) have been reported for Rb&CrC14 (Ref. 17)
and BaCoz(AsO~)z (Refs. 18 and 5). We discuss in detail
the co, q, and temperature dependencies of the peaks.

In Sec. IV, S„(q,~) is calculated assuming that the
out-of-plane structure of moving vortices can be approxi-
mated by the static structure. The width of the predicted
central peak is consistent with our MC MD results, but
not the intensity. We conclude that the velocity depen-
dence of the out-of-plane structure must be incorporated.

Section V contains a summary and a discussion of the
limitations of the present theory, and of possible
modifications which take into account the great variety
of diff'erent interactions and symmetries of the real ma-
terials.

II. IN-PLANE CORRELATIONS

We use a continuum description and spherical coordi-
nates for a general time-dependent spin configuration:

where g is the correlation length and

j(T)=gaexp(br ' ), r—:(T —T, )/T, . .(1.3)
S„(r,t) =S cosP(r, t)sinO(r, t),
S, (r, t) =S cosO(r, t)

(2.1)

$0 is on the order of the lattice constant, and b has been
found to be quite temperature dependent even for small
7. The correlation length can be further interpreted' as
half of the mean separation between free vortices:

with r = (x,y ). Consider a single vortex at the origin:

P(r) =+tan '(y/x) . (2.2)

n„(r) =(2g) (1.4)

with n, , the free vortex density. Of course, these should
only be viewed as order-of-magnitude relations, since the
vortex creation energy itself decreases as k increases
and full thermodynamics of the anisotropic Heisenberg
model (1.1) are not available. Although such eff'ects can
be partially included, we prefer to leave form (1.3) and

—[1+exp( —r/r, )], r ))r„
g, (r)=

)
2

0 or ~i, r~O

(2.3a)

(2.3b)

The form of 0(r) will be discussed in Sec. IV. The vortex
solutions have the asymptotic properties
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with vortex-core "radius" r, . S, is localized and correla-
tions are sensitive to the vortex size and shape (Sec. IV).
By contrast, S (and S ) are not localized, i.e., they have
no spatial Fourier transform. Therefore the in-plane
correlation function

S (r, t)=(S (r, t)S, (0,0))

eralization to higher dimensions will then be straightfor-
ward.

For simplicity all kinks are first taken to have the same
velocity u. Considering the case x ~ut)0, we choose
the velocity-independent contour (0,0) (x,0)~(x, t),
which is outside of the "light" cone x =+ut. The contri-
bution from the first part of this contour is

is only globally sensitive to the presence of vortices,
which act to break long-range order in cosP. Thus the
characteristic length is the mean vortex-vortex separation
2$.

Consider first the field cosP(r, t) in S„=ScosgsinO.
As seen in Fig. 1 for a particular case, every vortex that
passes with its center between 0 and r in time t diminishes
the correlations, changing cosP by a factor of —1, in-
dependent of the direction of movement. In this sense
vortices act like "2D signum functions. " Inclusion of the
field sin8(r, t) in S, with 8 given by (2.3), shows that the
change of sign does not occur abruptly, but over the dis-
tance 2r, . This means that vortices behave electively as
2D kinks with half-width r, . Considering length scales
))r, the dominant eA'ect of the moving vortices is the
above-mentioned changes of sign. Thus an ideal vortex
gas gives

(2.4)

Here lV (r, t) is the number of vortices which pass an arbi-
trary, nonintersecting contour connecting (0,0) and (r, t);
the average over cos P is —,', assuming a random spin
configuration outside of the vortex cores.

Expressions like (2.4) were evaluated by several authors
for the case of kinks in 1D models (e.g. , P or sine-
Gordon); see Ref. 8 and references cited therein. A very
detailed investigation was made by Dorogovtsev, who
also calculated such correlations numerically in two di-
mensions. We have adopted his general procedure and,
by implementing several modifications, we identify cer-
tain cancellations which allow us to calculate (2.4) analyt
ically. We will demonstrate this for the 1D case; the gen-

(b)

n/ n

(2.5)

(( —1) '"'")=exp x —uti

2g
~x+ut

2g
(2.6a)

The 2D calculation, where the vortices play the role of
the kinks, proceeds in a similar way (Appendix B). In-
cluding an average over all velocities u = ~u~, we have

Because we assumed a dilute ideal gas, we have a Poisson
n&distribution, p(n, ) =n, ' /n, . exp( n, ), wh—ere n, and n„

are the numbers of kinks in [O,x] running to left and to
right, respectively; nI and n„are the average numbers.
Kinks pass this part of the contour at the same time
(t =0) but at diFerent positions, implying that these
events are not correlated. Thus n& and n„are indepen-
dent, and the two sums in (2.5) can be calculated sepa-
rately, giving exp( —2n& —2n„)= exp( —x /g), for (2.5).
For the second part of the contour, ( xO)~( xt), we ob-
tain formally the same expression as (2.5), but with n& the
number of left-running kinks in [x,x +ut], and n„ the
number of right-running kinks in [x —ut, x]. Kinks pass
the same point at diferent times. Events are correlated as
long as t & x /u, which is just the case we are considering.
Thus nI and n„are not independent. Assuming nI=n„,
then n&+n„ is even, imp1ying that there is no contribu-
tion from the second part of the contour.

Now consider the second case, ut ~x )0. We choose
the contour (0,0)~(O, t) (x, t), inside the light cone.
The same type of argument shows that the vertical com-
ponent (0,0)~(O, t) gives a contribution, whereas the
horizontal part (0, r) ~(x, r) does not —precisely opposite
to the first case. The result for (2.5) is exp( —ut/g), in
contrast to exp( —x/g) in the first case. Both cases can
be combined into the final result,

(s„(l,t), s„(r-,t)) cos &~~ (r, t)
( ( I

)fair,

(I )

Ir —ur[ ir+ut[
0 2- +

2

I I t
] x p X

(2.6b)

FICi. 1. (a) A vortex passes the origin at time t, the arrows in-

dicate the spins S. (b) The field S„=ScosP is changed by a fac-
tor of —1, independent of the direction of the motion.

In order to obtain the velocity distribution we consider
the velocity u of a vortex at R which results from an
equation of motion. ' u is proportional to z X F; here z is
a unit vector perpendicular to the XY plane and F is the
net force due to the interactions with the other vortices at
R . These forces are proportional to R —R,, and decrease
with increasing distance. A perfectly symmetric array of
the R„would yield a zero net force and thus zero veloci-
ty. However, the density of vortices is homogeneous only
on the average, loca11y the distribution is random. There-
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fore, the deviations from the average u =0 follow a
Gaussian normal distribution, i.e. , we can assume a
Maxwellian velocity distribution P(u). For the distribu-
tion P(u) of the moduli we get P(u) —u times a Gaussian
(Appendix B). The integration over u in (2.6b) eventually
leads to

20.OI-—

r &~ uItIS„,(r, t)= —,S exp ——— „erfc
ut

(2.7)

where u is the root-mean-square velocity and erfc is the
complementary error function. Similarly to the 1D
case, there is an excellent analytic approximation for
(2.7), which preserves not only the integrated intensity
(see below) but also the correct asymptotic behavior for r
or t~ ~. Namely,

S (r, t)= —,'S'expI —[(r/g) +(yt) ]' 'I, (2.8)

with y = &~u /(2$). Using approximation (2.8), both the
spatial and temporal Fourier transforms can be per-
formed, yielding (Appendix C)

S 3 2

S(q, )=—
2~ [ co'+ y [1+(gq)'] I

(2.9)

This is a (squared) Lorentzian central peak (CP) with q-
dependent width

I (q)= —,'[~(v'2 —1)]' —[1+(gq) ]'~ (2.10)

and integrated intensity

S2 p2
I„(q)= 4~ [ I+(kq)'1'" (2. 1 1)

[Result (2.11) can be checked by performing the Fourier
transform of (2.7) with t =0.]

Note that I„—g —n„', as expected since the correla-
tions are diminished by the presence of the vortices. (In
contrast to the out-of-plane correlations where I, —n, ,
see Sec. IV).

We now compare the predictions of this phenomeno-
logical theory with the results of our MC MD simulation.
For these simulations we have used Hamiltonian (Lan-
dau) spin dynamics d S„/dt =

I S„,H } with Hamiltonian
(1.1) on an isotropic square lattice with a size up to
100X 100, giving accurate access to wave numbers
~0.02~/a. The MC algorithm' used 10 MC steps per
spin to equilibriate three random initial configurations.
Then MD with fourth-order Runge-Kutta integration
was applied, with time step 0.04, sampling time
t =0.04K, where X is 8, 16, or 32, and total integration
time 512t. This is in units where J =kz =a =S = 1.
Further details are given in Appendix D.

Figure 2 shows S (q, co) from our MC MD simula-
tions for the XY model. The spin waves are strongly
softened for T & T„consistent with the theoretical pre-
dictions of a "universal jump" as well as with experi-
ments. ' ' ' ' ' However, the spin-wave softening de-
pends' on q, i.e., on the length scale over which vortices
are considered to be free (cf. the analogous situation in
2D super(luids'" and 2D Josephson junction arrays' ).

0.0
0.0 1.0 2.0 3.0

FIG. 2. Dynamic structure factor for in-plane correlations
from MC MD, q in units of 2~/L, with lattice size L =100a.
Temperature T =0.5 (

———) and 1.1 ( ), with T, =0.8.
(The data are smoothed according to Appendix D.)

Therefore we observe for small q only a central peak; for
large q broad spin-wave contributions can be dis-
tinguished besides the CP.

The predicted q dependence (2. 10) of the CP width is
very well supported by the MD data (Fig. 3). For
q ))g ', we have I =0.57uq, and a fit of u gives the
numbers in Table I; they can be compared with a formula
of Huber' obtained from the velocity autocorrelation
function using an equation of motion for free vortices:

2
JS2a 2

u
2

n, ln
k~T,

JS2n a 2
(2.12)

The logarithmic term can be approximated using (1.3),
(1.4), and go=a. With T, =0.8 (Ref. 19) we get

u = exp( —b /v )r( /bv'v+0. 58)'~ . (2.13)
2

This formula predicts a strong increase of u for small ~
and a nearly constant behavior above about
r=4b =0.36, with b =0.3 for this r (see Ref. 25). This
increase and the saturation both agree qualitatively with
the simulations, ' but the absolute values for u are about
a factor of 2 smaller than observed (Table I). Note, how-
ever, that b (T) is not well known for the lower tempera-
tures in Table I, and for go only the order of magnitude is
known.

For q «g ', (2.10) reduces to I „=0.57u /g. Using
(1.3) and (2. 13), the constant regime begins here at a
much higher temperature, ~=16b, which is outside of
the regime of our simulations. Since u is already known,
g can now also be fitted; the agreement with the KT for-
mula (1.3) is rather good (Table I).

The correlation length can also be obtained by fitting
(2.11) to the CP intensity. Assuming a squared Lorentzi-
an form, we estimate the intensity by I =~[4(v'2
—1)] I „S„(q,0). This can be compared with the to-
tal intensity I'"=S„'"'(q,t =0) and sho s that I"', for
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I'"(q) —1 ——'„'(gq) for q «g (2.14)

this q dependence is the same as that of the vortex contri-
bution (2.11) (apart from a constant factor). The spin-

q «g ', essentially consists of a central peak with the q
dependence of (2.11). This is consistent with theory: the
Fourier transform of (1.2) gives

wave contributions (Appendix E) have quite a different q
dependence, namely q

' "' [except for q & 0 (L '
),

where L is the lattice size]; the critical exponent g is —,
'

for T ~ T, . The spin waves are important only for larger
q —for q ))g

' they exceed the vortex contributions
which decrease like q

Figure 4 shows that the predicted q dependence (2.11)
of I is indeed observed for small q, which is consistent

I

(b)

1.0— 1.0—

0.5— 0.5—

pili ii

0,1

(X= 0)
T = 0.9
u = 0.84

4.8 a

0.1—

(X= 0)
T = 10
u = 0.91

( = 3.0 a

0 I

0.1
qa/~

I

0.5 0.7 0 I

0.1
qa/~

I

0.5 0.7

(c)

1.0—

0.5—

XY (X= 0)
T = 11

u = 0.91
8=1.9a

'0 I

0.1
qa/~

I

0.5 0.7

FICx. 3. Width I „ofcentral peak in S (q, co) for different temperatures T. Data points and error bars result from estimating I
from plots like Fig. 2. Solid lines are fits to the width (2.10) of the squared Lorentzian (2.9).
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0.9
1.0
1.1

0.9
1.0
1.1

7.= T/T, —1

0.125
0.25
0.375

~= T/T„. —1

0.125
0.25
0.375

u from
(q)

0.84
0.91
0.91

I „(q)

4.8
3.0
1.9

g/a from
I„(q)

4.4
2.4
2. 1

Eq. (2.13)

0.30(b =0.5)
0.47(b =0.4)
0.56(b =0.3)

Eq. (1.3)

4.1(b =0.5)
2.2(b =0.4)
1.6(b =0.3)

TABLE l. Parameters u and g obtained by fitting to the
widths and intensities of the central peaks in our MC MD data
for the XY model (X=O), compared to independent theoretical
predictions in the last column (using T, =0.8, go=a, and es-

timating b from Fig. 9 of Ref. 25).

For q =(q„+q )' « ir and 1 —
A, « 1, we get

ru =(2JS) [(1—A. )q + —,'q ], (3.2)

q «r, '=a '2i/(1 —1, )/X . (3.3)

and we expect a crossover from the linear dispersion of
the LY model to the quadratic dispersion of the isotropic
Heisenberg model at q

*= 2( 1 —k)' . (This definition
diff'ers by a factor of i/2 from that of Ref. 2). We have
made simulations for X=O. 8 which indeed show this
crossover at about q* =0.285~/a —see Fig. 5.

The vortex-core radius r, in (2.3) also depends strongly
on k, see Sec. IV. Because we have been working on a
length scale large compared to r„we expect our phenom-
enological vortex-gas theory to hold only for

III. COMPARISON WITH EXPERIMENTS

So far our theory has been tested by MC MD sirnula-
tions only for the LY limit, X=0. However, central
peaks have been seen in real quasi-2D magnetic materials
with finite k, e.g. , A. =0.4 for BaCo~(AsO~)~ and A. =0.99
for K2CuF4. In this respect, it is important to note again
that the transition temperature T, decreases very little
with increasing k for a wide A, range ' only when A. is
very close to 1 does T, change considerably, and eventu-
ally goes to zero for A ~ 1 —neglecting 3D ordering.
Other properties can depend much more on k. For ex-
ample, the spin-wave frequencies from Hamiltonian (1.1)
are (with a = 1)

cu = (4JS) [1—
—,'(cosq +cosq )]

X 1 ——(cosq +cosq, ) (3.1)

with our theory working on a length scale »r, . The fits
for g turn out to be close to those obtained above (Table
I).

The absolute value of the intensity that we observe in
the MC MD simulations is about a factor of 5 smaller
than expected from (2.11). This might be due to our
neglect of effects from the finite size of the vortices, e.g. ,
the sinO correlations have been omitted in (2.4).

For T»T, we expect a simple diffusive central peak
for the hydrodynamic regime, ' i.e. , for q &n,' =(2g)
Then the density of free vortices is too high for our dilute
gas approach.

Finally, we comment on Huber's results " for the in-
plane correlations. He also finds that the motion of free
vortices diminishes the correlations, but concludes that
there is no qualitative effect on the autocorrelation func-
tions (in contrast to the out-of-plane case). However, our
MC MD data clearly show a distinct central peak. One
reason for this discrepancy may be that Huber assumed
that P( r, t )

—P( r, 0) is small; this fails when a vortex
passes the point r.

Figure 6 shows the width of the central peak for X=0.8
at T =0.9. The predicted q dependency (2.10) is seen in
fact for q «r, '=0.32~/a. For larger q the behavior is
qualitatively similar to that observed in our simulations
for the isotropic Heisenberg model and will have to be ex-
plained by another theory, presumably including instan-
ton excitations.

A fit of I for q «0.32~/a gives u =0.45 and
/=6. 4a. The smaller value for u, compared to the XY
limit, can be understood qualitatively: the interactions
which themselves induce the motion of the free vortices
become smaller with increasing k and eventually go to
zero for A.~1.

Fortunately, the inelastic neutron-scattering experi-
rnents that have revealed central peaks have been made
so far for very small q and intermediate k values. This
means that our theory should hold in these cases.
Presently, the published experimental results are rather
incomplete. In particular, the out-of-plane correlations
have not yet been measured at all.

For BaCo2(AsO~)2 a Lorentzian central peak has been
fitted. ' ' The width is about 0.3 rneV at T=6 K for
q

=0.02ir/a. The theoretical width from (2.10) is
I =0.57u /g, for q «g '. For u we can take Huber's
formula (2.12) directly because the correlation length g
(and thus n, ) is known from quasielastic neutron scatter-
ing. ' In this way we avoid using (1.3), where go and b
are not well known. From Ref. 5 we take T, =5.4+0.2
K, an effective nearest-neighbor coupling constant
J =30+3 K, and /=16 A=3.2a (for T =6 K) and obtain
I „=0.04 meV.

Several important points have been neglected in the
above comparison: the Co ions form a honeycomb lat-
tice, whereas a square lattice was assumed in Huber's for-
mula; the correlation length has been estimated
from g'=(g~~. gi)' with /~~=9 A and pi=30 A (for T=6
K). This strong in-plane anisotropy has not yet been in-
cluded in our theory. Surprisingly, the estimate /=3. 2a
corresponds to b =0.4 (for go=a), which fits well to the
values of b used in Table I for this temperature range.
Last but not least, the spins S =

—,
' for the Co + ions cer-

tainly should be treated quantum mechanically (see
below).
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from, e.g. , isotope or impurity effects.
In Rb2CrC1~ the Cr + (3d) ions have spin S =2 and lie

in planar square arrays. The coupling constant J is 14.4
K = 1.24 meV. T, =45. 5 K has been obtained from mea-
surements of the susceptibility. With inelastic neutron
scattering, a central peak has been measured that was
fitted to a product of two Lorentzians, one for the ~
dependence and one for the q dependence. ' The width
is about 0.05 meV for q =0.014 A at T =51.08 K.
Unfortunately, different values for g have been obtained
by different methods. The above-mentioned fit yields a
constant g= 137 A =27a for temperatures below the 3D
ordering temperature T, =52.2 K. Thus this correla-
tion might be a 3D effect; above 52.2 K, g decreases with
increasing temperature. On the other hand, a fit of the
susceptibility to y —g " with g from (1.3) yields an
anomalously high value b =2.3; this would give $=750a
for T = 51 K. However, this fit was made in the tempera-
ture range 0.7 & r & l. 3, where the KT formula (1.3)
probably no longer applies. Therefore, at the moment we
can identify only an upper bound for I „, considering
$=27a to be a lower bound. We obtain
I (q =0)=0.57u /g &0.007 meV. We still have to con-
sider here the [1+(gq) ]'i factor in (2.10) because of the
large g; this eventually gives I, & 0.02 meV for q =0.014
A

1.0—

0.5

0.1

0
0

I

0.1

Heisenberg

(X = 0.8)
T = 0.9
0 = 0.45

6.4 a

I I

qa/~ 0.6

FIG. 6. Width I, of central peak in S (q, cu) for the aniso-
tropic Heisenberg model (X=O.S). Data points and error bars
result from estimating the width from plots like Fig. 2. Solid
line is a fit for small q to (2.10).

In contrast to BaCo2(As04)z, there are also some re-
ported features about the q dependence of V, which can
be compared with the prediction (2.10). For T & T, , the
width increases approximately linearly with q; because of
the large g probably only the linear part of (2.10) (for
gq)) I) is seen here [cf. Fig. 3(a)]. At T, the width is
finite, increasing quadratically with q for T ) T, . There

g drops, therefore the small-q behavior of (2.10), namely a
constant plus a quadratic term, might be seen. A more
accurate comparison will be possible when data on the q
dependence are available.

IV. OUT-OF-PLANE CORRELATIONS

0.5 qal ~t

FIG. 5. Spin-wave dispersion from MC MD simulation of
the anisotropic Heisenberg model (1.1) for two temperatures
(above and below T,. ). Lattice size L =100a. Solid lines are
guides to the eye.

0(r, t)= g g(r —R,,
—u, ,t) .

v=]
(4.1)

In contrast to S the out-of-plane correlation function
S„(r,t) is locally sensitive to the presence of vortices be-
cause S, is localized for a single vortex (see below).

We assume that an arbitrary configuration of the field
0(r, t) in S, =S cosO can be represented by a sum of spin-
wave and vortex contributions. Above T„ the latter con-
tribution is taken to be produced by a dilute gas of X,, un-

bound vortices with positions R,, and velocities u, ,

N, ,



39 DYNAMICAL CORRELATIONS FROM MOBILE VORTICES IN. . . 599

Considering only incoherent scattering from independent
vortices the same superposition also holds for 5, :

N

S,(r, t) =S g cosO(r —R„—u, ,t) . (4.2)

Thermal averaging is incorporated by averaging with
respect to the vortex positions and velocities. In this way
it is easily seen that (S,(r, t) ) =0, assuming that there is
the same number of the two types of vortices (+) in (2.3).

In the same way, S„(r,t) = (S,(r, t)S, (0,0) ) is calcu-
lated as

S„(r,t)=n, S f f d R d u P(u)

For small q the resulting intensity I, (q) is qualitatively
consistent with our MC MD data for the LY model, but
the absolute intensity differs by 1 order of magnitude.

However, in the meantime it has been noted that the
theory of Hikami and Tsuneto is incomplete because a
certain term is missing in their Hamiltonian; consequent-
ly the same holds for the Euler-Lagrange equation for
8(r).

The correct equation for 9(r) is identical with the static
limit of the Landau-Liftshitz equation ds„ ldt = IS„,H I

in the continuum limit. ' The asymptotic solution is
formally the same as (4.9), but the vortex-core radius now
1s

1/2

X cos9(r —R —ut)cos8(R), (4.3) a
2 1 —A.

(4.12)

where n, is the density of free vortices, and P(u) is the
single vortex velocity distribution.

In our publication of preliminary results we have as-
sumed that the out-of-plane structure of a moving vortex
can be approximated by the static structure. This would
mean that the function 8(r) in the vortex form factor

f (q) =f d r cosg(r)e (4.4)

does not depend on the velocity and is isotropic. In this
case the spatial Fourier transformation of (4.3) yields

'2
S

n„~f(q)~ fd u P(u)e
2&

(4.5)S„(q,t) =

Using again a Maxwellian P(u), the temporal Fourier
transformation gives a dynamic form factor exhibiting a
Gaussian central peak

S'
S„(q,co) = exp4~'" u q

The CP width

I,(q) =uq

CO

(uq)
(4.6)

(4.7)

has a linear q dependence that is very well supported by
our MC MD data. The CP intensity is

I, (q) =(2vr) n, S
~f (q) ~

(4.8)

In order to calculate the form factor (4.4) we have tak-
en 0(r) from the continuum theory of Hikami and
Tsuneto for a static vortex. The asymptotic solution is

0(r) =—[1+exp( —r Ir„)], r ))r,
2

(4.9)

with

r, =r„=a/v 2(1 —
A, ), (4.10)

where X is the anisotropy parameter in the Hamiltonian
(1.1) and a is the lattice parameter. For qr„« 1 the form
factor (4.4) can be approximated analytically (Appendix
A) by

S„(q,t) = S
2' n, d u qu P ue —iqu (4.13)

must be calculated. For S„(q,co) we expect again a
Gaussian central peak. However, the intensity
I,(q)=S„(q, t =0) will be quite different from (4.8) and
(4.11). Moreover it will be necessary to improve the MC
MD data for the intensity. So far our data still scatter
because it is difficult to subtract the softened spin-wave
peak which appears together with the central peak (for
the in-plane correlations this problem occurs only for
large q, see Sec. II).

Finally alternative CP mechanisms must be investigat-
ed which may also produce central components in

S„(q,co): vortex-magnon interactions and multimagnon
difference processes (cf. the 1D case ), as well as diffusive
processes, which certainly become dominant for T))T,
in the hydrodynamic regime' q ~ n„'

V. CONCLUSION

This difference, compared to (4.10), turns out to be de-
cisive because for A. =O we get r, =0 and thus f (q) =—0.
(This result has been checked by a MD simulation start-
ing with a single vortex at rest; in fact, for A, =O, and
also for A, «0.8, no out-of-plane structure is found, in
contrast to 0.8 & k & 1.)

The result f (q)—=0 means that S„(q,co) would also
vanish, which is in clear contradiction to our observation
of a central peak in the MC MD simulations for the XY
model. Therefore, we now conclude that the static ap-
proximation for the out-of-plane structure of moving vor-
tices is not valid for A, «0.8; for 0.8(k& 1 it may be
used as a first approximation.

It will be necessary to solve the equations of motion for
a single vortex, which exceeds the frame of this paper.
Our theory for the in-plane correlations is not affected at
all because we have only used the fact that a moving vor-
tex changes csPo(r, t) by a factor of —1. However, the
out-of-plane correlations are directly influenced by the
velocity dependence of 8(r) and f (q). Instead of (4.5),
now

'2

7T r
f(q)=

[1+(qr, ) ] ~
(4.11) Our vortex-gas phenomenology predicts a Gaussian

central peak for the out-of-plane correlations, and a
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squared Lorentzian central peak for the in-plane ones (in
addition to the spin-wave peaks). The central peaks are
produced by quite different mechanisms, depending on
whether the correlations are locally or globally sensitive
to the presence of vortices.

For the in-plane correlations the q dependencies of the
width and intensity of the central peak are in good agree-
ment with the results from our MC MD simulations.
There are two parameters in the phenomenology that can
be fitted: the correlation length g (half the average dis-
tance between the vortices), and the rms velocity u. We
obtain values for the parameters that agree rather well
with the KT theory'" for g, and Huber's theory' for u,
which uses an equation of motion for the vortices.

For the in-plane form factor, Lorentzian central peaks
have been measured by inelastic neutron scattering for
two materials. From the theory we obtain qualitatively
the same wave-vector and temperature dependencies, but
a smaller width. Of course, extrinsic damping and pin-
ning mechanisms will result in slower vortex time scales
than our estimates.

So far the experimental data have been fitted to an ad
hoc formula, namely to a product of a Lorentzian for the
co dependence and another Lorentzian for the q depen-
dence. A fit to our squared I orentzian with its q depen-
dent width may allow a detailed comparison between
theory and experiment and a measurement of the param-
eters u and g. However, depending on the particular ma-
terial, the present theory has to be modified in order to
take into account diff'erent lattice structures, competing
interactions, and in-plane anisotropies. Similarly to the
1D case, ' we expect that quantum effects will primari-
ly

' lead to renormalizations of the parameters, but fun-
darnental questions of quantum dynamics remain here as
in 1D spin systems. For the out-of-plane correlations the
dynamic form factor has proven difficult to measure.
Our MC MD simulations show a central peak. The
width depends linearly on q, as predicted. However, the
intensity has not yet been calculated because the velocity
dependence of the out-of-plane structure of vortices has
yet to be calculated.

Finally, in order to explain the absolute intensity of the
central peaks, alternative rnechanisrns, e.g. , vortex-
magnon interactions and multirnagnon difference pro-
cesses, must be included, as was necessary for 1D cases. 3g

where Jo is a Bessel function of the first kind. Extending
the asymptotic solution (4.9) to small r,

„,„ 1

cosO(r) —sin —e
2

(A2)

is a good approximation, since (A2} approaches 1 for
v~0, as required by the correct solution (2.3b). More-
over, any error is suppressed by the factor r in the in-
tegrand in (Al).

In order to obtain approximate analytical results, we
expand (A2) to first order in (7r/2)exp( —r/r, , ), which is
small for r »r, This gives eventually (4.11), valid for
qr„, ((1.

APPENDIX B

(( —1)''"'")=g (
—1)"p(n)= e (B1)

Here n is the number of vortices passing between 0 arid r
at time t =0, ~7 =r (/2$) is their average number, and
p(n) is the Poisson distribution. Similarly, in the second
case (ut ) r )0) only the first part of the contour
(0,0)~(0, t) (r, t) contributes and gives

We assume that all vortices have the same velocity
u = u, and average over u later. We want to show that
the arguments used for the calculation of (2.4) in the 1D
case also hold in higher dimensions.

Let an "event" be the passing of a vortex through a
contour connecting (0,0) and (r, t) We c. hoose a contour
consisting only of horizontal or vertical lines in the
space-time diagram. Events at the same point r at
different times (i.e. , on a vertical line) are correlated if
t ~ r/u, i.e., if the vertical line is outside the light cone
r =ut. On the other hand, events at the same time t but
at different points r (horizontal lines) are correlated if
r ~ ut (i.e., if events occur inside the light cone). Corre-
lated events lead to a cancellation of factors (

—1) in (2.4).
The cancellation is complete for an even number of
events, which is the case if we assume an isotropic veloci-
ty distribution.

There are now two cases. For r ~ ut & 0, we choose the
contour (0, )0~(r, )0~(r, t) The second . part is a verti-
cal line outside the light cone and therefore does not con-
tribute. For the first part the events are not correlated,
and we can directly calculate
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APPENDIX A

In the form factor (4.4), the angular integration can be
performed to give

f (q) = ~2f dr J„(qr)cosO(r)v, (A1)
0

( ( 1 )iv(r, t) )
~r —ur

2g

r +ut
2g

(B3)

Using a Maxwellian velocity distribution, we get, in the
2D case,

P(u ) =2-, exp[ —
( u /u )'] (B4)

Here m is the number of vortices passing r =0 within the
time t and m the average number.

The cases (Bl) and (B2) can be combined to give
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for the distribution of the moduli. A straightforward in-
tegration finally leads to (2.7).

points on the frequency grid were used. ) The function f
was taken as a discrete approximation to a parabola.

APPENDIX C

Performing the temporal Fourier transform of (2.8)
first gives

S„,(r, co) = K, (ar),
S' r

(C 1)2' y (2(z

with a=(y +co )' /yg and Ki a modified Bessel func-
tion. For the 2D spatial transform we use polar coordi-
nates and find

S„„(q,co) = dr r K~(ar)J~(qr)
S 1 2

(2')' yg'cr

S2
F(2, 1;—1; —q /a ),2~'yg'a' (C3)

where Jo is a Bessel function of the first kind, and F a hy-
pergeometric function which reduces in this case to
(1+q /a ), leading eventually to the result (2.9).

APPENDIX D

The numerical calculations were performed on a
CRAY-1 machine. This enabled the use of a vectorized
MC algorithm, by updating spins on the even and odd
sublat tices separately. Periodic boundary conditions
were applied for both the MC and MD simulations.

The time step used in the Runge-Kutta integration was
0.04 and 512 samples of the spin configuration were saved
at time intervals of 0.04N with N =8, 16, or 32, depend-
ing on the frequency range of interest. The space-time
Fourier-transformed data was then smoothed to reduce
the noise due to statistical fluctuations, by convolution of
a five-point smoothing function f (ai) with S(q, co). (Five

f (co) ~ 1 —(co/to)', to =( —', )bco,

APPENDIX E

The spin-wave contribution to the in-plane static corre-
lation function is —r ", where tl(T) is a critical ex-
ponent. Performing the angular integrations in the
Fourier transformation the intensity of the spin-wave
peak is

I, (q) —f dr r ' "'Jo(qr),
0

(El)

where Jo is a Bessel function of the first kind. In order to
ensure a finite result a cutoff is necessary. We choose to
introduce a factor exp( —er) into the integrand, with
e=O(L '), where L is the (linear) size of the lattice.
Then the integration yields

F(1—rt/2, —
—,'+t)/2; 1;q /(e +q ))

Isw( )
( 2+ 2)1 — q/2

(E2)

where F is a hypergeometric function.
For T & T, this can be compared directly with the total

intensity I„'"=S'"(q,t =0) from our MC simulations.
For q =O(L ') we indeed see a size dependence that is

qualitatively similar to that of (E2). For q ))L ' the
form (E2) reduces to I, —q "I; this q dependence is

reproduced very clearly by our MC data.
The case T) T, is discussed in Sec. II.

where Ace was the ~-grid spacing, 2~/T, with T the total
time of integration. This makes the relative weights of
the five points in the convolution averaging procedure
0.27, 0.82, 1.0, 0.82, and 0.27.
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