PHYSICAL REVIEW B

VOLUME 39, NUMBER 9

15 MARCH 1989-11

LO-phonon confinement and polaron effect in a quantum well

F. Comas
Department of Theoretical Physics, University of Havana, San Lazaro y L, Havana, Cuba

C. Trallero-Giner .
Department of Theoretical Physics, University of Havana, San Lazaro y L, Havana, Cuba
and Max-Planck-Institut fiir Festkorperforschung, Heisenbergstrasse 1, 7000 Stuttgart 80, Federal Republic of Germany

R. Riera
Department of Theoretical Physics, University of Havana, San Lazaro y L, Havana, Cuba
(Received 20 June 1988; revised manuscript received 25 October 1988) -

Polaronic corrections are calculated considering electron coupling with confined LO phonons in a
quantum well (QW). The electron—LO-phonon Hamiltonian for a confined electron-phonon system
in a QW is taken from a previous work. The electron self-energy is calculated by use of the standard
perturbation-theory treatment for the weak-coupling polaron assuming parabolic energy band
structure and T=0 K. Screening effects are included along the lines of the static Thomas-Fermi ap-
proximation. Comparison with different experimental works is made and acceptable agreement is
achieved. We also present comparisons with other theoretical works on the subject.

I. INTRODUCTION

Low-dimensional semiconductor layered structures

[quantum wells (QW), superlattices, etc.] are frequently
fabricated from weakly ionic compounds (the
GaAs/Al,Ga,;_,As case is a typical example) and there-
fore electron interaction with polar-optical vibrations is
in general important for the determination of electron dy-
namics in such structures, where the electron systems
bear a quasi-two-dimensional (Q2D) character. Polaronic
corrections in the weak-coupling approximation have
been studied by different authors for a Q2D electron sys-
tem! ™6 employing the usual Frohlich Hamiltonian for
LO phonons in a bulk semiconductor but considering
Q2D (or 2D) wave functions for the electrons. In the
frame of this kind of approaches the case of the Q2D
electron system in a QW (double heterostructure) was
studied in Ref. 2 and it was proved that electron self-
energy is divergent unless screening is incorporated. If
strictly 2D wave functions are utilized for the electron,
the self-energy is not divergent but rather a large polaron
mass and binding energy are achieved.®> On the other
hand, in general, the Q2D electron system associated
with a single heterostructure has convergent self-energies
(even in the absence of screening) if the standard 3D
Frohlich Hamiltonian is applied.>* In Ref. 3 good agree-
ment with experimental data reported in Ref. 7 is claimed
for the single-heterostructure case from calculations
based on the variational wave functions of Fang and Ho-
ward which included screening. However, in Refs. 7 and
8 relatively insignificant polaronic corrections were re-
ported in contrast with other experimental works, where
larger values for polaron mass and binding energies were
measured.””!! It should be noticed that deviations from
parabolicity in the energy-band structure of these systems
have been invoked in order to explain large electron
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masses measured by cyclotron resonance experiments;
but for not very large applied magnetic fields or not very
high electron concentrations such deviations could be not
so strong.!! Recent experimental evidence in the InSb
case!? indicates that polaronic corrections are not
insignificant. In Ref. 13 new important results concern-
ing polaron effects can be found together with a brief dis-
cussion of the existing ambiguities in their determination
for low-dimensional semiconductor structures.

In all previous works polar-optical phonons have been
treated in the spirit of 3D (bulk) theory regardless of the
layered character of the system; this approach seemed to
be plausible from the almost complete uniformity of elas-
tic and electric properties throughout the QW or the sin-
gle heterostructure (as is often invoked in earlier papers
on the subject). However, we now propose clear evidence
that a rather different model more accurately describes
the situation. It has been clearly established that polar-
optical phonons in layered structures behave as in a
confined system in analogy with the confined electron sys-
tem.!*!> Penetration of polar-optical vibrations from a
given layer into the adjacent ones is negligible (penetrat-
ing less than a monolayer) due to rather different vibra-
tional frequencies in the layers (this situation is quite typ-
ical in the GaAs/Al,Ga;_,As superlattice and can be
extended to other analogous systems). In the QW case
the active layer (for instance the GaAs layer) acts as a
kind of “quantum well” for the polar-optical phonons, a
phenomenon sharply distinguishable from phonon fold-
ing (phonon folding is seen in superlattices for the acous-
tic phonons) and present both in superlattices and QW’s.

From the foregoing discussions it is concluded that
electron—LO-phonon interaction must be reconsidered in
a QW (and in other layered structures) in order to ac-
count for the electron coupling with confined LO pho-
nons. In a recent work Trallero-Giner and Comas have
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derived an electron—LO-phonon interaction Hamiltonian
for the electron coupling with confined LO phonons in a
QW;!617 the deduction was based upon a model of LO vi-
brations entailing complete confinement in the QW active
layer and resembling the well-known Born-Huang ap-
proximation for the bulk semiconductor case. Some ad-
vantages of the model Hamiltonian proposed in Refs. 16
and 17 are (i) it contains the bulk Frohlich Hamiltonian
as a limiting case; (ii) the model for polar-optical vibra-
tions is in close agreement with experimental results
(especially with Raman backscattering investigations as
discussed by Cardona'®); (iii) the preliminary obtained re-
sults for polaronic corrections seems to be in acceptable
agreement with experiments.

In the present paper we aim to proceed with more de-

tailed calculations of polaronic corrections in a QW using
the electron—LO-phonon Hamiltonian reported in Refs.
16 and 17. We should limit ourselves to the weak-
coupling polaron case for T=0 K ignoring all deviations
from parabolicity in the energy-band structure. Howev-
er, screening effects will be introduced along the lines of a
Thomas-Fermi-like approach including a temperature-
dependent screening factor. This latter approximation
should provide temperature-dependent polaronic correc-
tions for low enough temperatures (i.e., k3 T < #ic,, where
g is the LO-phonon limiting frequency). Of course, a
consistent temperature-dependent theory must consider
temperature in all the steps and would be valid for a wid-
er temperature range. In the frame of our present ap-
proach we want to give further contributions to the gen-
eral understanding of the role of polaron corrections in a
QW and to provide a quantitative estimation of LO-
phonon confinement effects upon polaron effective mass
and binding energy.
- This paper is organized in the following way. In Sec.
IT we introduce some relations of general character con-
cerning the confined LO-phonon model we use and
briefly summarize the electron-LO-phonon Hamiltonian;
in Sec. IIl calculations of polaronic corrections are re-
ported; Sec. IV is devoted to a discussion of our results
and comparison is made with other authors and experi-
ment.

II. GENERAL RELATIONS

Let us briefly summarize some details concerning the
electron—-LO-phonon interaction Hamiltonian for the
case of confined LO phonons in a QW.!%!7 In the usual
bulk theory the Frohlich Hamiltonian can be deduced
from!?

e[ —divP(r')]
lr—r’|

_r—r'|

A

Hy(n)= [ exp

}d3r’ , (1)

where P(r) is the polarization-field operator associated
with the LO vibrations and the exponential incorporates
the screening effect along the lines of static Thomas-
Fermi approximation through the screening length A.
The classical expression for P is obtained applying the
hydrodynamic Born-Huang theory where P is propor-
tional to the displacement field u(r) (see Ref. 18). In

Refs. 16 and 17 an analogous approach was developed,
but u(r) was obtained for a QW located between z=0 and
z =d and requiring complete confinement of the LO vi-
brations. We shall not give anymore details here about
the model. For P the following expression is found:

N(g,) ﬁw(z) 1/2 ‘
Pr=3 3 |—F—| Ti(e%b +H.c.),
q, n=—N(q,) 8me VCl)q |q!
(2)
where (€*)7'=(e,) '—(g)" !, €.(ey) is the high-
frequency (static) dielectric constant; V' =Sd is the

volume, S being the typical interface area; q=q, +e,q, is
the phonon wave vector; and wfl =w}—B’q? is the pho-
non dispersion relation, where f3 is a parameter with ve-
locity dimensions. b, is the annihilation operator for a
phonon with the wave vector q. The confined character
of the LO phonons in the QW is described by the follow-
ing features. (i) P(r) is defined just for 0=z <d; (ii) ¢, is
discrete and given by g, =nw/d, where n =+1,1£2, .. .;
(iii) for g, =0 discrete LO-phonon frequencies are given
by o} =wj—(nmB/d)* where w, is the (bulk) LO-phonon
limiting frequency and n =1,2,...; this is in rather
good agreement with Raman backscattering experiments
(see Ref. 14). N(q,) is the higher integer less than
(d/m)[(w0}/B?)—q1]"? (for a fixed value of g,), while
summation over q, covers all vectors q, inside a circle
with radius w,/B. The latter restrictions upon summa-
tions in expression (2) are consistent with the dispersive
phonon model employed in Refs. 16 and 17 but can be
obviously avoided in the nondispersive approximation
formally contained in the limit 8—0. In this case
w,—wy N(g;)— o, and all summations will cover
infinite intervals.
We use the following wave functions for the electrons:

\l’(rl,z)z—Lexp(ikl-rl)p,(z) , (3)
Vs

where, for complete electron confinement we choose

172
sink,z for 0<z=<d

d

0 otherwise ,

4)

where k, =l /d, and the corresponding electron energies

are

T

2md? "’

with 8{8’=ﬁ2kf /2m and m the effective electron mass.
As proved in Refs. 16 and 17 the electron—LO-phonon

Hamiltonian will be given by

Hi= 3 [Cy,Fy\(q,kk)bala,+H.c.], (6)
k,k',q

e =& +Eol?, Eo= (5)

where a{ (ay) are creation (annihilation) operators for
electrons in the states |k;,/) with the notation
k=k,+e,k,.

The parameters in (6) are defined as
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F,(q,k,k")=Ak,—k',—q,)G,(q,k,,k.) , (7)

Gila,k, k)= [ 7 pt(z)p(2)explig,z)®q (2)dz , ()

172
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1 if k=0

A= 10 if k20 .

®,,.(2) is a certain modulating function defined in Ref.

27hw} 1 17. Then, we have
Cqr=—le | — 2 27172 ©)
o,V [g"+(1/A)] Gla kb)) =Ty, +J,(Q) (10)
and where
|
Lpn=2[A(n —1 =)+ An +1 =) —Aln —1 =)= Aln +1+1"], (11
22QdIl'[1+(— D! P [(—D"exp(—Qd)—1] ... 2 5 5
J = , with =qg4+1/A°. (12)
ralQ) [Q%d2+(1 +1'Pa?|[Q3d >+ (1 —1'V*n?] o=al
T
It should be noticed that Jj;.,(Q) is a rapidly decreasing with

function of Q different from zero only when I/ +1'+n is
an even integer. I, invokes a kind of momentum con-
servation in the z direction as far as I, differs from zero
only for g, ==*(k,*k,). Of course, this latter interpreta-
tion is only formal if we realize that momentum is not a
well-defined quantity in the confinement direction.

III. POLARONIC CORRECTIONS

According to standard perturbational treatment the
electron self-energy due to the electron—-LO-phonon in-
teraction in the weak-coupling approximation is given by
Ref. 19:

I ( Ik”Oky lq'HI Iok) lk’0q> l2

(0)__,(0) __
K',q Ek Sk—q ﬁa)

g — e =

, (13)
q

where €’ are unperturbed electron energies and the ma-

trix elements are written explicitly for the 7=0 K case,
when in the initial state we do not have phonons. Really,
we only need the condition N, =[exp(#iw,/kyT)—1]""
<<1, which is usually fulfilled for kzT <#iw, and the
temperature is not strictly required to be equal to zero.
Expression (13) contains all matrix elements between ini-
tial and intermediate states involving electron transitions
induced by electron—-LO-phonon interaction. Hence,
|0y, 1,,04) denotes the initial state with one electron in
the state k, zero electrons in the k' and zero phonons.
The interpretation of intermediate states |1,,04,1y ) is
analogous.

In (13) we use Hamiltonian (6) assuming that electrons
are completely confined in the quantum well, i.e., form
factor (7) is expressed through (10), (11), and (12), and en-
ergies e{(‘)) shall be given by (5). If we realize that
G,(q,k,,k,) is an even function of g, (i.e., of n) it is not
difficult to obtain

e —gl0)= 16m > Ky(Q)
. g 7’ 2w
9 2qulcose——qf——d—2(l'2—12)—~ﬁ—
(14)

KII'(Q): 2 lGh(q’kz)kz,)|2+%IGk(ql:kz’kz,)‘2 . (15)

n=1

The second term at the right-hand side of (15) means we
take G,(q,k,,k,;) with g,=0. In expression (14) 0 is the
angle between vectors k; and q,. The denominator in (14)
must be expanded up to quadratic terms in k,. Straight-
forward summation over q, (everywhere we are assuming
a nondispersive approximation for the phonons and the
summations cover infinite intervals, as was clarified in

“Sec. II) leads us to the following results:

#k?
8k-—'€{(0)e_—'—a1ﬁa)o— 2ml Yio» (16)
where
172
10 " Fi(x)x dx
a;=167a —2 Ef 1 ,
EO I 0 ﬁa)o
x24+7? 12—+ —
0
(17)
s oo 3/2
Y T a EO
© F'(X)xsdx
x> [ ! ;. (18)
r =0 242 |12_72 fiwg
x“+mae | —1"+——
E,

In the latter expressions a is the usual 3D Frohlich con-
stant ‘

s

6*

(19)

172
m
2ﬁ3a)0 ] ’

and Fj;(x) a function defined by -
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F”r(x): 2 F”ln(x)"i‘—;-F”'(x) ) (20)
n=1
2+77,2n2
Fyoa(x)= %
n\Xx [x2+172n2+(d2/)\.2)]2
X | LAMAU =) +An =1 =I')—A(n —1 —1")]
+ 217211’[x2+(d2/k2)]1/2[1+(—1)’+1’+"]((——1)"exp{—[x2+(d2/k2)]1/2}—1) 2 21)

[x24+ 721+ 12+ (@2 /AN [ x 2+ 72 — 1) +(d?/A%)]

It is obvious that (16) can be rewritten in the form

ﬁzk 2
g, — e = —a, fiwg+ —2-i~ , (22)
where
x__ M
m; 1— 7 (23)
is the polaron effective mass for the “/”” subband and
€, =a,fiw, 24)

is the polaron binding energy.

L
01 1 10 100 1000

hwl_o
Eo

FIG. 1. Parameter y, (for /=1, in units of a) as a function of
fiwy/E,. Different curves correspond to different values of the
screening length A: for A—o; -0-0- for
A=1.36X10"°cm; — —- —- for A=2.49X107% cm; — X - X —
for A=10"% cm; —A-A— for A=107° cm correspond to the
EQL case.

IV. DISCUSSION

In the calculations of Sec. III it is assumed that the
electron can be localized in a given subband / but the in-
termediate states in the perturbation-theory formula (13)
involve all possible subbands and phonon states. Pola-
ronic mass and binding energy are calculated from the
parabolic isotropic band structure depicted in Ref. S.
Screening is introduced from the very beginning in the
Hamiltonian (1) through the screening length A. We
should stress that in the unscreened limit A— o our ap-
proach predicts finite-electron self-energies in contrast
with earlier calculations neglecting LO-phonon con-
finement (see, for instance, Ref. 2).

From general considerations it is possible to conclude
that our results cannot be valid for too small or too large
values of #iw,/E,. In the first case very small QW widths

20+ .
o,o°‘°~o~o\
/"\ %
\,
15k \.\
—X .
T \
y .
5 3 \x \
10 F4a ) \
: kN X \
A\A \

X\)\
ol A X

X
N \X.
| BaXs
01 1 10 100
h (DLO

Eo

1000

FIG. 2. Parameter a,; (for /=1, in units of a) as a function of
fiwy/E,. Different curves correspond to different values of the
screening length A and are labeled in analogy with Fig. 1.
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are involved and we cannot expect our continuum (hy-
drodynamic) model for LO vibrations to give correct
values of a; or ¥, in this limit; on the other hand, the
effective-mass approximation is not applicable for too
small values of a QW width. In the second case we must
realize that the energy difference between subbands / and
I'is Eo(1*—1'%); if E, is too small the subbands will be so
close together that it will be impossible to think in terms
of a polaron localized in a given subband /, but actually
the polaron will be “shared” by several subbands. There-
fore, the obtained results are reasonably reliable for inter-
mediate values of #iw,/E,.

From Figs. 1 and 2 it can be seen that y,; and q; (for
I=1) are larger than in the purely 3D case [where a;=a
and y;=a/6 (Ref. 19)]. Our approach predicts enhanced
polaronic corrections in agreement with experimental
data from Refs. 9, 10, 12, and 13. For a purely 2D sys-
tem or the case of the Q2D electron system of a single
heterostructure as studied in Refs. 3, 20, and 21 rather
small polaronic corrections were obtained. The enhanced
polaronic corrections found by us are both a peculiarity
of the QW structure and of the confined character of LO
phonons. In Figs. 1 and 2 the solid curve corresponds to
the unscreened quantity while the other curves corre-
spond to different values of the screening length. In par-
ticular the curve with triangles (A=10"% cm) corre-
sponds to the extreme quantum limit (EQL) when the
electron is localized in the /=1 subband and intersub-
band transitions are neglected (i.e., summation over !’ in
Ref. 14 only contains the term I'=1).

In Fig. 3 we show a comparison of our results for the
EQL with those reported in Ref. 2, where the author ap-

'tho
1000 100
T T
04 -
| o
03
3
3 g
=3 \ 3
B, = o =
o =]
1
L%
X
01 * q
; “ %
<—\x \
N\,
*x
el
01 1

FIG. 3. Curves for ¥, and «; (in units of a and afiw,, respec-
tively) as a function of #w,/E,. Curves and —.—.—.
correspond to a; and ¥, respectively, in the EQL (A=10"° cm)
according to our calculations. Curves — — — and — X - X —
correspond to a and ¥, as calculated in Ref. 2. Curve is
obtained after multiplying by 60.
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FIG. 4. Parameter ¥, as a function of 1/d for the GaAs case.
The points O correspond to our calculations for 7=50 K and
n,=10"" cm™2. Points /A correspond to calculations from Ref.
5.

plied the usual Frohlich Hamiltonian (for nonconfined
LO phonons) to a Q2D electron systems and used the
mass-conservation approximation (MCA). As can be
seen we obtained (for the same screening length) larger
polaron corrections.

In Fig. 4 we show our results for y, as a function of
1/d (circle) and those of Ref. 5 (triangles). We assumed
m =0.067m, fiwy=0.036 eV, and a=0.07 for the GaAs
case, n,=10"!! cm ™2, and T=50 K [A was evaluated by
the classical formula A=(eyky T /4me*n)!’? and in the
computations we have set n =n,/d]. Again larger re-
sults are predicted from our calculations up to a certain
value of 1/d. For smaller values of d (larger values of
1/d) we cannot expect our calculations to be reliable
enough as stated above.

In Fig. 5 we show the polaron mass m* (in units of
bare electron mass m,) as a function of temperature.
The curve was calculated from our expressions using the
GaAs parameters and d=100 A. The temperature was

00695
00690
* |O
E|E
00685 -
00680 1 L 1 1 1 1 L L I 1
10 20 30 40 50 60 70 80 90 100
T(K)

FIG. 5. Polaron effective mass m * (in units of bare electron
mass m,) as a function of T for the GaAs case.
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introduced through A using the classical formula men-
tioned above. Of course, this approximation can only be
valid for kz T < fic,,.

Let us also compare with experimental results in the
GaAs case from Ref. 10. The authors determined
n,=4.0X10" cm~2 and d=250 A. For T=220 K
they measure m*=(0.071£0.015)m, and we obtain
m*=0.0685m,. For T=5 K they measure
m*=(0.069+£0.001)m, and we obtain m*=0.0690m,.
This gives us a measure of pure polaronic contribution to
the effective mass. As far as we ignore nonparabolicity
effects (and also the effect of the magnetic field), etc.,
rigorous comparison with the results of Ref. 10 cannot be
done. However, even within our relatively coarse estima-
tions good agreement is found.

Another interesting comparison is the case of a
InP/Ga, In,_, As superlattice from Ref. 22. For calcula-
tions we used m =0.041m,, ¢=0.06, and #w,=0.0345
eV. We can compare with experimental determinations
of m* for T=125 K using two experimental techniques:
Cyclotron resonance (CR) and magnetophonon resonance
(MPR) (see Table I). As can be seen from Table I we ob-
tain better agreement with the d=150-A case (especially
comparing with the MPR measurement). Of course, for
too small values of d our theory works worse (as ex-
plained above) and also we should expect stronger devia-
tions from parabolicity.

From the comparisons outlined in the foregoing discus-
sion we can conclude that polaron corrections are
sufficiently important and should be considered together

F. COMAS, C. TRALLERO-GINER, AND R. RIERA 39

TABLE I. InP/Ga,In,_, As superlattices.
n d

° * * *
(10" em~2) (A) o~ (CR) 1”m~ (MPR) Z— (ours)
0 0 mg
1.8 150  0.0407 0.0422 0.04193
2.2 100 0.0458 0.0465 0.04192
1.2 80  0.0543 0.0560 0.041 89

with deviations from parabolicity in order to explain the
experimental data. Also the influence of surface optical
phonons must be analyzed in a QW which has been al-
ready done for a single heterostructure.?? It is also quite
clear that the interaction of electrons with confined LO
phonons is responsible for important features of the pola-
ron properties in a QW, which have not been considered
in earlier works.

More detailed calculations on the basis of the Hamil-
tonian used in this work can be done, especially taking
into account temperature effects in all the steps and in-
cluding nonparabolic energy band structure. This should
produce theoretical results having better correspondence
with experiment.
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