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The dependence of electronic conductivity upon the length (L) of conjugated segments is calcu-
lated for conducting polymers for which (1) interruptions in conjugation on neighboring chains are
uncorrelated, (2) all chains are equivalent, and (3) intersegment hopping controls chain-direction
conductivity. If interchain carrier hopping dominates, the calculated ratio of conductivities parallel
{o.

&
) and perpendicular (o.2) to the chain is o-, /o. 2=L /6d F, where d is the interchain separation in

the hopping direction and F is a geometric factor which is near unity for directions in which o.
2 is

maximum. If intrachain hopping between conjugated segments dominates transport, then this cal-
culated anisotropy ratio is linearly proportional to conjugation length. Derived temperature, pres-
sure, dopant level, and electric field dependencies for the anisotropy ratio are generally near zero
only for the case where interchain hopping dominates both o.

&
and o.

& ~ The calculated dependence
of conductivity on conjugation length is in good agreement with observations for iodine-doped po-
lyacetylene, potassium-doped poly(p-phenylene), and iodine-doped polythiophene. Relationships
are derived between the conjugation length and the temperature dependencies of conductivity com-
ponents, which are also supported by experimental results. For conducting polymers having short
conjugation lengths, conductivity is predicted to be approximately proportional to
exp[ —(T/To)] '~3, where To is inversely proportional to conjugation length. This expression,
which can also be obtained for variable-range hopping, is here derived for nearest-neighbor hopping
with a distribution of activation energies stemming from a distribution of conjugation lengths.

I. INTRODUCTION

From the viewpoint of charge transport, two extreme
situations exist for highly conducting organic polymers. '

In the first extreme is a polymer where charge carriers
are localized on short conjugation lengths and carrier
transport in all directions is limited by interchain hop-
ping. This extreme is analogous to the case of molecular
charge-transfer complexes where intermolecular charge
transport is responsible for conductivity in all directions.
In the second extreme is a polymer with effectively
infinite conjugation lengths [such as an idealized crystal
of poly(p-phenylene) or polyacetylene), where the chain-
direction conductivity is limited by intramolecular car-
rier mobility and orthogonal conductivities are limited by
intermolecular hopping rates.

We can go between these extremes for a polymer such
as poly(p-phenylene) or polyacetylene by increasing chain
conjugation length from short lengths to effectively
infinite lengths. Two time scales are relevant here. The
first is t„, the time required for relaxation of the charge-
carrier distribution within a particular conjugation length
after a carrier hop. The second is the time between hops
involving this particular chain segment, t&. In the long-
conjugation-length limit t„&&th, which is a requirement
for conductivities to be independent of conjugation
length. In the short-conjugation-length limit, t„((th,
and transport is strongly dependent upon conjugation
length. An additional requirement for the long-
conjugation-length limit is that the overall energy change
resulting from an electron hop is much less than k&T.

This requirement means that the conjugation length is
sufficiently long that the ionization potential (or electron
affinity) varies by less than k~ T in going from this conju-
gation length to an infinite conjugation length.

The available experimental data for highly conducting
doped complexes of polyacetylene, poly(p-phenylene), and
polythiophene ' indicate that limited conjugation
lengths can dramatically reduce conductivities. There
are uncertainties in the interpretation of these data, espe-
cially for polyacetylene, because of possible nonrandom
introduction of breaks in conjugation length and the
difficulty of reliably establishing the average conjugation
length. "' Nevertheless, the experimentally observed
conductivities at fixed dopant levels and fixed tempera-
ture for unoriented conducting polymers are consistent
with o. = AL, where A and m are constants and L is the
average conjugation length. ' ' ' For doped polyace-
tylene and doped poly(p-phenylene), experimentally
determined values of m range from about 3.2 to 3.5.

We will here derive the effect of conjugation length
upon electrical conductivity and its anisotropy for con-
ducting polymers consisting of parallel polymer chains.
The conjugated chain length may extend over the entire
chain or only over segments of the chain. The defects
separating coaxial conjugace3 segments are herein re-
ferred to as chain blocks. Section II considers the case
where these chain blocks provide sufficiently high bar-
riers for carrier transport that macroscopic conductivity
is determined by the interchain hopping rate. Section III
considers the case where the chain blocks provide bar-
riers which are transmissive, so that interchain charge
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transport need not limit macroscopic carrier motion in
the chain direction. Section IV analyzes the dependence
of carrier hopping rates on conjugation length. Section V
derives relationships between the dependence of conduc-
tivity on conjugation length and on temperature, which
are a consequence of conclusions from Sec. IV. Section
VI generalizes the theoretical results to polymers contain-
ing chain blocks (defects) which interrupt conjugation to
different degrees. Finally, Sec. VII compares experimen-
tal results with the predictions of this theory.

The chain blocks can be either composed of the region
between chain ends or defects which limit conjugation
within a long polymer chain. The relationship between
blocking elements on neighboring chains is expected to be
random for polymers which have sufficiently high molec-
ular weight and/or dispersion in molecular weight. If the
polymer molecules have very low molecular weight and
are monodispersed in molecular weight, the chain ends
can be segregated into layers. The present analysis is re-
stricted to the opposite case where the relative location of
chain blocks on neighboring chains is random. The case
where the locations of chain blocks on neighboring
chains are ordered is dealt with elsewhere. Also, except
for differences in conjugation length (dealt with in Sec.
IV) and differences in the chain-direction position of
neighboring conjugated segments, all conjugated seg-
ments are assumed to be in structurally equivalent envi-
ronments. This means that the analysis must be modified
in order to deal with phases having low dopant concen-
tration, for which all chains are not equivalent.

The efFect of conjugation length on hopping frequency
depends upon the effect of conjugation length on the ion-
ization potential and electron affinity of the polymer. In
fact, one convenient definition of conjugation length is
the length of defect-free oligomer which reproduces the
weight-average first ionization potential and electron
affinity of the polymer. Complications due to the ex-
istence of defects which interrupt conjugation less
efficiently than chain ends are analyzed in Sec. VI.

The present calculations directly pertain to composi-
tions for which interfacial resistances (interfibril, inter-
crystallite, or intergrain resistances) are negligible.
Whether or not this is true, the predicted properties of
chain-oriented domains are key for predicting the proper-
ties of the bulk material. As long as there is a unique
chain-axis direction in microdomains, the applicability of
the theory does not require that these microdomains be
three-dimensionally-ordered crystallites.

II. ELECTRICAL ANISOTROPY FOR POLYMER
CHAINS WITH NONTRANSMISSIVE BLOCKS

The electrical conductivity is given by

o, =qf2D, /E;,
where the subscript i defines the direction (i = 1 for paral-
lel to the chain and i =2 for perpendicular to the chain),
q is the charge per carrier, f2 is the number of interchain
carrier hops per unit volume and per unit time, and D; is
the average distance a carrier moves in the ith direction
as a result of a hop under the inAuence of the applied

electric field (E, )i.n the ith direction. Interchain hops
can be approximated to be perpendicular to the chain-
axis direction. Nevertheless, D, (the average chain-
direction displacement per hop) is nonzero if E, (the
chain-direction electric field) is nonzero. This is because
charge redistribution on the "hopped-from" and the
"hopped-to" segments after an interchain hop results in a
net carrier displacement corresponding to the center-to-
center displacement of these segments.

The polymer chain is modeled by alternating conjugat-
ed segments (length L) and conjugation blocking elements
(length B), where B ((L. In the finite-chain limit the po-
tential drop is approximated to be entirely across the
chain blocks, so that each chain segment is equipotential.
Consequently, the potential difference between hopped-to
and hopped-from segments as a result of the chain-
direction applied field (E, ) depends upon the relative dis-
placement of these segments in the chain-axis direction
(Z). If the hopped-to segment is down-field of the
hopped-from segment (i.e. , Z) 0), then this potential
difFerence can be taken to be E,L. On the other hand, if
the hopped-to segment is up-field of the hopped-from seg-
ment (i.e., Z (0), then this potential difference can be
taken to be zero. Although the difference in potential of
hopped-from and hopped-to chains depends upon bound-
ary conditions in a chain, the critical point for the
analysis is that the difference in potential of up-field and
down-field hopped-to segments in a chain is E&L.

Using these potential differences, the average distance
that a carrier moves in the chain-axis direction per inter-
chain hop is as follows:

2 ~~
~~
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~~ x

~~

E
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~

)~

~
~

I
Z =L X=L —E( Z) E]&LE(Z)/2Zk~ T

Ze ~ dXdZ
Z =L X =L —e( —Z) E& &Le(Z)/2Zk& T

e dX dZz= —L x=e(z)

where q is the charge per carrier, e is a function equal to
its argument for positive argument and zero otherwise,
and Z is the chain-axis displacement in the electric-field
direction of the hopped-to chain segment with respect to
the hopped-from chain segment. The factor in the ex-
ponential is just the electric-field-dependent component
of the activation energy for interchain hopping, normal-
ized by the Boltzmann factor kii T (i.e., E,qL/2kii T for
positive Z and 0 otherwise). The integral over dX which
is present in both numerator and denominator is propor-
tional to the probability that the field-direction carrier
displacement will be Z (corresponding to the phase shift
between hopped-from and hopped-to chains, which varies
between Land +L). D, in Eq.—(2) is then just the aver-
age value of Z, weighted according to this probability.
Equation (2) is approximate in that this average corre-
sponds to replacing the statistically variable phase shifts
of possible hopped-to chains surrounding a hopped-from
chain by an infinite ensemble of hopped-to chains having
all of the possible phase shifts. Evaluating Eq. (2), we ob-
tain

D, =(L/3)t ha(En, qL/4k~ T) .

Using this result and Eq. (1), the calculated conductivity
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parallel to the chain-axis direction is

o, =qf2L tanh(E~qL/4k' T)/3E) .

For E,qL /4k' T « 1, this becomes

(4)

This equation is valid only when 0., and o.
2 are measured

under identical electric field conditions, since f2 will gen-
erally depend upon electric Geld.

For electric fields that are normally of interest
(E,qL /4kB T and E2qL /2k' T « 1 ) Eq. (9) reduces to

g i/o 2=L /6Fd (10)

As long as the structural relationship between polymer
chains is independent of dopant level and we are in the
short-conjugation-length limit, an electrical anisotropy
proportional to L and largely independent of dopant lev-
el, temperature, and pressure is predicted. However, as a
caution, it should be recognized that (1) doping typically
proceeds throughout much of the accessible dopant con-
centration range as a two-phase process which does not
preserve interchain packing relationships ' and (2) dop-
ing processes can change the effective conjugation length
via introduction of structural or chemical disorder.

The geometrical factor F [in Eqs. (6)—(10)] can be easi-
ly generalized from the above-described case where the

o, =q f2L /12k~ T .

We will see in Sec. IV that fz depends upon L, so o. , de-
pends more strongly upon conjugation length than the
above L dependence.

We must next obtain the average value of the down-
field displacement per interchain hop when the electric
field (E2) is normal to the chain direction. Consider for
the present that E2 is parallel to the interchain vector for
a fraction F of the nearest-neighbor chains which would
be equivalent with respect to interchain hopping in the
absence of an electric field. For simplification, E2 is as-
sumed to be orthogonal to the interchain vector for the
remaining nearest-neighbor chains. Let d be the inter-
chain separation, which is the same as the interchain
hopping distance. Assessing the probabilities of forward
and backward hops, the average distance a carrier moves
per interchain hop orthogonal to the chain under the
inhuence of a transverse electric field E2 is

D2 =Fd tanh(E~qd /2k' T ) .

Consequently, using Eqs. (1) and (6) we obtain

o 2
=qf2 Fd tanh(E2qd /2k& T ) /E2 .

For E2qd /2k' T « 1, this becomes

o2=q f2Fd /2. k~T .

The electrical-field-dependent anisotropy obtained
from Eqs. (4) and (7) is

o, /o 2=(LE&/3FE, d )

Xtanh(E&qL /4k& T)/tanh(E2qd/2k& T) .

(9)

electric field component perpendicular to the chain-axis
direction (Ez) is parallel to the interchain vector for a
fraction F of the nearest-neighbor chains which would be
equivalent with respect to interchain hopping in the ab-
sence of an electric field. In the general case, assuming
that all possible hopped-to chains are equivalent in the
absence of an electric field and that Ezqd /2k~ T && 1, F is
the average value of cos Ok, where 8& is the angle be-
tween E2 and the interchain vector from the hopped-
from chain to the kth possible hopped-to chain.

In the low-field limit, the equations derived here are
identical to those previously derived making the opposite
assumption that the potential drop is largely across the
conjugated segments. ' Even the electric field dependency
obtained in the present calculation for electrical anisotro-
py is little changed from the previously derived result.
However, since depolarization fields are ignored in the
previous calculations, the present arguments appear to be
more appropriate.

Kahlert has used a resistor-network model to predict
an L dependence for electrical anisotropy in the regime
where interchain transport limits both o, and o.2. We
have used a generalized resistor-network model to obtain,
in more-general form, all of the equations which we have
derived herein, except for those involving the
conjugation-length dependence of hopping frequency.
Furthermore, using the generalized resistor-network
model, we have derived a general relationship between
o'&/oi(~) and [o.2/cr&(~)]' (L/d)F '~ which is valid
outside the short-conjugation-length limit. In this
analysis o. , ( ~ ) is the conductivity in the chain-axis direc-
tion for a polymer with effectively infinite conjugation
length and all other terms are as defined herein. Finally,
it should be noted that Ovchinnikov et al. and Balagurov
et al. have used effective-medium theory to predict an
L dependence for o, /o. z in the short-conjugation-length
limit.

As discussed in Sec. VI, the case in which chain defects
(i.e., chain blocks) do not fully interrupt conjugation
poses special problems for the analysis of the dependence
of 0.

&
and o.

z upon defect concentration, since the average
intrachain, interdefect separation does not directly corre-
spond to average conjugation length. The "conjugation"
length referred to in the analyses of Secs. II and III is an
average interdefect separation, which corresponds to con-
jugation length only in the case where the defects
eff'ectively terminate conjugation (i.e., have the same
eff'ect as chain ends).

III. ANISOTROPY FOR POLYMER CHAINS
CONTAINING TRANSMISSIVK BLOCKS

In order for transport directly across chain blocks to
be negligible, the total number of interchain hops must be
much larger than the total across-block transport of car-
riers in the same time period. This will certainly be the
case for very long conjugation lengths, since the ratio of
interchain hops to across-block hops is proportional to L.
On the other hand, if the only blocking elements on the
chains are readily traversed by carriers (e.g., tunneling
across low height or short barriers) then the conjugation
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length at which the rate of interchain transport dom-
inates can be so long that the time constant for charge-
carrier relaxation after an interchain jump can be much
longer than the time between interchain jumps for a con-
jugated segment. In that case, there would not exist a
conjugation-length range where interchain hopping con-
tributes to chain-direction conductivity.

The conjugation dependence of chain-direction con-
ductivity can be readily examined for the case where
across-block hopping is much more significan than inter-
chain hopping. We again assume that the length of the
blocking segment (break in chain conjugation or separa-
tion of chain ends) is much shorter than the length of the
conjugated segments. If conjugation lengths are reason-
ably long, this assumption is, in fact, a necessary require-
ment for across-block hopping to be significant. The
average distance a carrier moves in the chain-axis direc-
tion as a consequence of an across-block hop is then

E ]gL /2k~ T E
&
gL /2k~ T

e ' ~ —e
E

~
gL /2k' T E

&
/LE /2k' T

=L tanh(qE, L/2ksT) . (11)
After normalization by the denominator, the two terms

in the above numerator correspond to the fraction of to-
tal jumps which are down-field, decreased by the fraction
of total jumps which are up-field. The linear dependency
on L results since the down-field and up-field jurnp dis-
tances are +L and —L, respectively. For
qE, L/2k~ T «1, Eq. (11) reduces to

Di —qE)L /2k~T . (12)

We now obtain for the case where interchain hopping
is negligible compared with across-block hopping

o', =qf, D, /E, =q'f, L'/2k' T, (13)

where f, is the frequency of across-block hopping per
conjugated segment and S is the total length of the conju-
gated segments per unit volume of the conductor. Hence,
Eq. (13) becomes

o, =q f,SL /Zkii T . (15)

Combining this equation with Eq. (8), we obtain for this
case an electrical anisotropy which depends linearly upon
L

where f, is the nuniber of across-block hops per unit
time and unit volume. However, since the number of
chain blocks per unit volume depends inversely upon
conjugation length, we can write that

(14)

following work it will often be convenient to replace con-
jugation length or conjugation-length averages by a con-
stant (chain length per monomer unit) times the number
of monomer units in a conjugation length (u) or the cor-
responding weight average (u ) or number average (u„)
for the polymer.

IV. CON JUGATIGN LENGTH DEPENDENCE
OF ELECTRON HOPPING FREQUENCIES

In order to obtain the dependence of electronic con-
ductivity upon conjugation length, we must now evaluate
the effect of conjugation length on carrier hopping fre-
quencies. The same dependence upon conjugation length
will be obtained for both f2 (the interchain hopping fre-
quency) and f, (the across-block hopping frequency).
Correspondingly, the numerical subscripts on f, and f2
will be eliminated in the discussions of this section.

The key idea in this analysis is also of major impor-
tance for metallic conductivity in molecular charge-
transfer complexes. Metallic conductivity in molecular
charge-transfer complexes requires the existence of donor
or acceptor stacks in which the degree of ground-state
charge transfer is incomplete. For example, if a11 accep-
tor molecules ( A) in a linear array have gained one elec-
tron as a result of charge transfer, then electron motion
requires the transfer of an electron from an A molecule
to another identical ion, thereby creating an A molecule
and an A ion. The net energy change for this process
is the solid-state electron affinity of A decreased by the
solid-state electron affinity of A . Since the energy
change on adding a first electron to a molecule is much
more favorable than the energy change on adding a
second electron, this net energy change is a prohibitively
large positive number for small molecules (i.e., for mole-
cules having short efFective conjugation lengths). Such
poorly conducting molecular charge-transfer complexes
are referred to as Mott insulators.

There are several differences between the above process
in molecular charge-transfer crystals and in conjugated
polymers. First, as conjugation length increases, the en-
ergy difference between the jth ionization energy and the
(j+1)th ionization energy (or the companion electron
affinities) decreases to zero. Second, polydispersity in
conjugation length results in differences in the ground-
state degree of ionization for different conjugated seg-
ments in a polymer.

Both of these differences can be addressed by evaluat-
ing the conjugation-length dependence of the total energy
change, b,E(j,u), on going from j —1 charges to j
charges on a conjugated segment containing u monomer
units. The approximation which we use is that

o, /o 2
=f,SL /f 2Fd. (16) bE(j, u) =(K2j /u )+K,5(j )+Ko, (17)

For reasons which will be apparent in the next sec-
tions, we will generally replace L and L in Eqs. (5), (10),
(15), and (16) by L and L, respectively, where L is the
weight-average conjugation length. Such replacement is
not precise, but is adequate for most analyses —especially
since conjugation-length distribution is not generally
available as a basis for more accurate evaluations. In the

where 5(j) is a function which is unity for j odd and 0 for
j even and where Ko, K, , and Kz are constants for a
specified polymer and a specified concentration of a
dopant. The motivation for this approximation is as fol-
lows: (1) experimental and theoretical ' results indicate
that the first ionization potential and the first reduction
potential (i.e., j =1) are proportional to u '; (2) the



5876 R. H. BAUGHMAN AND L. W. SHACKLETTE 39

y= g I(u/v)W(u)/u,
Q =1

(18)

where I is a function which is equal to the largest integer
which does not exceed the argument of this function.
Each term in this equation is just the number of charges
per monomer unit [I( u /U ) lu ] in a conjugated segment
containing a specified number of monomer units (u) times
the weight fraction of conjugated segments having this
number of monomer units [W(u)]. This equation places
charge on each conjugated segment in a way which mini-
mizes total energy (at 0 K) according to Eq. (17). Devia-
tion from uniformity in charge per conjugated segment

linear dependence on jju vari the first term of Eq. (17) pro-
vides equally favorable energetics for adding an addition-
al charge to different segments having different conjuga-
tion lengths as long as this addition leads to the same
average charge density on the segments; (3) when jju is
small, the term in 5(j) in Eq. (17) can provide favorable
energetics for adding an electron to a polaron to form a
bipolaron versus the formation of a new polaron; and (4)
Eq. (17) is consistent with the limited available data
on the relative energies of first and second reduction po-
tentials in solution. The available data pertaining to Eq.
(17) are the first reduction potentials of biphenyl, p-
terphenyl, and p-quaterphenyl and the second reduction
potentials of p-terphenyl and p-quaterphenyl. " Using
the data on first and second reduction potentials, K2 for
poly(p-phenylene) is predicted to be 1.56 and 1.44
eV/electron, respectively. In other words, the slope of
b,E(2,u) versus inverse conjugation length (u ) is near-
ly twice that of the same plot for b,E(1,u) —as predicted
by Eq. (17).

In the present comparison with experimental data, we
will be concerned with heavily doped materials. Since
the system is highly degenerate, the differentiation be-
tween even and odd electron ionization potentials (or
reduction potentials) can be.ignored and we can focus on
electron transfer processes which involve only one elec-
tron. Hence, K,5(j)+Ko in Eq. (17) becomes one con-
stant independent of whether or not the electron transfer
results in an even number or an odd number of total
charges. Also, since only the total energy change for an
electron transfer is relevant, this constant drops out of
the calculations. The only key constant remaining is Kz,
which is assigned the value 3.96 eV/electron for polyace-
tylene with monomer unit C2Hz, 1.56 eV/electron for
poly(p-phenylene) with monomer unit C6H~, and 2.26 eV
for polythiophene with monomer unit -C4H2S —based on
theoretical and experimental values ' of first oxidation
potential, first reduction potential, and band gap as a
function of conjugation length.

In order to use these results to obtain the conjugation-
length dependence of the hopping frequency f, we must
first calculate the shortest conjugated segment which is
charged. This is a function of the dopant concentration
y, which is defined as the average number of charges
transferred per monomer unit in conjugated segments. If
W(u) is the weight fraction of conjugated segments con-
taining u monomer units and U is the shortest conjugation
length which could be charged, then

length results only because the charges added to a seg-
ment must be an integer. For a given distribution func-
tion of conjugated segments and a given dopant level,
iterative solution of Eq. (18) by computer yields v, the
shortest conjugated monomer segment which could be
charged at 0 K. Note that U need not be an integer, since
the function of this parameter is just to define the degree
of oxidation or reduction in a way that translates to the
number of charges per conjugated segment.

We next approximate the distribution of charge on
various conjugated segments at temperature T by the dis-
tribution at 0 K. We then calculate the average value of
the Arrhenius exponential for the energy change on re-
moval of an electron (or hole) from a hopped-from conju-
gated segment ( A

&
) as well as the average value of the

Arrhenius exponential for the energy change upon the
addition of this carrier to the hopped-to segment ( A 2 ).
If C is a constant independent of conjugation length, then

f=CA, A2 . (19)

The number of charges at equilibrium ( T =0) on a conju-
gated segment of length u is I(uju). Ignoring the terms
in Eq. (17) which are independent of conjugation length
(since they cancel in the calculation for a degenerate sys-
tem), the energy change on removing a charge from this
segment varies as —K2I(ulu)/u and the. energy change
on adding a charge to this segment varies as
K&[I(u /U) +1] /u Hen. ce, using Eq. (17), the exponen-

tials in energy changes are exp[KzI(u /U) /uk~ T] for the
A& factor and expI —K2[I(u jv)+1]/uk&TI for the A2
factor, where u varies from 1 to ~.

The weighting factor for averaging terms correspond-
ing to different conjugation lengths in A, is the fraction
of total charges which are on each conjugation-length
segment, which is I(u jv)W(u) juy. According to Eq.
(18), the sum of these weighting factors is unity. The
weighting factor for averaging terms corresponding to
diff'erent conjugation lengths (u) in the Az terms is just
the probability that the hopped-to segment has this con-
jugation length, which is W(u). Hence, A

&
and A2 are

as follows:

A, = g [I(u jv)W(u)/uy]e px[K I(2u /U) jukIiT],
Q =1

(20)

A2= g W(u)expI —Kz[I(u/ ) U1+]/uk~TI .
Q=1

(21)

Once the hopping frequency per unit time and per unit
volume is calculated from Eqs. (18)—(21), then the con-
ductivity in the chain direction can be calculated from
Eq. (5), which gives o, ~L f. In these equations we have
assumed that the total number of mobile charges is relat-
ed to the doping level y. Whether the appropriate carrier
density should depend simply on the doping level or on
the total population of m electrons depends on the de-
tailed band structure which best describes the doped po-
lymer. For polyacetylene, where recent calculations have
suggested a virtual closing of the band gap at high doping
levels, it is appropriate to consider the carrier density to
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and

u„=(l —p) (23)

u =(1+p)/(1 —p), (24)

where p is a probability which defines the distribution
and u„and u are number-average and weight-average
conjugation lengths, respectively. Other distributions
used to evaluate the dependence of f on conjugation
length are the coupling distribution and the Poisson dis-
tribution. The coupling distribution, which corre-
sponds in polymerization to chain termination by cou-
pling of growing radicals, provides

be close to the m.-electron density; ' ' however, in a poly-
mer such as poly(p-phenylene) where the gap apparently
does not close, the carrier density should have a direct
dependence on doping level. Nevertheless, since the
present calculations only predict the conjugation-length
dependence of the conductivity and not its absolute
values, the estimation of carrier density has negligible
effect on the present results. More specifically, if carrier
density corresponded more closely to the total ~-electron
density rather than to the amount of donated charge, the
only effect would be to change the weighting factor in Eq.
(20) from I(u/v)W(u)/y to W(u). Except at very short
average conjugation lengths, this change has no
significant effect on the results of the calculation.

The dependence of the hopping frequency f on conju-
gation length will be evaluated for a variety of
conjugation-length distributions. %'e will first consider
the random distribution. The random distribution pro-
vides a broad dispersion in lengths and is widely used to
represent polymer chain-length distributions. This distri-
bution probably best represents the distribution of conju-
gation lengths in crystalline regions of high polymers
such as polyacetylene. For this distribution

W(u)=(1 —p) up" (22)

which yields

f=C exp( —Kz/uk~ T) . (31)

Figure 2 shows the calculated dependence of hopping
frequency f (normalized with respect to the infinite-chain
hopping frequency) upon number-average conjugation
length (u„) for polyacetylene at 300 K. These curves for
the random, coupling, and Poisson distributions result
from numerical evaluation of Eqs. (18)—(21) using the ap-
propriate distribution function of Eqs. (22) —(30). The
curve for the monodispersed distribution is generated by
Eq. (31). Although the polydispersed distributions pro-
vide similar dependencies of hopping frequency on
number-average conjugation length, the calculated hop-
ping frequency for low average conjugation lengths is
much higher for the polydispersed distributions than for
the monodispersed distribution. The hopping frequency
at fixed number-average conjugation length increases
with increasing polydispersity in going from the Poisson,
to the coupling, and to the random distribution. Howev-
er, as long as the dopant concentration per monomer unit

of conjugation length for these three different distribu-
tions are indicated in Fig. 1. For the case where the
number-average conjugation length for each distribution
is 50 monomer units, the heterogeneity index (u /u„),
which is a measure of the broadness of the length distri-
bution, dramatically increases in going from the Poisson
distribution to the coupling distribution, and to the ran-
dom distribution. For example, a number-average length
of 100 monomer units yields heterogeneity indices of
1.0099, 1.4999, and 1.9900, respectively, for these distri-
butions, as compared with an index of unity for a mono-
dispersed distribution.

The last case to be considered is where all conjugated
segments have the same length (monodispersed distribu-
tion in which each conjugated segment contains u mono-
mer units) and the same number of charges at 0 K (u /v
charges per conjugated segment). Evaluation of Eqs.
(18)—(21) for this case provides

W(u) =u p
" '(1 —p) /(1+p),

where

(25)

and

u„= ( 1+p) /(1 —p) (26) 1.0

0.8

Random

u„=(l+4p+p )/(1 —p ) . (27)

The Poisson distribution, which comes closest to a mono-
dispersed distribution, results from polymerization in the
absence of chain termination. If m is the number of
monomer units reacted per initiator, then

s[

O.e

0.4

m —mW(u) = ue ™
m +1 (u —1)!

u„=m+1,

(28)

(29)

0.2

0&
0 20 40 60 80 100

and

u =m+1+[m/(m +1)] . (30)

The major differences in weight fraction as a function

FIG. 1. Weight fraction of conjugation length u, normalized
with respect to the maximum weight fraction (8',„), for the
random, coupling, and Poisson distributions. In all cases the
number average conjugation length (u„) is 50.
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is much less than unity, the calculated frequencies for
these polydispersed distributions essentially coincide if
plotted as a function of weight-average conjugation
length rather than number-average conjugation length.
This is shown in Fig. 3, which is a plot of the calculated
frequencies as a function of weight-average conjugation
length for the random and Poisson distributions. Note
that for each of these polydispersed distributions, limited
conjugation lengths reduce hopping frequency relative to
f(oc ) by less than 30% for weight-average conjugation
lengths above 200 polyacetylene double bonds.

One must also consider to what extent variations in
dopant level affect the hopping frequency for a polymer
having polydispersity in conjugation lengths. The results

i+910(Un)

FIG. 2. The calculated dependence of hopping frequency (f),
normalized with respect to the infinite-chain value f( ~ ), upon
number-average conjugation length (u„) for various Inolecular-
weight distributions of 10% doped polyacetylene. The results
for the monodispersed distribution are for equally ionized
chains.

shown in Fig. 2 are for polyacetylene at a dopant level
(charge per C2Hz) of 0.10. Figure 4 compares results for
dopant levels of 0.01 and 0.10. Decreased dopant levels
result in slightly increased normalized hopping frequen-
cies (relative to the infinite-chain hopping frequencies).
However, the general form of the chain-length depen-
dence of hopping frequency is basically unchanged. Also,
note from Eqs. (17)—(21) that fIf( ac ) depends upon Kz
only through the ratio K2/T. Thus, a decrease in tem-
perature has an effect indistinguishable from an increase
in K2.

Figure 5 shows the calculated change in effective ac-
tivation energy for electronic conductivity in polyace-
tylene upon going from a finite number-average conjuga-
tion length (u„) to an infinite conjugation length. Note
that the actual temperature dependence of hopping fre-
quency (or conductivity) is not obtained, but the change
in temperature dependence for samples having different
average conjugation lengths can be predicted using this
theory. We find that an Arrhenius expression approxi-
mates reasonably well the ratio of finite-chain and
infinite-chain hopping frequencies (and conductivities)
over a fairly broad temperature range (100—500 K) for
polyacetylene. Consistent with observations, " the
effect of decreasing conjugation length is to increase the
ratio of high-temperature to low-temperature conductivi-
ties. We will later provide a more precise representation
for the temperature dependence of calculated hopping
frequency.

V. DERIVATION OF RELATIONSHIPS
BETWEEN THE DEPENDENCE OF CONDUCTIVITY
ON CON JUGATION LENGTH AND TEMPERATURE

Since fIf ( ac ) at constant u is insensitive to the par-
ticular conjugation-length distribution for a po-
lydispersed polymer having y «1, a number of interest-
ing relationships can be derived between various func-

~ ~

8

I

O

O -2

8
V

V J

D

O -2-

[(—HC = CH —)A„]„„

-3

lo9,0(u~)

FICJ. 3. The calculated dependence of hopping frequency (f),
normalized with respect to the infinite-chain value [j'(~)],
upon weight-average conjugation length (u ) for 10% doped
polyacetylene having a random distribution (solid line) and a
Poisson distribution (dashed line) of conjugation lengths.

l&910(U )

FICx. 4. The calculated effect of charge transfer (y) per mono-
mer unit (C2Hz) upon the normalized interchain hopping fre-
quency as a function of number-average conjugation length for
polyacetylene having a random distribution of conjugation
lengths.
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FIG. 5. The calculated activation energy for electronic con-
ductivity in doped polyacetylene, decreased by the same quanti-
ty for infinite-conjugation-length polyacetylene, as a function of
number-average conjugation length. Results are for y=0.05
and a random distribution of conjugation lengths.

FIG. 6. The calculated dependence of fjf{~ ) upon the
composite parameter k&u T/K, . The width of the line denotes
the scatter of calculated values dependent upon the specific
choice of dopant concentration (between 0.05 and 1.0), tempera-
ture (between 100 and 300 K), and K& (between 1.5 eV/electron
and 4 eV/electron).

tions of conductivity for diverse polymers. To under-
stand the following discussion, first consider the same po-
lymer formed by polymerization of either a monomer or
a dimer. The parameter u refers to the weight-average
number of monomer units in the first case and the
weight-average number of dimer units in the second case.
Correspondingly, K2 for the monomer-unit-described po-
lymer is twice the value of K2 for the dimer-unit-
described polymer [which can be seen using Eq. (17)].
The frequency ratio f/f ( ao ) is essentially the same for
the two polydispersed polymers as long as temperature,
u /K2, and yK2 are the same. When these conditions
are met, the two polymers have the same weight-average
number of monomer units per conjugation length and the
same dopant concentration per monomer unit. Hence,
f /f ( ~ ) should be nearly the same, aside from any small
e6'ect due to di6'erences in the distribution of conjugation
lengths for the monomer-derived and the dimer-derived
samples. The argument is basically unchanged if the two
polymers are chemically difFerent. Most generally, since
K2 enters the equations only as Kz/T, such arguments
[based on Eqs. (17)—(21)] predict that f /f(ac ) is essen-
tially the same even for di6'erent conjugated polymers as
long as u T/K2 and yK2/T are the same and y «1.

Figure 6 shows the calculated f /f ( ae ) as a function of
k~u T/K2 [obtained using Eqs. (18)—(24)] for polymers
having K2 between 1.5 and 4 eV/electron, dopant con-
centrations between 0.05 and 1.0, and temperatures be-
tween 100 and 300 K. Consistent with the above discus-
sion, independent of the specific values of any of these pa-
rameters, the derived f /f(ao ) for y «1 is largely deter-
mined by u„T/K2. As shown in Fig. 7, the values of
ln[f /f( cc )] calculated for this range of parameters are
well represented as a linear function of (k~u T/K2)
where n is approximately —,'. For u sufficiently large that
f/f( ~) is close to unity, deviations from this depen-
dence are indicated in Fig. 7. In this limit, where

(k~u T/K2) '&&1, f/f(oo) can be approximated by
exp[ —(k~u„T/K2) ']. These results will be compared
later with conductivity data for conducting polymers.

Using the Sec. II and III results [Eqs. (5), (8), and (15)]
for the relationships between conductivity components
and both hopping frequency and conjugation length and
the above-described dependence of f/f ( ac ) upon
u„T/K2, we can make useful generalizations which are
valid in the finite-chain limit when y ((1. Specifically,
the plot of I(noT L/" ), where n = 1 for dominant
across-block hopping and n =2 for dominant interchain
hopping, or ln(o2T) as a function of u T/Kz should re-

I

-3 -2
-(kBUwr/K&)

FICx. 7. The calculated f /f{ ~ ), for the parameter range in-
dicated in Fig. 6, are used to obtain an approximately linear re-
lationship between the natural logarithm of f/f ( ~ ) and
(k&u T/K2) ', where n is equal to —,'. The solid line is a least-
squares fit of the calculated data points and corresponds to a
slope of 2.47+0.02.
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suit in a family of parallel curves. The relative displace-
ment of these parallel curves in the conductivity-axis
direction is predicted to depend upon polymer molecular
structure, crystal structure, dopant, dopant concentra-
tion, and temperature —but be independent of conjuga-
tion length. Using Eqs. (5), (15), and (8), the curve dis-
placement differs for different polymer samples, different
conductivity components, different ambient conditions,
and different hopping regimes according to changes in
ln[q f2(~)] for plots of ln(o iT/L ) in the interchain
hopping regime; changes in ln[q Sf, (oo )] for plots of
ln(o i T /L ) in the across-block hopping regime; and
changes in ln[q Fd f2(co)] for plots of In(cr2T). Note
that ln(o, T/L") .versus u T/K2 is predicted to be in-
dependent of temperature as long as the dominant hop-
ping mechanism is unchanged (n =1 or 2 for o, and
n =0 for o 2) and the corresponding infinite-chain hop-
ping frequency [fi(~ ) or fz(~ )] has a negligible tem-
perature dependence.

Likewise, we can generate universal conductivity plots
using the difference between the measured optical band
gap (Eo) and the infinite chain gap [Eo( oo )] as the nor-
malization parameter. Based on the application of Eq.
(17) to polydispersed systems with j= 1,

bEO =ED Eo( ~ ) =2K2/uw (32)

VI. GENERALIZATION FOR POLYMERS
HAVING COMPLEX DEFECT STRUCTURES

The term conjugation length, as used herein, needs
clarification. This is because a variety of different types
of chain defects can be present which interrupt electronic
interactions within the polymer chain to different de-
grees. ' ' lf the only significant interruptions in elec-
tronic connectivity are essentially complete breaks, such
as chain ends, it is useful to define conjugation length as
the length of a defect-free oligomer having the same opti-
cal band gap (or first ionization potential or electron
affinity) as the weight-average optical band gap (or first
ionization potential or electron affinity) for the polymer.
In this case, the chain length variable in the equations for
both o, /o z and the hopping frequencies is this conjuga-
tion length, which corresponds to the weight-average sep-
aration between the defects which provide essentially
complete interruption in conjugation. We will see in the
following discussion that the situation is much more
complicated for the case where there exist diverse types
of defects in the polymer chains. The existence of defects
which do not completely terminate electronic interac-
tions in the chain can result in differences in the ap-
propriate chain length dimensions for the anisotropy
equations and the equations for hopping frequency. The

Since In(o; T/L") versus u T/K2 is predicted to provide
a series of parallel curves for diverse random-phase poly-
mers (where n =0 for i =2, n =1 for i =1 with dominant
across-block hopping, and n =2 for i = 1 with dominant
interchain hopping), Eq. (32) implies that a similar series
of parallel curves should result for a plot of
ln[o; T(bEo)"] versus T/DEO.

former length is the "equilibration length" over which
charge distribution becomes equilibrated in the time in-
terval between rate-limiting hops (either interchain or in-
trachain). Qn the other hand, the characteristic average
length appropriate for calculation of the interchain hop-
ping frequency can generally be identified as the above-
defined conjugation length. However, we will see that it
is sometimes convenient to redefine conjugation length,
by referencing polymer properties to the properties of oli-
gomers containing a specified concentration of defects
which provide weak disruption in electronic connectivity.
By doing this, as well as evaluating Kz in Eq. (17) using
such defect-containing oligomers, the same characteristic
lengths can be used more generally in the anisotropy
equations and the equations for hopping frequencies.

Consider the case in which two different types of de-
fects are present on the polymer chains. The first type of
defect (weak defects) is sufficiently numerous and pro-
vides a sufficiently weak interruption in conjugation that
two conditions are satisfied. First, the volumetric fre-
quency of interchain hopping is much less than the
volumetric frequency of hopping across the weak defects.
Second, the time required for charge-carrier redistribu-
tion on a segment length L &, defined by the average sepa-
ration of their weak defects, is much shorter than the
time interval between carrier hops involving this seg-
ment. The second type of defect (strong defects) is less
numerous and provides a more complete interruption in
chain conjugation, so that the volumetric frequency of
carrier hopping across these strong defects is much less
than the volumetric frequency of interchain hopping.
Whether electrical anisotropy depends upon the weight-
average separation of the strong defects (L2) or the
weight-average separation of the weak defects (L, ) de-
pends upon the time required for. charge redistribution
within L2 after an interchain hop from within Lz. If the
time required for charge redistribution on L2 is much
longer than the time interval between interchain charge
transfer involving Lz, then o.&/o. 2 depends linearly upon
Li and is independent of L2 [according to Eq. (16), in
which L is Li]. In the opposite extreme where the time
required for redistribution of charge carriers between the
segments within L2 is negligible, o i/o 2 depends quadrat-
ically upon L2 [according to Eq. (10) in which L is L2].
If the concentration of the weak defects is held constant
and the concentration of strong defects is progressively
decreased, a transition will eventually occur from the
second limit to the first limit of time scales, so that o, /o z

goes from a quadratic dependence on L2 to a linear
dependence on L, If at this point the concentrations of
both weak defects and strong defects are progressively
decreased, so that the ratio of defect concentrations is
held constant, o, /o 2 can go from a linear dependence on
L, to a quadratic dependence on L, . At this point the
separation of weak defects is sufficiently long that the
volumetric frequency of interc hain hopping is much
higher than the volumetric frequency of intrachain hop-
ping across the weak defects. Upon further progressive
decrease in defect concentration, o, /o2 will eventually
become independent of either L, or Lz. In this final lim-
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it, the time required for charge redistribution within L, is
much longer than the time interval between interchain
hops.

The effect on chain-direction conductivity (o, ) of vari-
ations in the concentrations of defects having various
strengths is the effect of these variations on o. , /oz, aug-
mented by the effect of these variations on the hopping
frequency which limits o, Consider the case where there
exist numerous weak defects on chain segments whose
conjugation is completely terminated by strong defects.
The average separation of weak defects (L, ) is much
shorter than the average separation of strong defects
(L2). If the time interval between interchain hops is
much longer than the time required for charge redistribu-
tion on Lz and the volumetric frequency of interchain
hopping is much higher than the volumetric frequency of
across-block hops over the complete breaks in conjuga-
tion, then o, lo 2 is proportional to L2 [Eq. (10) in which
L is Lz] and independent of L, . However, the interchain
hopping frequency will generally depend upon both L,
and Lz. This is because the ionization potential (and
electron affinity) of the polymer depends upon both Li
and I z. For the case where the concentration and distri-
bution of weak defects is held constant and only Lz is
variable, it is convenient to incorporate the effect of the
weak defects by selecting a E2 value [Eq. (17)] which is
reduced compared with that for conjugated segments
which do not contain weak defects. This Kz is derived
empirically or by quantum-chemical calculations so as to
reproduce the dependence of ionization potential (and
electron affinity) upon oligomer length for oligomer mole-
cules containing fixed concentrations of the same weak
defects. The calculation of the dependence of o.

&
and o.

z
on Lz then proceeds exactly as previously described for
the case where the only interruptions in conjugation are
complete breaks.

In the above calculation we can still view Lz as the
conjugation length of the polymer. However, the conju-
gation length of the polymer now denotes the length of
an oligomer, containing a specified concentration of weak
defects, which has the same optical band gap, first ioniza-
tion potential, and electron affinity as the weight-average
values of these electronic parameters for the polymer.
Alternatively, it is sometimes useful to define the conju-
gation length of a polymer containing various strength
defects by comparison of polymer electronic properties
with those of defect-free oligomers. If this is done, Ez
remains the same as that determined from the length-
dependent electronic properties of the defect-free oligo-
mers. The disadvantage of this approach for the above
calculation is that the conjugation length referenced to
the defect-free oligomer is not the localization length ap-
propriate as a variable for the anisotropy equation.

The following example is one in which it is convenient
to use two different length scales to describe the effective
defect separations, one for the anisotropy equation and
one for calculation of the defect dependence of hopping
frequency. For the purpose of differentiation between
these lengths, the former length is referred to as the
equilibration length (since this is the length upon which

charge-carrier equilibration occurs in the time interval
between rate-controlling carrier hops) and the latter
length is designated the conjugation length. This equili-
bration length will closely correspond with the conjuga-
tion length (referenced with respect to the defect-free oli-
gomer) only for the case where the rate-controlling chain
defect provides a comparable interruption in electronic
structure as a chain end. The present example is one im-
portant limit for the case where the polymer contains a
variety of different defects having various strengths. This
limit is the case where (1) the average separation of such
defects is sufficiently long that across-defect intrachain
hopping (i.e., across-block hopping) is negligible com-
pared with interchain hopping for effectively all defect
pairs which bound polymer chain segments and (2) the
time required for charge-carrier redistribution on such a
segment is negligible compared with the time between in-
terchain hops. Then o. , /o. z will depend quadratically
upon the average separation between defects [correspond-
ing to Eq. (10) in which L is the average separation of de-
fects], independent of the strengths of the individual de-
fects. In this limit, calculation of the effect of defects
upon interchain hopping frequency proceeds similar to
that described in Sec. IV. However, it is here convenient
to identify the average conjugation length in the polymer
(containing diverse defect types) as the length of a
defect-free oligomer which reproduces the average value
of electron affinity, ionization potential, and optical band
gap for the polymer.

Complications in the analysis are clearly introduced for
a polymer containing diverse defects having different
strengths. Furthermore, experimental ability to charac-
terize these defects for a given polymer sample are
presently hmited to a rudimentary level. Fortunately, as
long as the conjugation length relevant for evaluation of
fIf(ao ) is appropriately determined, the errors intro-
duced in using the conjugation length as the equilibration
length can be unimportant. This will be true if a propor-
tionality exists between the conjugation length and the
equilibration length for the samples being analyzed, since
the fractional change in o, as a function of conjugation
length is independent of the value of the proportionality
constant. Also, the calculated anisotropy as a function of
equilibration length will be in error only by a constant
factor, which is the square of the proportionality con-
stant relating equilibration length and conjugation
length. For this reason, and because of the absence of ex-
perimental data pertaining to the concentrations of de-
fects having different strengths, the following comparison
of theoretical and experimental results will not
differentiate between conjugation length and the equili-
bration length.

VII. COMPARISON OF THEORY
AND EXPERIMENT

Using the results of the previous sections, we can
directly obtain the conjugation-length dependence of
both o.

&
and oz in the limit where either interchain hop-

ping (Secs. II and IV) or across-block hopping (Secs. III
and IV) dominates chain-direction conductivity (o i).
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The conjugation-length dependence of o.
&

is just the
conjugation-length dependence of cr, /o 2 (proportional to
L for interchain hopping and proportional to L for
across-block hopping) times the identical conjugation-
length dependencies of the interchain hopping frequency
(f2 ) or the across-block hopping frequency (f &

).
The observed electrical conductivity anisotropies for a

variety of doped polymer compositions are largely in-
dependent of temperature. ' ' This independence
suggests that these polymers are in the finite-chain limit
where interchain hopping determines both o-, and o2,
since different temperature dependencies would generally
be expected for o, and o.

2 if across-block hopping were
important or if the polymers were in the infinite-chain
limit. Hence, the calculations of this section will assume
determination of both o. , and o.

2 by interchain hopping.
While the calculated conductivities are for samples

which have order in three dimensions, the experimental
observations of conjugation length effects are for samples
in which structural orientation is randomized on a mac-
roscopic level. An upper bound on conductivity for the
randomized sample (i.e., unoriented sample) is directly
obtained as an average of calculated conductivities, i.e.,
(o, +2o2)/3. For the range of conjugation lengths of
primary interest here, for which o.

&
&)o.2, the conductivi-

ty in the chain-axis direction dominates this average and,
therefore, the conductivities orthogonal to the chain-axis
direction have little effect on the calculated results for
unoriented samples.

Figures 8, 9, and 10 compare the calculated
conjugation-length dependence of conductivity with that
observed by Soga and Nakamura for iodine-doped po-
lyacetylene, by Shacklette for potassium-doped poly(p-
phenylene), and by Cao et al. for iodine-doped po-
lythiophene, respectively. The agreement between the
theoretical curves and these experimental results is quite
good. The conjugation-length dependence within the ex-
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FIG. 9. Comparison of the calculated (random distribution
with y =0.5) and observed (Ref. 4) dependence of conductivity
upon number-average conjugation length for potassium-doped
poly(p-phenylene). The calculated curve involves a multiplica-
tive constant that is used to place calculated and observed con-
ductivities on the same scale.

perimental range approximates L, but is not strictly L,
either theoretically or experimentally. These calculations
assume that the distribution of conjugation lengths in the
bulk of the polymer sample corresponds to a random dis-
tribution. The data of Yaniger et al. on AsF5-doped po-
lyacetylene increase too rapidly at short conjugation
lengths to be fit by the theoretical curve for a random dis-
tribution of conjugation lengths. This deviation is con-
sistent with recent results" which suggest that the—CH2—defects which limit conjugation are not ran-
domly located. The problem of deviation from random
distributon would not necessarily be important if the
average conjugation length were known and identical for
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FIG. 8. Comparison of the calculated (random distribution
with y =0.10) and observed (Ref. 2) dependence of conductivity
upon number-average conjugation length for iodine-doped po-
lyacetylene. The calculated curve involves a multiplicative con-
stant that is used to place calculated and observed conductivi-
ties on the same scale.

FIG. 10. Comparison of the calculated (random distribution
with y =0.33) and observed (Ref. 5) dependence of conductivity
on number-average conjugation length for iodine-doped po-
lythiophene. The calculated curve involves a multiplicative
constant that is used to place calculated and observed conduc-
tivities on the same scale.
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all regions of the polymer, but this is not likely the case
for the above polyacetylene samples. Agre gation of—CH2—defects results in uncertainties in the determina-
tion of average conjugation length, and domains contain-
ing long conjugation lengths can effectively short-circuit
the effect of domains containing much shorter conjuga-
tion lengths. The lowest conductivity data point in Fig. 9
for K-doped poly(p-phenylene) corresponds to sexi-
phenyl. The agreement between this data point and the
results for the remaining samples, which are po-
lydispersed in conjugation lengths, suggests that a statist-
ical distribution in the degree of charge transfer per chain
has a consequence in increasing conductivity similar to
that of polydispersity in conjugation length.

An electrical anisotropy as high as 100 was measured
by Leising et al. for highly chain-oriented (CHIo Q9)„.
This anisotropy is approximately constant from room
temperature down to 10 K. Similar results were obtained
by Park et al. ' for other polyacetylene complexes. If we
neglect any anisotropy in conductivity normal to the
chain-axis direction and approximate the geometrical fac-
tor F by unity, an average conjugation length of about 40
carbon double bonds is calculated from Eq. (9) using this
anisotropy and an interchain jump distance of 4.1 A (cor-
responding to the approximate interchain separation in
undoped polyacetylene). While no independent esti-
mate of average conjugation length is available for this
doped sample, the above estimate is consistent with esti-
mates (Raman spectroscopy) of conjugation length in po-
lyacetylene prepared using the Shirakawa catalyst. '

Contrary to our present assumption, the electrical con-
ductivity transverse to the chain-axis direction for
iodine-doped polyacetylene might be far from isotropic,
as a consequence of layer structure formation.

Anisotropy in conductivity orthogonal to the polymer
chain can dramatically affect measured o &/o2 for chain-
oriented samples. More specifically, for samples having
fully aligned chains and random orientation on a local
scale orthogonal to the alignment direction, the conduc-
tivity orthogonal to the chain is the geometric mean of
tensor components perpendicular to the chains. This
analysis implies that the electrical conductivity for such
chain-aligned samples could reach high levels as a conse-
quence of high anisotropy orthogonal to the chain-axis
direction.

The results in Fig. 11 provide important confirmation
of both the analysis leading to an I. dependence of
o.&/a2 and the validity of the approximations leading to
the predicted dependence of f/f ( co ) upon the general-
ized parameter u T/K2. According to Eq. (5), in the
short-conjugation-length limit, where both o. , and o.

2
are controlled by interchain hopping, ln(cr i T/L )

equals ln[q f2( co )/12kii]+in[f2/f2( co )]. Hence,
ln(a, T/u„) [or ln(o T/u„) for the case of an unoriented
polymer] is predicted to differ from in[f2/f2( co )] only
by a constant. This constant varies from polymer to po-
lymer, largely according to variation in fz( co ), but de-
pends upon temperature and pressure for a particular
composition of doped polymer only to the extent these
variables affect fz( oo ). These arguments imply that the
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experimentally determined plot of ln( cr T /u ) versus
k~u T/K2 should superimpose upon the theoretically
determined plot of ln[f /f( oc )] versus kiiu T/K2 after
a constant shift in the vertical-axis direction. This com-
parison is made in Fig. 11,where the experimental results
are for iodine-doped polyacetylene, ' ' potassium-doped
poly(p-phenylene), and iodine-doped polythiophene as a
function of u and for iodine-doped polyacetylene as a
function of temperature. ' This comparison provides a
severe test of the theory, since the major contribution to
the conjugation-length dependence of o (i.e., u ) has been
divided out. We see that the theory correctly predicts
not only the conjugation-length dependence of conduc-
tivity, but also how this dependence varies with tempera-
ture.

Although a simple expression for the variation of con-
ductivity with temperature is not derived by analytic
means from the present theory, we have demonstrated
that a universal relationship exists for y «1 between
normalized hopping frequency f/f ( co ) and a parameter
involving temperature, u T/E 2. As depicted in Fig. 7,
this relationship is best linearized (linear correlation
coefficient closest to 1) for kii u T /K z ( 1 when
ln[f/f ( oc ) ] is plotted as a function of

(kjiu T/K2) '/—. As discussed earlier, f/f(co) cor-
responds to both f, /f, ( co ) and f2 /f 2( co ). Since by Eq.
(5), ai ~ f2L /Tcc f2u /T, the linear curve in Fig. 7
predicts

o, =croexp[ —( T/To )
'/ ], (33)

FIG. 11. Comparison of the calculated {solid curve) and ex-
perimenta11y derived dependence of f/f( cc ) upon k~u T/K2.
The experimental points correspond to o.T/u multiplied by a
constant which is adjusted to minimize the y-axis displacement
of the experimental data set from the theoretical curve. Al-
though this adjustable constant is necessary because f( cc ) is un-
known for each doped polymer, the comparison of rate of
change of 1n[f /f( cc )] and 1n(aT/u ) as a function of
k&u T/K2 involves no fit parameter. Symbols denote polymer
compositions as follows for variations of u: solid triangles for
I-doped polyacetylene, open circles for K-doped poly(p-
phenylene), open triangles for I-doped polythiophene. For vari-
ation of temperature: solid circles denote I-doped polyacetylene
with a u of about 21 as determined by mass uptake.
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where (from the slope of Fig. 7),

Tp = 15~ 1%2/kz u

occc f2(co)u /T.

According to the present theory, o. , depends on carrier
concentration (doping level) through the dependence of
the infinite-conjugation-length frequency of interchain
hopping [f2(~)], on this parameter. Since f2(~) is the
hopping frequency per unit volume, rather than per car-
rier, f2( ~ ) will increase in proportion to carrier concen-
tration if the hopping frequency per carrier is a constant.
Unless the preexponential factor crp is a strongly varying
function of temperature, the temperature dependence of
conductivity for a short-conjugation-length polymer is
expected to be dominated by the above exponential fac-
tor. Such a temperature dependence, exp[ —(T/To) "]
where —,

' & n & —,', is observed for most conducting poly-
mers. ' This temperature dependence is generally
thought to result from Mott's law of variable-range hop-
ping. However, as seen above, such a temperature depen-
dence can also result from the effect of finite conjugation
lengths on the frequency of nearest-neighbor interchain
hopping. Consistent with the present results, Ber-
nasconi and Zeller have shown both by theory and ex-
periment (oxide-coated metal particles) that a nearest-
neighbor hopping process with a distribution of activa-
tion energies can yield the same type of exponential tem-
perature dependence for conductivity as obtained for
variable-range hopping.

Equation (33) allows one to predict To as a function of
conjugation length u . Values of Tp obtained from
6tting curves of published conductivity data to the ex-
ponential dependence in Eq. (33) are compared in Table I
with those calculated from our expression for Tp, which
contains no adjustable parameter. The value of E2 is tak-
en to equal 3.96 eV/electron for polyacetylene, based not
on transport data but on the effect of conjugation length
on electron affinity ionization potential, and optical band
gap for polyene oligomers. The magnitudes of theoreti-
cally and experimentally derived values of Tp are in gen-
eral agreement throughout the range of experimentally

investigated defect concentrations.
Although Eq. (33) provides that pro is proportional to

u, it should be realized that the conjugation-length
dependence of o.

p is not uniquely determined by the
present analysis. Since the calculated points can also be
fit by an expression which includes a prefactor, the cal-
culated f/f(~) can be more generally approximated
for small f/f(oo) as proportional to (k~u T/
K2) ~exp[ —(Cksu„T!K2) ], where p need not be
zero and the constant C need not be unity. Hence p, C,
and m are interdependent fit parameters used to describe
the theoretically calculated f/f(~), with m a slowly
varying function of p [p =0, C= 1, and m =

—,
' for Eq.

(33)]. Using this more general representation of the cal-
culated f/ f(oo), oo becomes proportional to u ~. Cor-
respondingly, the temperature dependence of O.

p is pro-
portional to that for f ( oo )/T'+'. However, independent
of this generalization, Tp is predicted to be proportional
to Kz/u-, as in Eq. (33).

A variety of theories based on variable-range hopping
(VRH) or tunneling through barriers have previously
been used to derive similar exponentially varying temper-
ature dependence for conductivity. In the case of VRH
in two dimensions, which gives a temperature depen-
dence varying as exp[ —(T/To) ' ], To=9a /~k~N+,
where a is a localization length and NF is the density
of states at the Fermi energy (per unit area and per unit
energy). In this VRH model, To may derive a depen-
dence on doping level y through a variation of NF with y.
In our model, the scale upon which states are distributed
in energy is related to K2 '. We have assumed here, in
first approximation, a rigid-band model in which Kz
(which is related to the gap energy) does not vary with y.

As shown in Figs. 8 —10, the present theory successful-
ly explains the observed conjugation-length dependence
of electrical conductivity in iodine-doped polyacetylene,
potassium-doped poly(p-phenylene), and iodine-doped po-
lythiophene. The theory predicts that hopping frequency
depends upon u T/K2, which leads to relationships in
the short-chain limit between conjugation length, temper-
ature, and pressure derivatives of conductivities. The
conjugation-length dependence of conductivity is predict-
ed to be largely independent of dopant level for a polymer
which is polydispersed in conjugation length as long as

TABLE I. Variation of the conductivity parameter To with conjugation length for iodine-doped polyacetylene. The theoretically
derived values of To assume a negligible temperature dependence for the conductivity of the infinite-conjugation-length polymer.

Weight average
conjugation
length (u )

Theoretical
T (10 K)

u derived
from mass uptake

51.6
20.7
12.5
8.8
6.7

u derived
from Raman spectroscopy

32
24
21.5
19

Experimental'
To (10 K)

0.35
1.4
6.5

10
21.5

u„derived
from mass uptake

1.34
3.35
5.55
7.89

10.3

u derived
from Raman spectroscopy

2.17
2.89
3.23
3.63

'From a fit of Ref. 9 data for segmented polyacetylene to o "exp[ —(T/To) ' '].
From To = 15.1&2 /kg u
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y &&1. This prediction agrees with the experimental re-
sults of Schafer-Siebert et al. on the conjugation-length
dependence of conductivity for polyacetylene containing
different iodine dopant levels (y =0.035—0. 15 ) corre-
sponding to an order-of-magnitude difference in conduc-
tivity. Experimental results (Fig. 11 and Table I) agree
with predictions of the temperature dependence of the
variation of conductivity with conjugation length. Also,
the conjugation length calculated from the electrical an-
isotropy of iodine-doped polyacetylene is consistent with
expectations. However, several issues should be remem-
bered when applying this theory to experimental data.
First, the present theory is applicable only to polymers
having a random phase relationship between conjugation
termination elements in neighboring chains. Oligomers
with a fixed conjugation length (monodispersed distribu-
tion) are most likely to deviate from the random-phase
approximation. Havinga et a/. have pointed out that
the electrical conductivity of alkali-metal-doped
phenylene oligomers strongly depends upon conjugation
length, but this dependence is irregular because of vary-
ing structure for the doped oligomers. We will present
elsewhere calculations of conjugation-length effects for
oligomer and polymer phases having a fixed phase rela-
tionship between conjugation terminating elements in
neighboring chains. Second, doping of conducting po-
lymers typically proceeds heterogeneonsly over much of
the dopant range, so that the partially doped polymer
typically consists of two different phases. ' Changes in
the arrangement of polymer chains as a function of
dopant level or conjugation length would affect the calcu-

lated conjugation-length dependence of transport. Third,
only at relatively high dopant levels (greater than about
12% per double bond in polyacetylene) do all chains have
equivalent positions. ' ' The present theory addresses
only the single-phase material in which conductivity is
dominated by hopping within or between equivalent
chains.

Because solvent-free polyacetylene heavily doped with
K, Rb, or Cs has a structure in which all chains are
equivalent and conductivity orthogonal to the chain-axis
direction is isotropic, this material provides the best op-
portunity for a more detailed comparison of theory and
experiment.

Since precise characterization of conjugation length is
not presently available for conducting polymers, it is con-
venient to approximate the conjugation length (L) in the
anisotropy equation [Eq. (10)] by L„, the weight-average
conjugation length. However, detailed analysis shows
that L is more rigorously specified as (L L,)', where
L,, is the z-average conjugation length.
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