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The relationship between geometry and physical properties of aperiodic structures is investigated
by considering the example of the tight-binding Schrodinger equation in one dimension, where the
site potentials are given by an arbitrary deterministic aperiodic sequence. In a perturbative analysis
of the integrated density of states, the gaps in the energy spectrum can be “labeled” by the singulari-
ties of the Fourier transform of the sequence of potentials. This approach confirms known proper-
ties of quasiperiodic and almost-periodic systems, and suggests an extension of them to more gen-
eral sequences, such as those with a singular continuous Fourier transform. There is strong evi-
dence that the spectrum is a Cantor set with zero measure for a much larger class of models than
quasiperiodic ones. The dependence of the widths of various gaps on the potential strength is also
determined: several different kinds of behavior are obtained, such as a power law with a nontrivial
exponent, or an essential singularity. These general results are compared with those of various oth-
er approaches for four self-similar sequences generated by substitution, namely the Thue-Morse se-
quence, the period-doubling sequence, a “circle sequence,” and the Rudin-Shapiro sequence.

I. INTRODUCTION

The discovery of quasicrystals' has revived the interest
in quasiperiodic systems, which are the first class of
structures on the way from periodic (crystalline) to ran-
dom (amorphous, or glassy) matter.

More recent works have been devoted to structures
beyond quasiperiodicity, either deterministic or partially
random,”’”* which seem relevant to the physics of quasi-
crystals. Focusing our attention to one dimension, we
mention the investigation of structures with an unbound-
ed density fluctuation,””’ or a singular continuous
geometrical Fourier transform.®® Some physical proper-
ties of another kind of model with a singular continuous
Fourier spectrum, namely the Thue-Morse sequence,
have also been studied.’” 3 Furthermore, any aperiodic
sequence may now have a physical realization, in the
form of epitaxially grown semiconductor superlat-
tices.!4 16

The general goal of this paper is a better understanding
of the relationship between basic geometrical characteris-
tics of one-dimensional aperiodic structures, such as
those coded in their Fourier transform, and their physical
properties. We restrict ourselves to linear propagation
problems, the prototype of which is the discrete
Schrodinger equation, describing electrons in the tight-
binding approximation

_¢n+l—¢n—l+Vn¢n :E"/}n .

The (diagonal) site potentials ¥V, form an arbitrary deter-
ministic aperiodic sequence, with sufficient homogeneity
properties. More precisely, we assume adequate cluster-
ing properties of the correlations which enter the expan-
sion of Sec. II B. Such a sequence will be called homo-
geneous. The results of this paper can be extended, mu-
tatis mutandis, to the whole class of linear problems

(1.1)
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which can be formulated as discrete Laplace equations,
where the aperiodicity enters either in diagonal (site)
variables, or in nondiagonal (bond) variables. We men-
tion, in particular, the study of harmonic vibrations (pho-
nons), spin-wave propagation, and diffusion, as well as
some quantum spin chains which are equivalent to free
fermionic fields.

We will mostly consider binary sequences, where the
potentials ¥, take only two different values. By shifting
the zero of energies, we can choose, without loss of gen-
erality, these two values of the potentials to be opposite,
namely

V,=Ve, , (1.2)

where V, either positive or negative, it is the potential
strength, and €, =X1. The questions of most physical in-
terest on Eq. (1.1) concern the energy spectrum, and the
nature of the eigenstates (in the following, we will speak
of the energy, or electronic, spectrum, in order to distin-
guish it from the Fourier spectrum of the underlying
structure, i.e., of the sequence of potentials).

We first point out a simple symmetry property of the
problem. The Schrddinger equation (1.1) is invariant un-
der the simultaneous transformation

Y (— 1", Vy—>—V,, E——E . (1.3)

This property shows that the spectra corresponding to
opposite values of the potential strength ¥ are mirror im-
ages of each other with respect to E=0. We assume
therefore from now on, again without loss of generality,
that Vis positive.

A considerable amount of work has been devoted to
the study of Eq. (1.1) for both random and quasiperiodic
sequences V,. If the potential is disordered, i.e., the ¥,
are independent random variables, the main feature of
the system is Anderson localization: all eigenstates are
exponentially localized. The energy spectrum itself is al-
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ways a regular object, with at most a finite number of
bands (for a bounded potential). Indeed, it is known
rigorously!” to be the convolution of the interval
[ —2, +2] by the support of the distribution of the V,,. In
the case of a binary potential distribution, the spectrum
has one or two bands, but the density of states inside that
spectrum may be very singular. It is then advantageous
to use the integrated density of states (IDOS) at energy E,
H (E), defined as the fraction of eigenvalues less than E.
This quantity is always well defined,!” and is convenient
to describe different types of spectral singularities.!®!°

Among quasiperiodic binary sequences, the Fibonacci
sequence has been the most extensively studied, since the
pioneering work of two groups.?’~2* The existence of a
trace map has played a crucial role in the subject. The
energy spectrum is known to be a Cantor set of zero (Le-
besgue) measure: there is an infinity of gaps, and the to-
tal “bandwidth” vanishes. Moreover, the eigenstates are
neither extended nor localized, but exhibit a rather intri-
cate kind of intermediate behavior. Statistical properties
of the energy spectrum and of the eigenstates have been
described using the formalism of multifractals,?®*~ 2% in
analogy with other complex objects, such as strange at-
tractors.?

More recently, several authors have studied the elec-
tronic spectra associated with other deterministic se-
quences. References 30-32 deal with quasiperiodic
binary sequences, generated by substitutions associated
with some classes of quadratic numbers, just as the Fi-
bonacci sequence is associated with the golden mean 7
[=(V'5+1)/2]. As mentioned above, Refs. 10-13 deal
with the Thue-Morse sequence, long known in the
mathematical literature, but not to physicists. This se-
quence has a singular continuous Fourier transform. We
will come back to this example in detail in Sec. IV.

The striking common feature of these models is that
their spectrum seems to be always a Cantor set of zero
measure. This characteristic, discovered first in the study
of the Fibonacci chain, turns out to be universal within a
very large class of aperiodic deterministic sequences.
This is in sharp contrast with the fact that the spectrum
associated with a random sequence consists of one or two
bands for a binary distribution, as described above.

The present work sheds some new light on the univer-
sality of zero-measure Cantor sets among energy spectra
associated with deterministic aperiodic sequences, well
beyond the quasiperiodic class. We consider, in particu-
lar, the location of gaps, and the dependence of gap
widths on the potential strength.

The setup of this paper is as follows. A first part (Sec.
II) presents a general perturbative analysis of the
Lyapunov exponent and the IDOS, for a small potential
strength V. The location and widths of the gaps are relat-
ed, in a general sense, to the singularities of the Fourier
intensity. For a quasiperiodic (or almost-periodic) se-
quence, each delta peak of the Fourier transform, i.e.,
each point of the frequency module, corresponds to a gap
in the energy spectrum; the width of this gap behaves
linearly in V. This result has been derived in a rigorous
nonperturbative way for a smooth enough quasiperiodic
(or almost-periodic) potential: this is the “gap labeling
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theorem.”3%3% Tt is expected to hold even if the potential
is not a smooth quasiperiodic perturbation, as in the ex-
ample of the Fibonacci sequence. The concept of gap la-
beling is generalized to other types of sequences, such as
those having a singular continuous Fourier transform.
The singularities of this Fourier transform, provided they
are strong enough, also generate gaps, with widths that
scale as V%, with a nontrivial exponent > 1.

A second part (Secs. III-VI) is devoted to a detailed
analysis of the energy spectra of four self-similar se-
quences generated by substitution, namely the Thue-
Morse sequence (Sec. III), already considered in Refs.
10-13; the period-doubling sequence (Sec. IV), originat-
ing in the study of dynamical systems;>3¢ the “circle se-
quence” (Sec. V), which shows up in the study of some
structures beyond quasiperiodicity;’ ~° and the Rudin-
Shapiro sequence®’ (Sec. VI). For each of these examples,
the general results of the first part are compared with
those of other approaches, such as the exact determina-
tion of the spectral gaps in the large-V limit, and numeri-
cal data. In the first two cases, the sequences are generat-
ed by a binary substitution, and hence there exists a poly-
nomial trace map.>® Section VII presents a short discus-
sion.

II. GENERAL PERTURBATIVE RESULTS
A. Fourier transforms
In this section, we recall some useful concepts and no-
tations concerning the Fourier spectrum of deterministic
sequences. The Fourier transform of an arbitrary homo-
geneous sequence g, (n=1) is defined as follows. For
0 =g <2m, we consider the partial Fourier amplitudes

Gy(g)= 3 ¢,e™ 2.1
1Sns<N
and the corresponding intensities
Sy(@=—=1Gy(g)? . 2.2)
N

In the limit of an infinite system, the only meaningful
object to consider, in general, is the Fourier intensity mea-
sure of the sequence, defined as

. (2.3)

dq
SN(q) 2

)= im,

This measure is the Fourier transform of the two-point
correlation function of the sequence

1
N =

1=n=<N

S,= lim

N—

=(e,€,40)= [ du(gle™ .

Throughout this paper, the angular brackets will denote
such Cesaro averages (defined by averaging over N sites,
and then letting N go to infinity).

Just as any positive measure, du can have three
different components, namely a discrete one, an absolute-
ly continuous one, and a singular continuous one. This
decomposition is made clearer by considering the distri-
bution function, or “integrated density,” u(q), defined by

€4€y+4q

(2.4)
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. (2.5)

= | q ’ _‘ii'_
wa) 1\}131@ [IOSN(q ) 2T

(a) The discrete (or atomic) part is coded in the discon-
tinuities of wu(g): any delta peak of the form
C(qy)8(qg —gq) in the Fourier amplitude G(g) corre-
sponds to a discontinuity at g =g, of strength |C(g,)|? in
the function p(q). The partial sums defined in Eq. (2.1)
then behave as

(b) The absolutely continuous part S(q) is coded in the
derivative of pu (at points where it exists): S(g)
=2mdu/dg.

(c) The singular continuous part is the most difficult to
capture; in the mathematical literature, it is essentially
defined as “what remains” when the previous two com-
ponents are subtracted.

We will show in the following that the spectral gaps of
Eq. (1.1) are related to the singularities of the Fourier dis-
tribution function u(q). For quasiperiodic and almost-
periodic sequences, the only singularities are discontinui-
ties, which occur at a dense set of values of g, usually re-
ferred to as the “frequency module.” For singular con-
tinuous sequences, there is usually a dense set of values g,
of g around which p(g) has power-law singularities

(@) —plgy)~+ A4 lg —qol® as g—q5 , (2.7)

with a g,-dependent exponent a. Reference 9 presents a
detailed study of such singularities in a geometrical
Fourier transform. Reference 13 contains a similar
analysis of the Fourier spectrum of the Thue-Morse se-
quence; this study will be summarized in Sec. IV.

B. Perturbative expansion of the Lyapunov exponent
and the IDOS

This section is devoted to a perturbative expansion of
the Lyapunov exponent and the integrated density of
states of the tight-binding model (1.1) in powers of the
site potentials ¥V, for an arbitrary homogeneous sequence
of potentials. This concept will become clearer at the end
of this section. Without any loss of generality, the se-
quence ¥V, can be assumed to have zero Cesaro average:
(v,)=0.

The following approach is a generalization of a method
extensively used in the study of disordered systems in one
dimension.>>* Starting from the tight-binding equation
(1.1), we define the ratios (Riccati variables)

¢n +1
R,=—, (2.8)
Y,
which obey the recursion relation
1
R,=V,—E— 2.9
n=Vy R, . (2.9)

We consider a complex energy E, and define the complex
Lyapunov exponent Q(E) by
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1

Q(E):;l_r}lw l?\_’ > InR, |=(InR,) . (2.10)

1=n=N

We assume that this definition yields a well-behaved
quantity for any homogeneous sequence of site potentials.
We use the principal determination of the logarithm,
with a cut along the negative real axis. Therefore, when
E goes to a real value, the usual Lyapunov exponent y(E)
and the integrated density of states (IDOS) H(E) are
recovered as

lix%Q(Eiie)=y(E)iiﬂH(E) . (2.11)
E—

We illustrate now in some detail how this formalism
works in the (trivial) case where there are no site poten-
tials (¥, =0), since this will be the starting point of our
perturbative expansion. The transform. (2.9) acting on
the R, becomes an n-independent MGbius map:
R —-¢(R)=—E —1/R. We perform the change of vari-
able,

E = —2cosht , (2.12)

which maps the complement of the spectrum
§=[—2,+2], onto the semi-infinite strip (Rez>0,
—m <Imt <7). The fixed points of the map ¢ are e/, at-
tractive, and e ~’, repulsive. Hence the R, converge ex-
ponentially towards e’, and we have

QO0=¢ | (2.13)

where the superscript (0) denotes the absence of site po-
tentials. For E inside the spectrum &, we have
t(Exie)==xiQ, 0<Q =<7 (2.14)
where Q is the wave vector of the extended states. Hence
Eq. (2.11) yields the dispersion relation E = —2 cosQ, and
Eq. (2.10) shows that the Lyapunov exponent ¥ vanishes,
whereas the IDOS reads H (E)=Q /7, as expected.
The systematic expansion of the complex Lyapunov ex-
ponent in powers of the potentials proceeds as follows. It
is advantageous to define new variables Y, by

1—e 'R, R , 1Y, )1
=————, R,=e'——— 15
n 1—eR, n 1—e?y, ( )
The recursion relation (2.9) then becomes
Y, 1tg,(1—Y,_,)
Yn=e_2t n—1 gn n—1 (216)
1+g,(1-Y,_y)
with the notation
— Y 2.17
&1 7 sinht 17
and we obtain the following expression for €):
1-Y,
Q=t +<ln————2——> . (2.18)
1—e?Y,

This equation can be advantageously rearranged by re-
placing Y, by Y, _; in the numerator, and using the re-
cursion relation (2.16). This yields
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Q=t+(In[1+g,(1—-Y,_)]) . (2.19)

The interesting point of this expression is that it con-
tains an explicit factor of g,. Hence it will be sufficient to
expand the quantities Y, in powers of g, to the (k —1)th
order to obtain the expansion of € to the kth order.
Indeed, if Q%) and Y,(,k) denote the terms of order k, i.e.,
which contain k potentials V,,, in the expansions of Q
and Y,, we have

Q0= oW=(g, )=0,
Q¥=—(g, YV, ) —1(g2),
Q¥=—(g, Y2 ) +(g2¥{) )+ 1(g}) .

(2.20)

The expression of Q¥ is just our previous result (2.13).
The term Q'Y vanishes, as a consequence of the assump-
tion that the potential has zero Cesaro average. We will
compute the next two terms explicitly, although only Q)
will be used in the following.

The building blocks of Eq. (2.20) can be calculated by
expanding Eq. (2.16), and solving the obtained equations
in a recursive way.

1. Calculation of Y\! and Q%

Equation (2.16) yields the following recursion relation
for Y{:

e2yV=y +g, . .21
The solution of this equation reads
V=3 e g, .4 . (2.22)
a(z1)
Equation (2.20) now leads to
Q¥=— (2>“€_2m<gngn—a>_%<83) . (2.23)
a(z

2. Calculation of Y!? and Q'3

We deduce from Eq. (2.16) the following recursion for-
mula for Y2
eZtYr(IZ): y'r(‘Z_)l +S,(,2)
with §{2=—2g, Y1), —g2 . (2.24)

In analogy with Eq. (2.22), the solution of this equation
reads

(2) — —2tag(2)
Yn - 2 e Sn—a+1

a(21)
I —2t(a+b)
=-2 z e 8n—a+18n—a—b+1
a,b (21)
— 3 e g2 .. (2.25)
a(=1)

Equation (2.20) finally leads to
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V=2 3 e MaD(gq, g, ,_,)
ab (21)
+ 2 e_zm((g,%gn—a>+<g"g3—a))
alz)
+%<g3) ) (2.26)

The general structure of the perturbative expansion
shows up clearly from Q? and Q®. The generic term
Q% involves k-point correlations of the reduced poten-
tials g,. These correlations occur in sums over up to k
positive integers a,b,... with exponentially damped
propagators, since the complex variable ¢ has a strictly
positive real part outside the spectrum §.

We are therefore now able to define in a precise way
that we mean in this paper by a homogeneous sequence
V,: it is a sequence such that all k-point correlations,
defined as Cesaro averages {(V,V,_,V,_, " ) exist,
and obey the usual clustering conditions of statistical
mechanics, for all values of k. Then the complex
Lyapunov exponent (E) has a perturbative expansion to
all orders.

This expansion holds for an arbitrary sequence of po-
tentials ¥,, and has therefore numerous possible applica-
tions. In particular, much effort has been devoted to the
disordered case, where the potentials are independent
random variables. Besides Refs. 39 and 40, let us men-
tion the study of “anomalies”**~*? which occur at any ra-
tional value of the unperturbed IDOS Q /7. In a related
problem, namely the vibration spectrum of harmonic
chains with random masses, Ref. 43 presents a low-
frequency expansion of the complex Lyapunov exponent
up to the tenth order, using the same approach as above.

C. Application to spectral gaps

We now investigate the consequences of the results of
the previous section for an arbitrary sequence, with, e.g.,
a quasiperiodic or singular continuous Fourier spectrum.

By virtue of Eq. (2.4), we have

2

4 )
<8ng,,_a >:Wfdﬂ(q)elqa . 2.27)
Equation (2.23) then yields
V2 e2t—iq+1
@o__ V- e¥ g
'Q B 8 sinh?z fd“(q)ezz—.-q_l . (2.28)

As mentioned in the previous section [see Eq. (2.14)],
the properties along the spectrum are obtained by letting
t go to the imaginary axis: t—iQ, where 0=Q = is the
wave vector of the unperturbed states. For each value of
Q, the integral in Eq. (2.28) will be eventually dominated
by the structure of the Fourier intensity at ¢ =2Q.

In particular, to each power-law singularity (2.7) of the
Fourier intensity at ¢ =g, there corresponds the follow-
ing power-law singularity of the characteristic function at

0=00=¢g0/2:
QP =BVXt —iQy)* ! (2.29)

with
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B= 2* TA (4. eimalty 4 o—imar2y
8sin2Q, sin(ma) = " IR

The occurrence of a singularity in the perturbative ex-
pansion of Q(E) is very likely to be the signature of a
spectral gap. We are thus led to predict that each
power-law singularity (2.7) in the Fourier intensity gen-

erates a gap in the spectrum, and that the IDOS inside .

that gap has the following limit value for V' —0:

H0=Q0/7T=q0/(277') . (2.30)

Moreover, we can determine the scaling law between
the gap width A and the strength V of the potential, by
means of the following argument. The beginning of the
expansion of the IDOS for ¥ —0 and Q —Q,, reads

mH =Q,+(Q _Qo)+Ci|Q _Qo|a_1V2+ s

with C, =Im(Be*'™*~172)  (2.31)

This singular expansion is reminiscent of the expansion
around mean-field theory for critical phenomena. Below
the critical dimension, the successive terms are more and
more singular for small (T — T, ), which plays a role simi-
lar to that of (Q —Q,). Hence we are tempted to evalu-
ate the gap width along the lines of the Ginzburg cri-
terion** for evaluating the size of the critical region,
namely by requiring that both terms of the expansion are
of the same order of magnitude at the gap edges. We
thus obtain

A~VE as V—0 with B=2/(2—a) . (2.32)

We are therefore led to conclude that a gap opens in the
spectrum only for strong enough singularities, namely for
a<2.

The above results are in agreement with known proper-
ties of spectra of periodic and quasiperiodic sequences.
In both cases, the Fourier spectrum is made of delta
peaks, corresponding to a=0. Hence we predict A~ V.
For a periodic sequence, with P atoms per cell, the spec-
trum generically consists of P bands. The band edges are
determined by a polynomial “secular” equation, such
that indeed A ~ V under generic circumstances.

Consider now a quasiperiodic or almost-periodic se-
quence of potentials V,. Then the Fourier spectrum is
made of delta peaks on a dense set of points g, called the
frequency module of the spectrum. Equation (2.30) as-
serts that the value for ¥—0 of the IDOS inside a gap
belongs to the frequency module of the potential. This
perturbative result has been proven to hold independent-
ly of the potential strength (at least for a smooth enough
potential). This is the celebrated gap-labeling
theorem.>*3* Equation (2.32) predicts that the gap
widths are linear in the potential strength, in agreement
with the standard perturbation theory, which also yields
the amplitude A4 (q,) such that A~ 4 (gy)¥. This linear
dependence has been verified quantitatively with a high
accuracy in the case of the Fibonacci chain.®

For a more general sequence of potentials V,, the main
predictions of this section are the following.

(a) Each strong enough singularity in the Fourier inten-
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sity of the sequence (such that o <2) generates a spectral
gap.

(b) The IDOS inside this gap is given by Eq. (2.30), at
least in the ¥'—0 limit. We are tempted to conjecture
that the gap-labeling theorem can be widely generalized,
and that Eq. (2.30) gives actually the exact value of the
IDOS, independently of the potential strength.

(c) The gap width A scales as the power 3 of the poten-
tial strength V, where the exponent f3 is related to the ex-
ponent a of the Fourier intensity by Eq. (2.32).

II1. THE THUE-MORSE SEQUENCE

A. Definition

The Thue-Morse sequence*®*’ has been extensively
studied in the mathematical literature,’ as the prototype
of a sequence generated by substitution, with highly non-
trivial properties. Some physical properties of this se-
quence have been already explored in Refs. 10-13.

The Thue-Morse sequence €, has the following arith-
metic definition. €, = +1 (g, = —1) if the number of di-
gits ““1” in the binary representation of n is even (odd).
This sequence has been shown to be generated by a sub-
stitution, acting on two letters, 4 and B, such that

A—>AB ,
Ttv:\B»B A .

(3.1a)
(3.1b)

Let A4; and B, be the transforms of the letters 4 and B
under k iterations of the substitution T'ry,. These words
have 2* letters, and obey the recursion relations

A\ =A,B,, k>0
B, . ,=B, A, k>0.

(3.2a)
(3.2b)

The Thue-Morse sequence is the limit of the words A,.
It is turned into a numerical sequence, such as that of
Egs. (1.2), by the following transcription:

letter 4 =—¢e¢=+1,
letter B=—¢=—1.

(3.3a)
(3.3b)

B. Fourier transform

The Fourier transform of the Thue-Morse sequence
has long been known to be a singular continuous mea-
sure.’” Here we study the Fourier measure in an elemen-
tary way, with emphasis on the local singularities of the
form (2.7) of the Fourier distribution function. A similar
analysis has been presented in Ref. 13, in a different
language.

Let g/(g) and g(g) denote the partial Fourier ampli-
tudes associated with the words A4, and B, according to
Eq. (2.1). These amplitudes obey the recursion relations

gl =g —i—e"qzkg,ﬁ9 , (3.4a)

gl =gl+e¥gl (3.4b)
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with initial values g4 =1 and g& = — 1. The recursion re-

lations (3.4) are explicitly soluble. The intensities S, (q)
=2_k|gkAlz=2—klg,f|‘2 are given by

Se@)= JI [2sin%(2'71g)]
0<I<k-—1
=2 sin? % Si—1(2g) . (3.5)

We refer the reader to Ref. 13 for a detailed study of this
expression.

It can be deduced from Eq. (3.5) that the Fourier mea-
sure has singularities of the form (2.7) at each rational
(nondyadic) value of ¢, in units of 2.

Indeed, consider first “primitive”” wave vectors
go=2mm /n, with odd n. Then the sequence 2/7lg
(mod 27) is eventually periodic (i.e., periodic for 7= [,),
with period P <n. So are the factors of the product (3.5).
Let F denote the product along one period,

F= II [2sin%(2/"1g)] . (3.6)
lp+1<I<Iy+P
Then the asymptotic growth of the intensities reads
. InF
~ F¥P_LY with y= . .
Skk—»oo with y Pln2 (3.7)

We have replaced the label k by the word length (number
of letters) L =2F. A scaling argument®® then shows that
the Fourier distribution function u(g) has a power-law
singularity at ¢ =g, of the form (2.7),

w(q)—ulgo)~lg —qol® as g—qq, with a=1—y .
(3.8)

It is clear from Eq. (3.5) that the exponent a of a given
primitive wave vector g, (with odd denominator) also
characterizes the singularities at wave vectors of the form
q,=2"Mgo+27M), with M,N integers. The smallest
exponent, i.e., the strongest singularity, occurs for
g/2m)=% and 2, and equals a=2—In3/In2
=0.41504. .. . A numerical investigation suggests that
an infinity of primitive values g, have an exponent a <2.
The analysis of Sec. II hence predicts the existence of an
infinity of spectral gaps at small enough potential
strength V, and the gap widths are expected to scale ac-
cording to Eq. (2.32).

We end this section with the behavior of the Fourier
distribution function around the origin. It is clear from
Eq. (3.5) that the intensity Sy vanishes as g2V for small g,
and hence the limit distribution function w(q) vanishes
more rapidly than any power of ¢ as ¢g—0. In a more
quantitative way, a rough estimate of u(q) is obtained by
deriving from the exact expression (3.5) the approximate
equation u(q)~Kgq?u(2g), where K is some constant.
This equation yields

ulg)~exp . 3.9

_ (Ing)?
o2 + O (Ing)

A similar singularity is present at all dyadic values of the
wave vector: q,=2mM2" V.
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C. The trace map

The discovery of a trace map in the case of the Fi-
bonacci sequence’®~2* has permitted a considerably
deeper understanding of the problem. It has been
shown3® that there exists a polynomial trace map for any
sequence generated by a binary substitution. In the case
of the Morse sequence, this map has been used in Refs. 10
and 11. Trace maps have also been used’®>! for quasi-
periodic sequences related to some classes of quadratic ir-
rationals.

We present here the transfer matrix formalism and the
derivation of the trace map in the present case, for sake
of completeness. Equation (1.1) can be recast in matrix
form

1/')1 +1 l/}n . Vn —E —1
o, =T, " with T, = 1 0 (3.10)
in such a way that we have
Y+ Y
U, =I,1,_, - I,T, Yo

so that the propagation along any finite part of the chain
is described by the ordered product of the T, along that
segment.

Let A, and B, denote the products of the 2* matrices
T, corresponding to the letters of the words A4, and B,
defined in Sec. III A. Since the elementary matrices T,
defined in Eq. (3.10) have a determinant equal to unity,
the matrices A, and B, also share that property. By vir-
tue of Eq. (3.2), these matrices obey an analogous recur-

sion relation, namely

Ay 1=Br Ay, k20 (3.11a)

B +1=A By, k=0. (3.11b)
Let us now introduce the notation

ap=trA,;, Bi=trB, vi=tr(A;By) . (3.12)

It follows directly from Eq. (3.11) that a; ;=B +1=V«
(k 20). Moreover, B .,=tr(A2B%). To evaluate this
quantity, we use the Cayley-Hamilton theorem, which re-
sults in the following identity, M being an arbitrary 2 X2
matrix:

M?=(trtM)M —(detM )1 . (3.13)

We end up with By ,=aB, 7, —ai —B2+2. Going to

the usual parametrization,

xk:%ak:%tr‘ik N (3.14)

we obtain a closed-form recursion relation for the x,

Xppr=4xHxp 1 —D+1 (k=1). (3.15)

This equation is already given in Refs. 10 and 11. It has

_to be completed with the appropriate initial conditions,

namely, -
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x| =HE>=V?)—1, (3.16a)

x,=HE*+VH—E*V?—2E*+1 . (3.16b)
For V=0, we have
x; =cos(2XQ) with E =—2cosQ (3.17)

as expected, since we just have a uniform chain, described
as blocks of length L =2*,

The trace map contains, in principle, enough informa-
tion to describe the whole energy spectrum. Consider
indeed the periodic approximants to the Thue-Morse se-
quence, defined as infinite periodic repetitions of the
words A;. These periodic chains have 2% atoms per cell,
and hence their spectrum is made of 2 bands. Since
propagation along one cell A, is described by the
transfer matrix A ,, the dispersion relation between E
and the wave vector Q which labels the Bloch eigenstates
is obtained by noticing that the eigenvalues of A, are
e®C. We have therefore trA,; =2 cosQ, i.e., x, =cosQ.
Since x; is a polynomial of degree 2¥ in E, the dispersion
relation has indeed 2 branches, as expected.

In the following, we will mostly use trace maps to
study the behavior of some gaps widths for small poten-
tial strength. The perturbative analysis for ¥V—0 of a
trace map such as Eq. (3.15) is indeed much more explicit
than the general case exposed in Sec. II. The correspond-
ing analysis for the Fibonacci sequence has been reported
in Ref. 45.

D. The energy spectrum

The trace map provides a very easy way of studying
symmetry properties of the energy spectrum. The initial
values x; and x, of Eq. (3.16) are even functions of E and
V, separately. The trace map ensures that this property
is valid for all the x;. Going to the limit of an infinite
system size, we deduce the following properties. (a) The
energy spectrum does not depend on the sign of the po-
tential strength V. (b) At fixed V, the spectrum is sym-
metric with respect to the origin of energies. One has in
particular the relation H(E)+H(—E)=1. Let us notice
that properties (a) and (b) are equivalent, because of the
symmetry (1.3).

1. Location of gaps

Figure 1 shows a plot of the IDOS against energy for
V' =0.5. All the most visible gaps can be labeled by ei-
ther one of the following classes of values of IDOS. (a)
As has been suggested in Refs. 10 and 11, there is a spec-
tral gap at any dyadic value of the IDOS: H=M2"%,
with integer M (odd) and N. (b) The perturbative analysis
of Sec. II also implies the presence of gaps for some non-
dyadic rational values of H, namely those corresponding
to a<2. We are therefore led to conjecture that all the
spectral gaps of the Thue-Morse sequence are located at
those two sets of values of the IDOS.

In the limit where the potential strength goes to
infinity, the spectrum can be determined exactly. Indeed,
to leading order in ¥V, the nondiagonal terms can be
neglected in Eq. (1.1), in such a way that the eigenstates
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FIG. 1. Plot of the IDOS H(E), against energy E, for the
tight-binding equation (1.1), where the potentials ¥, are given
by the Thue-Morse sequence, with a potential strength ¥V =0.5.
The indicated values of the IDOS inside gaps correspond to the
labeling discussed in the text.

are localized onto one site, and have an energy E=V,,.
Since both letters 4 and B occur with the same density 1,
we predict half the states around E =V, and half around
E = —V. The next approximation consists in taking into
account whether the letters A or B are isolated, or belong
to words of two, or more, identical letters, and in calcu-
lating the energy levels of those words, with Dirichlet
boundary conditions. It can be argued that the error
made is of the order of 1/V. The n levels of a word of n
letters A read

E,=V+2cosimm/(n+1)], 1=m=n. (3.18)

Consider for the sake of definiteness the letters A.
They occur in words of one or two letters. Let p 4, and
p44 denote the densities of these words, so that
P4+t2p,44=% These quantities can be determined by
considering the substitution (3.1) which leaves the infinite
sequence invariant. Since a word 4 4 comes from a word
B A4, we have p 4 , =pp, /2. Moreover, a word B A comes
either from a letter B or from a word A A4, hence
Ppa=(++p44)/2. We have therefore p,=p =1
The same result holds for the letters B. To this approxi-
mation, the six allowed values of the energy, —V —1,
-V, —V+1, V—1, V, and V+1, occur with equal
weights +. More precisely, the spectrum is included in
intervals of width O(1/V) centered around these six
values of energy. The gaps with a nonvanishing width for
V — oo are therefore located at H =k /6 (1 <k <5).

The rest of this section is devoted to a detailed study of
two of the spectral gaps, namely those at H = and 2.

2. Thegapat H=1

The spectral gap at H =1, located at the center of the
symmetric energy spectrum, is the best example of the
first kind of gaps, namely those occurring at dyadic
values of the IDOS. The edges of this central gap can, in
fact, be determined analytically. Indeed, we have x,=1
for

E, =+[(1+VH)12—-1]. (3.19)
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Equation (3.15) then implies that x, =1 for all k =1, and
hence Eq. (3.19) gives the exact gap edges. This is a very
particular feature of the trace map of the Thue-Morse se-
quence.

For large V, Eq. (3.19) has the expansion
E,=x(V—1+1/V+ ---). This expression agrees
with the above analysis of the V' — oo limit. For small V,
the gap width A vanishes as A=V2—F*/8+ ---. This
gap has, therefore, a=2, in the language of Sec. II. On
the other hand, the associated singularity at ¢ = of the
Fourier distribution function is of the form (3.9). This
essential singularity corresponds formally to B= .
Hence the gap under consideration is an exception to the
rule (2.32).

3. Thegapat H=1

The spectral gap at H =2 is the best example of a gap
occurring at a nondyadic rational value of the IDOS, as-
sociated with a singularity of the form (2.7) in the Fourier
transform, with a <2. The above analysis of the large-V
limit shows that the width of this gap goes to 1 in the
V — o limit. The small-V regime can be studied by using
the trace map (3.15). This approach confirms in an in-
dependent way the general analysis of Sec. II.

The value H =§ corresponds to Ey=1, in absence of
potential. We are therefore led to expand the trace map
for that value of energy. Since the x; are even functions
of V, the first nontrivial terms in their small-V expansion
are proportional to V2. If we set

xp=—t+aq Vit -, (3.20)
the recursion relation (3.15) yields a; =a;_;+6a; _,.
The solution which satisfies the initial values a, =-%,
a,=—1 reads

a,=—23k+L(—2)k. 3.21)
On the other hand, the behavior of the x; in absence of
potential, for small 8E =E —E, can be obtained by ex-
panding Eq. (3.17). Keeping only the leading terms for
large k, we get

x,=—1—1(—2)E—23kp2+ --- . (3.22)

The behavior of the gap width A for small V can be ex-
tracted from this expansion by means of the following ar-
gument. The expression (3.22) is invariant under the
simultaneous change of variable

2
5En——>—8—2£, Vzl—r%—

The system size L =2* is multiplied by two by this
operation, which can therefore be considered as a discrete
renormalization-group transformation. Physical quanti-
ties related to the infinite system, such as the gap width
A, have to be invariant under this transform. The only
possible invariant relation is

21n2
In3

k—k +1, (3.23)

A~V? with B= =1.26168 . (3.24)
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This expression agrees with Eq. (2.32), the value of a be-
ing given in Sec. IIIB. A similar perturbative
renormalization-group analysis of the trace map can be
performed for the gaps located at all the rational values
of the IDOS, associated with the power-law singularities
(3.8). The values thus obtained of the exponents /3 coin-
cide numerically with those obtained from Eq. (2.32). We
have not found in a closed form the trigonometric identi-
ties needed to check the agreement between both results
in the general case.

Figure 2 shows a log-log plot of the width A of the gap
located at H =%, against the potential strength V. Both
the power law with exponent 3 at small ¥, and the limit
A—1 at large V, are very clearly seen.

IV. THE PERIOD-DOUBLING SEQUENCE

A. Definition

This sequence originates in the theory of dynamical
systems. It describes the behavior of any system at the
Myrberg point, which is the accumulation point of the
period-doubling cascade. As will be discussed below, this
sequence is generated by a binary substitution, and is
almost-periodic.

The reader is referred to Refs. 35 and 36 for a detailed
review of the theory of period doubling. We just recall
here the basic result concerning the period-doubling se-
quence. Consider the one-parameter family of maps, e.g.,

fur x—>1—px? .

There exists an increasing sequence of values u, of the
parameter such that the map f, has a superstable cycle
of length 2". These values have an accumulation point
U, usually called the Myrberg point. The orbit of the
origin x =0 under the corresponding map is aperiodic.
The period-doubling sequence is an infinite sequence of

InA

-6 ] | I | 1 ] llnV
-4 -2 0 2 4

FIG. 2. log-log plot of the width A of the gap located at
H =2, for the Thue-Morse sequence, against the potential
strength V. The horizontal line shows the large-V limit A=1.
The other straight line has the slope S, according to the predic-
tion (2.32, 3.24), and a fitted intercept.
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letters R and L (symbolic dynamics) defined as follows:
the nth letter is an R if the nth iterate (f b, )"(0) is posi-

tive (i.e., to the right of 0), and an L if that number is neg-
ative (i.e., to the left of 0). It has been shown to be gen-
erated by the following binary substitution:

R—RL ,
T |1, RR .

(4.1a)
(4.1b)

In analogy with the Thue-Morse sequence, we define the
words R, and L, as the transforms of R and L under &
iterations of the substitution Tpp. These words have 2%
letters, and obey the recursion relations

Rk=Rk—1Lk"‘l’ kZl
Lk=Rk—1Rk—l’ kZl .

(4.2a)
(4.2b)

The period-doubling sequence is the limit of the words
R,. We will consider it as a numerical sequence through
the convention

letter R=—e¢=+1,
letter L=—¢=—1.

(4.3a)
(4.3b)

B. Fourier transform

The Fourier transform of the period-doubling sequence
can be explicitly determined as follows. Let g,(q) denote
the partial Fourier amplitudes associated with the words
R, so that

g(g)= 3

1Sn<2k

e e’ . 4.4)

Since the beginning of the word R; is R _,, the g, are
the first 2 letters of the infinite sequence. The form (4.1)
of the substitution is such that these letters obey
€m—1=1, and &,,, =—¢,,, for every m = 1. These rela-
tions imply the following functional equation:

i2kg 1

8rx(q)+gr_1(29)= - 4.5)

2ising

For g =0, the right-hand side of Eq. (4.5) equals 2 1,

and a summation of these terms yields

g1 (0)=1[2K42(—1)¥] . (4.6)
This result expresses that, among the 2* letters of the
word R,, there are NR=1[2X 2% (—1)¥] letters R, and
Ni=1[2%—(—1)¥] letters L. In virtue of Eq. (2.6), Eq.
(4.6) also shows that the Fourier transform of the infinite
period-doubling sequence contains a 8-function peak at
q =0, with an amplitude C(0)=1.

For g =m, the right-hand side of Eq. (4.5) equals
—2%=1"and a similar analysis demonstrates that there is
also a 8-function peak, with an amplitude C(mr)=—32.
The iteration of Eq. (4.5) then shows that the Fourier
transform contains d-function peaks at all dyadic values
of g /(27), and allows a recursive calculation of their am-
plitudes: the peak situated at g =2arM X2~V [N>1,
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1 < M (0odd) < 2"] has an amplitude
1

crM2V)y=———— .
(2 ) 2N -2

4.7)
The period-doubling sequence is therefore almost-
periodic. The distribution function u(q) of the Fourier
intensity can be derived in a closed form from Eq. (4.7).

We obtain after some manipulations, with the notation
x =q/(2m),

(@)= — % +x +3Frac(x)—4f (x)

with f(x)= 3 272 Frac(2"x) .
N>0

(4.8)

Frac(x) denotes the fractional part of x, i.e., the
difference between x and Int(x), the integer part of x.
The function u is by construction discontinuous at each
dyadic value of x. The accumulation of these discon-
tinuities has the result that it also develops weaker singu-
larities at nondyadic values of x. Consider the example
of x =1, which will be used hereafter in the study of
spectral gaps. It is easily realized that the function f
defined in Eq. (4.8) obeys the following functional equa-
tion, for |y | <+:

fE+y)=2+y—Lf(L-2y). 4.9)
This equation implies the following exact behavior:
1
FGp =5+ +y?Ps |2 .10

The subscript * refers to the sign of y, and P, are two
periodic functions of their argument, with unit period.
The Fourier distribution function p has, therefore, a
singular part at g =27/3, with index a=2, in the
language of Sec. II A. This is precisely the marginal
value which corresponds to an infinite gap exponent S.
The actual behavior of the width of the associated gap
will be determined in Sec. IV D.

C. The trace map

The following derivation of the trace map associated
with the period-doubling sequence will proceed in analo-
gy with the case of the Thue-Morse sequence, presented
in Sec. III C.

Let #, and .L, denote the products of the 2* transfer
matrices corresponding to the letters of the words R, and
L,, defined in Sec. IV A. These matrices obey the follow-
ing recursion relation:

Ry 1=LiRi , k>0 4.11a)

Ly 1=R%, k>0. (4.11b)
If we introduce the notation

a,=trR;, Br=trLy, vi=tr(R L), (4.12)

the recursion relation (4.11) implies o =Y, and, by
virtue of Eq. (3.13), By, ;=a% —2. The calculation of
Yi41=tr(L;R}) needs the following identity for the
cube of an arbitrary 2 X 2 matrix M:
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M3=[(trM *—detM ]M — (trM )(detM)1 , (4.13)

which is simply derived by iterating Eq. (3.13). We thus
obtain y, ,;=(a}—1)y;—a;B;. With the usual nor-

malization
xXp=%a, =1trR, , 4.14)
we obtain the following recursion relation:
X p3=(4x] 1 —1)xp ,—2(2x7 —1)xp 44 (4.15)
together with initial conditions
xo=2+(V—E), (4.16a)
x,=HE>-V?)—1, (4.16b)
x,=HE*~V)+EV(V?*—E*)+2E(V —E)+1.
(4.16¢)

It turns out that the trace map (4.15) has the following in-
variant:

4—xk+2—(4x,f—2)xk+1+l . 4.17)

Namely, Eq. (4.15) is such that & is invariant under the
replacement of k by k +1. The initial values (4.16) are
such that the quantity & vanishes. Hence we have

Xy 42 =(4x}F—2)x; ., —1. (4.18)

Equation (4.18) is the final form of the trace map, which
will be used hereafter.

D. The energy spectrum
1. Location of gaps

Let us first notice that, apart from the symmetry (1.3),
the spectrum associated with the period-doubling se-
quence has no further symmetry property. Since that se-
quence is almost-periodic, with the set of dyadic numbers
as a frequency module, a naive application of the gap-
labeling theorem would suggest that all the gaps of the
energy spectrum are located at dyadic values of the
IDOS.

The following analysis of the large—potential-strength
limit shows that this result is not correct. In analogy
with the case of the Thue-Morse sequence, we have to
determine the densities of the words made of only one
type of letters, either R or L. We have seen in the previ-
ous section that the letters L have a density of 1; they are
always isolated. The letters R occur either isolated or in
words RRR. Let pr and pgprr denote the densities of
these occurrences, so that pg +prrr =2. Under the sub-
stitution (4.1), an isolated R is generated from every R.
Hence we have pr =pgrr =+. Therefore, up to terms of
order 1/V, the allowed values of the energy are —V,
V— \/2 V, and V+\/2 with respective weights 1 + 6, +
and 1. The gaps with a nonvamshlng width for V— o
are located at the values 1, 1, and 2 of the IDOS.

Figure 3 shows a plot of the IDOS against energy for
V =0.5. All the most visible gaps can be labeled by
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FIG. 3. Same as Fig. 1, for the period-doubling sequence,
with ¥ =0.5.

values H of the IDOS such that 3H is a dyadic number.
In other words, H is a rational number, and its denomi-
nator in irreducible form is either a power of 2, or three
times a power of 2. We are led to conjecture that all the
spectral gaps can be labeled in such a way, for any finite
value of V. The gaps at dyadic values of the IDOS have a
width linear in V for small potential strength ¥, just as
for any standard quasiperiodic or almost-periodic system.
The behavior of the other gaps is studied in the next sub-
section, with the example of the largest of these gaps, lo-
cated at H =1.

2. ThegapatH =5

The above analysis of the large-V regime shows the ex-
istence of a spectral gap located at H =4. The corre-
sponding singularity in the Fourier transform of the se-
quence is described by Eq. (4.10). It has an exponent
a=2, which corresponds through Eq. (2.32) to an infinite
value of the gap exponent 3. The actual small-V behavior
of the width of this gap can be extracted from the trace
map (4.18) as follows.

The value H=1 corresponds to Ey=1, in the absence
of potential. For E =E,, the x;, have the following
small-V expansion:

Xp=—1+a V+b Vi+ (k>1). (4.19)

The coefficients @, obey the recursion relation aq; ,
=2a; —ay ., for k>1, with initial values a; =0, and
a,=—1. Hence we have

ap=—4-2)k-1. (4.20)
The coefficients bk obey the recursion relation by ,
—Zbk—-ka—Zak 4a,a; .y, for k> 1, with the initial

values b; = —1 and b, =0. Hence we have
b=t f(—2p— 2L @21

On the other hand, the expansion of the x; for small
8E=E —E, can be extracted from Eq. (3.17), which is
indeed valid for any substitution of constant length 2.
We finally obtain, keeping only the leading terms,
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2k +1

2
3 V

Xp=—L1+L(—2)k6E' — L

2

V+

with 8E'=8E -1V + Uyp?4 - .. (4.22)
The occurrence of the combination 8E’ has the following
interpretation: 8F is shifted by a quantity which is regu-
lar in ¥, and represents the shift of the center of the gap.
This is confirmed by the fact that, among the higher-
order terms which have not been written in Eq. (4.22), the
terms in 4% are proportional to (8E')2.

In analogy with the analysis of Sec. III D 3, we notice
that Eq. (4.22) is invariant under the following
renormalization-group transform:

SE' 1 1,2
27 vV v 3°
The functional relation between the gap width A and V
has to be invariant under this transformation. The only
possibility is that of an essential singularity

k—k +1, 8E'— (4.23)

31n2
2V

A~ exp (4.24)

It is remarkable that this exponentially small gap width
indeed corresponds to an infinite exponent f3, as expected
from the analysis of the Fourier transform performed in
Sec. IV B. The perturbative result (4.22) only predicts the
leading dependence of A on V. In analogy with the ex-
ponential singularities which occur, e.g., in the mass gap
of nonlinear sigma models in two dimensions, we expect
that Eq. (4.24) is modified by a power law

31n2
2V

A=V¥%exp | — (4.25)

We have tested this assumption numerically. With the
notation x =1/V, Eq. (4.25) implies

A(x)
A(x +1)

~ 31n2 YoV .

=1
Y=In >

(4.26)

Figure 4 shows a plot of this quantity against V. The in-
tercept agrees perfectly with the expected value; the
linear dependence on ¥V is also very clear, and suggests
the value ¢ =1 with a very good accuracy.

V. THE “CIRCLE SEQUENCE”

A. Definition

As we have discussed in the Introduction, several re-
cent works have been devoted to one-dimensional struc-
tures ‘“beyond quasiperiodicity,” with either an unbound-
ed density fluctuation,”~’ or a singular continuous
Fourier transform.®>® The examples considered explicitly
in these references were built from the following se-

quence:
g, =2X(nl)—1 . (5.1

land A are arbitrary numbers between 0 and 1, and X, (x)
denotes the characteristic function of the interval [0,A]
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FIG. 4. Study of the gap located at H =% for the period-
doubling sequence: plot of the quantity Y defined in Eq. (4.26)
against the potential strength V. The straight line has the exact-
ly known intercept (31n2)/2; its fitted slope suggests the value
=7 :

(mod 1). In other words, we have g, =+1 (g,=—1) if
the fractional part of nl lies between 0 and A (A and 1).
The reader is referred to the above papers for a discus-
sion of the possible physical origins of such a sequence.
Since the definition (5.1) involves the multiples of a given
number / (mod 1), it can be visualized as the result of a
uniform rotation around the unit circle, with a rotation
angle /. This is the origin of the name “circle sequence.”

The circle sequence can be shown to be quasiperiodic
for any values of / (irrational) and A. The sequence has
nevertheless different kinds of behavior, according to
number-theoretic properties / and A. In order to discuss
this point, the simplest quantity to consider is the fluctua-
tion of the sequence around its average (e, )=2A—1,
defined by

21\1: >

l<n<N

e, —(2A—1)N . (5.2)

It turns out that, when A and / are related by the Kesten
condition*®

A=rl (mod1), (5.3)

where 7 is any (positive or negative) integer, the fluctua-
tion 2y is bounded, and the sequence e, is a well-
behaved quasiperiodic sequence. For instance, the Fi-
bonacci sequence is recovered for r=1, A=l=71"2
where 7=(V'541)/2 denotes the golden mean.

Whenever the condition (5.3) is not fulfilled, the fluc-
tuation = is not bounded. Among those generic values
of the parameters, there exist classes of self-similar se-
quences,’ —° generated by substitutions. They correspond
to quadratic algebraic values of the rotation angle /. The
fluctuation =, then grows as InN, with a periodic modu-
lation.” The simplest of those sequences is obtained for
I=r72 A=1. (5.4)

From now on, the circle sequence will refer to this par-
ticular choice of parameters. It has been shown® that it
can be generated by the following substitutions acting on
three letters A4, B, and C:
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A—CAC, (5.5a)
Te: {B—ACCAC, (5.5b)
C—>ABCAC . (5.50)

Let us define, in analogy with the previous sequences, the
words A, By, and C, as the transforms of the letters A4,
B, and C under k iterations of the substitution T. It is
easily shown by induction that the lengths (numbers of
letters) of these words are I'=Fy ., IE=1E=F; ,,,
where the F, is the kth Fibonacci number, defined by

F,=F,_,+F,_, for k>2, with F;=0 and F;=1 .
(5.6)

Since the F, grow as 7%, the lengths of these words grow
as 7%, The sequence € . is then recovered by applying the
identification ’

(5.7a)
(5.7b)

letter A or B=¢e¢=+41,
letter C =eg=—1.

to the infinite word obtained as the limit of the A, for
odd k, forgetting about its first letter.

B. Fourier transform

The definition (5.1) yields in a straightforward way the
Fourier transform of the circle sequence. We limit our-
selves to the values (5.4) of the parameters. Indeed, since
the periodic function entering Eq. (5.1) has the Fourier
series

2i ;
2X1/ (x)—1= —e_z’”k , (5.8)
2 k%ld 7k
the Fourier transform of the sequence ¢, reads
2i | g9 -2
G(gq)= —8 —j+k 5.
() k%’jﬁk 27 JkT (5.9)

The circle sequence is therefore quasiperiodic. The &-
function peaks which lie between ¢ =0 and g =27 are lo-
cated at q/(27)= —Frac(kt~2)=Frac(k7). It follows
from Eq. (5.9) that the intensity distribution function
p(g) has the following expression (with the notation
q =2mx):

ulg)= ¥ ——{1+Int[x —Frac(k7)]
odd k(> 1) (TK)

+Int[x + Frac(k7)]} . (5.10)

Just as the expression (4.8) in the case of the period-
doubling sequence, the function u(q) given by Eq. (5.10)
has, besides its discontinuities at x =Frac(kr), weaker
singularities at other values of x. We consider the exam-
ple of x =1, since it will be shown in the next section that
it corresponds to a gap located at the center of the spec-
trum. The analysis of the singularity at x =1 is a rather
intricate question. We do not pretend any rigor, and will
content ourselves with the following rough argument.
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The singularity is clearly due to odd values of k such that
Frac(k7) is closest to . There exists a particular se-
quence p,,, which corresponds to the best possible ap-
proximation of A=1 by multiples of /=772 (mod 1).
This problem is considered in Appendix A of Ref. 9 for
arbitrary values of / and A. In the present case, the p,,
are defined by

pm_pm—-1=F3m+1 (pOZO) . (511)

We have p,=1, p,=4, p;=17, etc. Since the integers m
and p,, have the same parity, only odd values of m have
to be considered. It can be checked that these numbers
grow as p,, ~7", and that |Frac(p,7)—1|~7"3"
The contribution of these numbers to the sum in Eq.
(5.10) yields therefore

wlg =2mx)—ulqg =m)~(x —3)°P

(5.12)

We claim that Eq. (5.12) gives the correct form of the
scaling behavior of the function u around x =J. This re-
sult is fully analogous to Eq. (4.10). The corresponding
spectral gap will be studied in the next section.

C. The energy spectrum

Since the substitution (5.5) which generates the circle
sequence acts on three letters, even though the sequence
itself is binary, the result of Ref. 38 on the existence of a
polynomial trace map does not apply. We have therefore
to use other approaches to the study of the associated en-
ergy spectrum. In order to explore its symmetry proper-
ties, we notice that the sequence ¢,'=—¢, is also gen-
erated by Eq. (1.1), if the constant 1 is added to the argu-
ment nl of the function X, ,,. This property of the value

=1 holds independently of /. Hence both sequences €,
and €, have clearly the same energy spectrum. Using the
symmetry property (1.3), we conclude that opposite
values ¥V and — V of the potential strength lead to the
same spectrum, and that this spectrum is symmetric with
respect to the origin of energies: H(E)4+H(—E)=1.

1. Location of gaps

In analogy with the previous sections, we can study the
energy spectrum in an exact way in the limit of a large
potential strength. To do so, it is easier to consider the
circle sequence as made up of + and —, and to use the
definition (5.1) itself, rather than the substitution (5.5).
We first notice that the symmetry just above implies that
the clusters of + and those of — have the same densities.
We consider the + for sake of definiteness. Since
2772 1, the + occur either isolated, or in clusters + +.
More precisely, €, is an isolated + if and only if
Frac(n772) lies in the interval [+ —772,772]. Since the
length of this interval is k=21“2—%, the allowed values
of the energy, up to terms of order 1/V, are the follow-
ing: —V and V, with weights A, — ¥V —1, —V +1, V —1,
and V +1, with weights (1 —A)/2=1—7"2 The gaps
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with a nonvanishing width for V— « correspond there-
fore to the values L —772, 772, 1, 7=1 and 14772 of the
IDOS.

Among these five values of the IDOS, only two, namely
772 and 7, belong to the frequency module of the se-
quence. Thus the gap-labeling theorem does not apply to
the circle sequence. In analogy with the period-doubling
sequence, the module has to be extended in order to de-
scribe all spectral gaps. Figure 5 shows a plot of the
IDOS against energy, for ¥V =0.75. All the most visible
gaps can be labeled either as (a) H =Frac(kr), or as (b)
H =1+ Frac(kT), where k is an odd, positive, or negative
integer. We conjecture that these numbers correspond to
all the gaps, for any finite value of the potential strength.
The gaps of class (a) are associated with &-function peaks
in the Fourier transform of the sequence; their width is
expected to vanish linearly for small V. The behavior of
the gaps of class (b) is a more delicate question. The next
section presents accurate numerical data concerning the
largest of them, located at H =1.

2. ThegapatH=1

We have shown in the preceding subsection that there
is a gap located at the center of the spectrum, with the
value H =1 of the IDOS. This gap is the largest one for
large V, since its width behaves as A=2V —-2+0(1/V).
The corresponding singularity of the Fourier transform is
described by Eq. (5.12): it has an exponent a=2, which
yields an infinite gap exponent 8. The very same behav-
ior is observed in the case of the period-doubling se-
quence. It seems therefore reasonable to expect the same
exponentially small behavior of the gap width A, namely

A~e ¢ as V0. (5.13)

Figure 6 shows a plot of the logarithm of the width A
of the central gap, against 1/V. Owing to the obvious
fact that the value E =0 is the center of this gap, we have
been able to “follow” it down to widths where we were
limited by the accuracy of the computer. The quantity
2/V has been added to the y axis, in order to show in a
better way how accurately the numerical data agree with
Eq. (5.13), even for values of 1/V as small as four. The

0.4

0.2

E

| 1 1 1
-2 -1 0 1 2

Same as Fig. 1, for the circle sequence, with

FIG. 5.
V =0.75.
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FIG. 6. Study of the central gap, located at H =%, for the
circle sequence: plot of the quantity InA+2/V, against 1/V.
The fitted straight line has a slope 0.110, yielding the value
1.890 for the constant C of the exponential singularity (5.13).

slope of the graph is 0.110. We predict therefore
C =1.890, with an error bar of a few 1073,

VI. THE RUDIN-SHAPIRO SEQUENCE

A. Definition

The Rudin-Shapiro sequence*®® is one of the most

classical arithmetic sequences,’’ with the Thue-Morse se-
quence studied in Sec. III. We have chosen to include
this example in the present study, because the triviality of
its Fourier transform does not exclude the presence of a
dense set of gaps in the energy spectrum.

The Rudin-Shapiro sequence €, has the following ar-
ithmetic definition: g, =41 (—1) if the number of times
the word 11 occurs in the binary digit representation of n
is even (odd). This sequence can be shown to be generat-
ed by the following substitution, acting on four letters,
usually denoted by figures from O to 3, such that

002, 6.1a)
132, (6.1b)
Trs: 12,01, (6.1¢)
331 . (6.1d)

Let W, denote the transform of the letter O under k itera-
tions of the substitution Txg. The Rudin-Shapiro se-
quence is the limit of the W, converted into a numerical
sequence by the following transcription:

letter O or 2==g=+1,
letter 1 or 3=—¢e=—1.

(6.2a)
(6.2b)

B. Fourier transform

The study of the Fourier transform of the Rudin-
Shapiro sequence involves some elaborate substitution
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theory, which we do not want to tackle here. The reader
is referred to Ref. 37 for a complete review of this area.
The result of the following: the Fourier measure is abso-
lutely continuous, with a uniform density

S(g)=1. (6.3)

Equation (2.4) then implies that the two-point correlation
function S, of the sequence is trivial:

1 ifa=0

Sa=(en€n1a) =840= 0 otherwise .

C. The energy spectrum

The perturbative analysis of Sec. II does not yield
much information about the spectrum associated with
the Rudin-Shapiro sequence, since the second-order term
(2.28) 1is trivial, while the k-point functions (k >2) in-
volved in the higher-order terms of the expansion have
not been investigated, as far as we know. Since the sub-
stitution (6.1) acts on four letters, there is also no trace
map.

The substitution (6.1) is left invariant under the follow-
ing interchange of letters:

03,

o2 | 6.5)

Since this transform exchanges the letters which yield
€=1 and e=—1, we conclude, by the same argument as
in Sec. V C, that opposite values ¥ and — V of the poten-
tial strength correspond to the same energy spectrum,
which is symmetric with respect to the origin of energies.

1. Location of gaps

In analogy with the previous sections, the energy spec-
trum can be determined exactly in the limit of a large po-
tential strength V. As in Sec. V, we use the shorter nota-
tion + and — for the g,. By virtue of the above symme-
try, the clusters of + and — have the same densities: we
consider the + for the sake of definiteness. They occur
in clusters of length 1-4. Let p, (1 <n <4) denote the
densities of these words. These quantities can be deter-
mined by the same method as in the previous examples,
namely by listing which words generate the clusters of +
under the substitution (6.1), which words generate these
words, etc. A closed set of relations is obtained after con-
sidering two iterations. The calculation is lengthy but
simple; the result reads p;=1%, py=p,=+, and p;=%.
The associated values of energy are given by Eq. (3.18),
up to terms of order 1/¥. By sorting these values in in-
creasing order, and adding up the corresponding densi-
ties, we obtain the set of values of the IDOS where there
is a gap, at least for large enough V:

Horl—-H=K/32,
with K =1,3,4,5,11,12,13,15,16 .  (6.6)

Figure 7 shows a plot of the IDOS, against energy, for
a potential strength V' =1.25. Besides the largest gaps,
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FIG. 7. Same as Fig. 1, for the Rudin-Shapiro sequence, with
V=1.25.

located at values of the IDOS with a denominator of
2°=32, smaller gaps can be seen, which are likely to cor-
respond to dyadic values, with a higher power of 2 as
denominator. We are led to conjecture that all the spec-
tral gaps can be labeled by dyadic numbers.

2. ThegapatH=1

The analysis of the previous subsection shows that
there is a spectral gap at the value H =1 of the IDOS, at
least for large values of the potential strength V. This
gap is symmetric with respect to E =0, as the whole
spectrum. Its width behaves as A=2V —27+0(1/V) for
large V, with 7=2 cos(#/5) (this number is equal to the
golden mean introduced in sec. V).

Figure 8 shows a plot of the width A of this central
gap, against V. This figure exhibits a striking feature that
has not been met at all in the previous examples: the gap
width has a highly nonmonotonic ¥V dependence. The
data correspond to an extrapolation of the exact ga
edges of periodic systems with a cell W, of length 2~
The convergence properties are not good enough to ex-
plore smaller values of V than those shown on the plot.
This complicated behavior is certainly due to this very
particular feature of the Rudin-Shapiro sequence: since
the Fourier transform is trivial, the origin of spectral

0.1 -

0 1 v
0 0.5 1 15 2

FIG. 8. Plot of the width of the central gap, located at
H =%, for the Rudin-Shapiro sequence, against the potential
strength V.
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gaps is concealed in higher-order correlations in an intri-
cate way.

VII. DISCUSSION

This paper contains two different kinds of results con-
cerning the spectrum of the Schrodinger equation with an
arbitrary homogeneous binary sequence of aperiodic po-
tentials, namely those of a general perturbative analysis
for small potential strength, and of the specific study of
four example of self-similar sequences.

The perturbation analysis exposed in Sec. II
demonstrates—in a nonrigorous way-—the mechanism
responsible for the universality of Cantor spectra. In the
case of a quasiperiodic or almost-periodic potential, it is
clear, at the level of perturbation theory, that each §-
function peak in the Fourier transform is responsible for
a spectral gap. The gap-labeling theorem shows on a
rigorous basis that this result is stable, beyond perturba-
tion theory, at least for a smooth quasiperiodic potential.
The value of the IDOS inside a gap belongs to the fre-
quency module of the potential; it is strictly independent
of the potential strength. In other words, no (extensive
number of) states cross gaps when parameters are
smoothly varied. Hence the IDOS can be used to ““label”
spectral gaps. Since the module is a dense set in nontrivi-
al situations, the spectrum possesses a dense set of gaps.
The fact that its total Lebesgue measure, or ‘“band-
width,” vanishes is a much more difficult question, which
needs a global analysis of the problem.

The results of Sec. II suggest that the concept of gap
labeling can be extended to a much more general class of
sequences, like, e.g., those having a singular continuous
Fourier transform. The general idea is that spectral gaps
are labeled by the singularities of the Fourier intensity of
the potential, independently of parameters such as the po-
tential strength. This statement has to be made more
precise in several respects. Only the stronger singulari-
ties, namely the power laws with a <2, with the notation
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of Eq. (2.7), do correspond to a gap; the gap width scales
with the exponent S, given by Eq. (2.32). The gaps thus
generated usually cover a dense set of values of the IDOS.
Sections III- VI, summarized in Table I, are devoted to
the more specific study of four aperiodic but self-similar
sequences, generated by substitution. These examples
come either from mathematics—the (singular continu-
ous) Thue-Morse sequence and the (absolutely continu-
ous) Rudin-Shapiro sequence are among the most well-
known “arithmetic” sequences, or from physics—
dynamical systems, with the (almost-periodic) period-
doubling sequence, or incommensurate structures, with
the (quasiperiodic) circle sequence. This study makes use
of various techniques. The large-potential regime can be
studied exactly, by considering clusters of identical
letters, for any sequence. This approach yields the ex-
tensive list of gaps which do not shrink to a vanishing
width in the limit of an infinite potential strength. In the
case of a binary substitution, there exists a polynomial-
trace map; its perturbative renormalization-group
analysis permits an analytic determination of the scaling
of some gap widths. Numerical data are in excellent
agreement with the different kinds of analytical results.
The study of two of these specific cases has illustrated
one of the difficult points in the relationship between
singularities in the Fourier transform and spectral gaps,
namely the violation of the gap-labeling theorem in the
spectrum of the (almost-periodic) period-doubling se-
quence, and the (quasiperiodic) circle sequence. The
spectra associated with both sequences have gaps outside
the frequency module of the potential. Since the theorem
has only been proved under rather restrictive conditions
of smoothness of the potential, the observed effect is no
paradox. On a heuristic basis, we have proposed to label
the gaps with elements of an extended frequency module.
For the period-doubling sequence, the module is the set
of dyadic numbers; we claim that the values of the IDOS
inside gaps are such that 3H is a dyadic. For the circle
sequence, the module is made of numbers j + k7, with

TABLE I. A summary of the study, presented in Secs. III-VI, of the spectra associated with four
self-similar sequences, generated by substitutions. For each sequence, the table gives the nature of its
Fourier transform, its frequency module (when applicable), and the conjectured “labeling” of gaps in
the energy spectrum, in terms of the integrated density of states.

Fourier location of gaps
Sequence transform (values of the IDOS)
Thue-Morse singular (a) H dyadic
(Sec. III) continuous (b) H rational

such that a <2

period doubling almost-periodic (a) H€& module

(Sec. 1V) module: dyadics (b) 3H € module
“circle” quasiperiodic (a) HE module
(Sec. V) module: j+ k7 (b) H—1/2€ module
(k odd)
Rudin-Shapiro absolutely H dyadic
(Sec. VI) continuous

S(g)=1
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odd k; we claim that either H or H —1 belongs to the

module. This conjecture has been guided by the exact re-
sults in the limit of the large potential strength showing,

in particular, the existence of a gap at H = for the circle.

sequence, and at H =1 for the Rudin-Shapiro sequence.
Both of these gaps correspond to a marginal (a=2)
singularity in the Fourier transform, and their width has
been shown to be exponentially small in the potential
strength. This behavior is likely to be common to all
gaps such that the IDOS is not in the module. Loosely
speaking, at least in the examples considered here, the
gap-labeling theorem is only violated by transcendental
terms at small potential strength. Because of these
effects, gap labeling remains a subtle question in general.
The present work has been limited on purpose to the
local study of the energy spectrum, with emphasis on
spectral gaps, the key concept of gap stability and label-

ing, and the analysis of the scaling behavior of gap widths
for a small potential strength. Another class of physical-
ly relevant questions, such as the vanishing Lebesgue
measure of the spectrum, or its fractal dimension(s), in-
volves the understanding of its global properties. The ob-
tainment of general analytical results in this area, even at
the level of perturbation theory, remains a difficult open
subject.
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