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Finite-element method for electronic structure
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We discuss the use of the finite-element method in electronic-structure calculations. Products of
orthogonal or nonorthogonal one-dimensiona1 (ID) finite-element shape functions are used to form
3D basis functions on a cubic grid. The strict locality of these functions means that the matrix for
any local operator is very sparse, making calculation times proportional to the number of basis
functions {N) possible. The completeness of the basis can be increased globally by decreasing the
grid spacing and locally by increasing the number of basis functions per site. We discuss algo-
rithms, including the highly e%cient multigrid method, for solving the Poisson equation and for the
ground state of the single-particle Schrodinger equation in O{1V) time. Results are presented for
test calculations of H, H2+, He, and H& using as many as 500000 basis functions.

I. INTRODUCTION

Many, if not most, electronic-structure calculations are
done within a basis set, and one of the first and most im-
portant decisions facing a physicist or chemist planning
such a calculation is the choice of basis set. A number of
different basis sets have been developed and used with
great success in the past. For example, Gaussian basis
sets (usually multiplied by spherical harmonics) have
been used extensively in quantum-chemistry calculations
of small- and medium-sized atoms and molecules. Plane-
wave basis sets have been used very successfully in
density-functional calculations for solids (frequently cou-
pled with pseudopotentials to treat core electrons). We
will briefiy discuss these two examples below in order to
set the stage for a new kind of basis set which we intro-
duce in this paper. These basis functions are based on the
finite-element method, a calculational tool widely used in
fields ranging from solid and Auid mechanics to structur-
al engineering. We hope to convince the reader that, not-
withstanding the successes of existing basis sets, there is
room for new types of basis sets and that the finite-
element method has great potential for use in large, accu-
rate electronic-structure calculations.

Gaussian basis functions have a number of desirable
properties which motivate their extensive use in
quantum-chemistry calculations. One major advantage
of Gaussian basis functions is that all of the integrals re-
quired to compute the matrix elements of the Hamiltoni-
an can be done analytically and yield simple formulas
which can be evaluated quickly and to great accuracy on
a computer. Since the number of integrals needed is very
large, this is a significant advantage. Gaussians also al-
low for increased resolution where needed —in other
words, the completeness of the basis set can be increased
in a small region (i.e., near the nuclei) by adding more
basis functions there. For atomic problems and for
representing core electrons the spherical symmetry of

Gaussians is another advantage.
Unfortunately for very large or very accurate calcula-

tions some disadvantages of Gaussians become impor-
tant. The most significant disadvantage is that the num-
ber of integrals needed for the electron-electron repulsion
terms in the Hamiltonian generally' grows as 1V, where
Ã is the number of basis functions f;(r). These integrals
have the form

J d'r fd'r2f;(r )f, (r )
~ ~

fk(r2)ft(r2)

Even though these integrals can be done quite quickly,
the number needed grows so rapidly that calculations are
currently limited to X not much more than a few hun-
dred. Another drawback is that there is no straightfor-
ward way to extrapolate to the infinite-1V limit, i.e., to a
complete basis.

Planes waves share with Gaussians the property that
all the integrals needed are known analytically. Unlike
Gaussians, the Coulomb interaction is local in Fourier
space—hence solving Poisson's equation, an important
step in density-functional calculations, is trivial. The fast
Fourier transform allows one to go to real space, where
the potential is local, and back to Fourier space with the
calculation time proportional to X in%.

The basis of plane waves has two important disadvan-
tages. The first is that periodic boundary conditions must
be used. In solids, this is desirable; however, in calcula-
tions on clusters or molecules it is not. The second, and
more important disadvantage is that the resolution of the
basis is exactly the same everywhere. If resolution is used
that is fine enough to properly describe core electrons in
atoms like silicon, millions of plane waves are needed to
describe the simplest silicon unit cell. Pseudopotentials
can be used to eliminate core electrons, and the combina-
tion of the density functional method in a plane-wave
basis with pseudopotentials has had a number of notable
successes. The situation is not entirely satisfactory, how-
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ever, for two reasons. First, one generally has no way to
check the accuracy of the pseudopotential approximation
for an atom in its current electronic environment —in
other words, temporarily turning off the pseudopotential
approximation is not feasible in a plane-wave basis.
Second, for accurate calculations some atoms require
pseudopotentials which are fairly deep, necessitating a
large basis. Both of the difficulties would not arise if one
could locally vary the resolution while still retaining the
advantages of plane waves. Recent developments in gen-
eralized Wannier functions may provide a way of achiev-
ing this.

The finite-element method has proven to be very useful
in electronic-structure calculations of small atoms and di-
atomic molecules. For example, a recent calculation
of H2 has established a new benchmark Hartree energy to
ten-significant-figure accuracy. Unfortunately, the cal-
culations to date use finite-element basis functions on a
subset of the system's coordinates (e.g. , the cylindrical
symmetry of the H2 Hartree wave function reduces the
problem to two dimensions) and cannot be applied readi-
ly to more complicated systems. An intriguing question
has been whether the finite-element method could be used
as successfully in representing, for example, the fully
three-dimensional Hartree-Fock orbitals in a several-
atom molecule. This work is a first step in that direction.
The methods developed here are designed to be useful in
a many-atom system with little or no symmetry. Al-
though this means that even calculations on small sys-
tems are tedious, the extension to the many-atom case is
straightforward.

The finite-element basis functions we discuss here have
most of the advantages of both Gaussians and plane
waves. Like Gaussians, their resolution can be varied lo-
cally (although in the form presented here the extent to
which the resolution can be varied is limited). Like plane
waves, they have a Form of completeness which can be
systematically increased. This property allows straight-
forward extrapolations to the complete basis set limit.
The orthogonal finite-element basis functions introduced
here, also like plane waves, form an orthonormal set. In
addition, as we demonstrate in this paper, using the mul-
tigrid method one can then iteratively solve Poisson's
equation and find the ground state of the single-particle
Hamiltonian in calculation times strictly proportional to
X, usually in less than a dozen iterations.

The two main disadvantages to the finite-element basis
functions are that the integrals required to construct the
Hamiltonian matrix are not known analytically (and
hence must be computed numerically), and storing these
matrix elements requires considerable computer memory.
These problems are not insurmountable, and as a demon-
stration of the potential utility of these functions we
present here calculations of the electronic structure of H,
H2, He, and H2 (the latter two in the Hartree approxi-
mation). It should be emphasized, however, that these
methods are still in their infancy, with much room for
improvement. Advances in increasing the variability of
the resolution between the core and the valence regions,
for example, could result in increases in computation
speed by orders of magnitude.

In this paper we consider both the basis functions
themselves and the algorithms one can use with them in
electronic structure calculations. Section II describes the
basis functions and explains how they are derived. In
Sec. III we use the basis functions to solve a single-
particle Hamiltonian, presenting results for the hydrogen
atom and the hydrogen molecular ion as test cases. Sec-
tion IV addresses the additional algorithms needed for
doing many-body calculations. One of these algorithms
expresses the product of two wave functions written in
terms of the basis functions as a single function in terms
of the basis functions. This gives us densities needed for
the Poisson equation, which we solve to find the electro-
static potential of the charge distribution. We solve the
Poisson equation using the multigrid method, an ex-
tremely efficient algorithm for solving elliptic diff'erential
equations on a grid. We also discuss the more difficult
case of adapting multigrid to finding eigenstates of a
single-particle Hamiltonian. In Sec. V we use the
methods discussed in the previous sections to calculate
the Hartree solutions for the hydrogen molecule. Finally,
in Sec. VI we conclude with suggestions and discussion of
future directions for the finite-element method in
electronic-structure calculations.

II. BASIS FUNCTIONS

The finite-element method has been used extensively in
engineering' and occasionally in electronic-structure cal-
culations. The finite-element basis functions, called
shape functions, have many real advantages: (a) they pos-
sess polynomial completeness; (b) the shape functions are
strictly zero outside their respective elements, which re-
sults in (c) very sparse Hamiltonian and overlap matrices
regardless of the form of the interactions; (d) the mesh
can be varied to give high resolution where needed; (e)
the ease of representing any arbitrary function is such
that potentials and densities can be represented as easily
as wave functions; and (f) error in fits do not propagate
beyond a local region. Perhaps their most important ad-
vantage is (c), which means that potentially all the calcu-
lations relevant to electronic structure can be done in
times proportional to the number of basis functions N,
whereas dense matrices require at least X operations.
There are many problems, however. Efficient 0 (N) algo-
rithms have been developed for only some of the calcula-
tions relevant to electronic structure. It is not yet known
how to define an optimal mesh for a system with many
nuclei. For calculations involving moving nuclei, more
efficient ways of doing the integrals to calculate matrix
elements are needed.

Because in some cases efficient O(N) algorithms are
known only for orthogonal basis sets, we have developed
orthogonal shape functions. In particular, an efficient
method for solving Poisson s equation, the multigrid
method, which was developed primarily for finite-
difference problems, can be adapted to orthogonal shape
functions with little modification (see Sec. IV). Probably
the multigrid method can be modified to be just as
efficient for the nonorthogonal case, but at present the or-
thogonal functions have a definite advantage. The penal-
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We discuss first shape functions in one dimension; the
three-dimensional (3D) generalization is straightforward
and is discussed at the end of this section. We assume we
have a one-dimensional lattice with unit spacing. On
each site n there will be centered one or more shape func-
tions, with each shape function extending only out to the
neighboring sites. In particular,

S„,(x)=S,(x n)—, (2)

where t indexes the di6'erent types of functions on each
site, and where S,(x) =0 for ~x~ ~ 1.

In the simplest case, where only one shape function per
site is allowed, we have

S0(x)=1 Ixl with Ix~ ~ 1 . (3)

These shape functions are complete to first order, by
which we mean that they can represent any straight line
exactly. Any functions formed from them will be con-
tinuous, but anything except a straight line will have
slope discontinuities.

The next set, which has been used several times in
electronic-structure calculations, is related to
Hermite's interpolation formula. The set consists of two
shape functions per site, generates functions with con-
tinuity up to first derivatives, and is able to fit any third-
order polynomial exactly (third-order completeness). The
shape functions are formed from piecewise cubic polyno-
mials. One function, S0(x), corresponds to the function
value at x=O, and the other, S, (x) corresponds to the
derivative at 0. In particular, SD(x) for 0~x ~ 1 is
defined as the cubic polynomial with the boundary condi-
tions S0(0)= 1, S0(1)=S0(0)=SD(1)=0. Similarly, S, is
the cubic polynomial satisfying S, (0)=S,(1)=S', (1)=0
and S', (0)=1. For 0~x ~1, we have

ty one pays for using orthogonal shape functions is that
more functions are needed to obtain the same order of
completeness than in the nonorthogonal case. In this sec-
tion we present first nonorthogonal and then orthogonal
shape functions; our test calculations for simple atoms
and molecules were done with orthogonal shape func-
tions.

A. Nonorthogonal shape functions

der 2m —1. These functions are also continuous through
derivatives of order m —1.

B. Orthogonal shape functions

The first example of orthogonal shape functions which
we are going to develop will have three functions per site.
If the nonorthogonal functions above were used, we would
have a basis set complete to fifth order, but we will find
that making the functions orthogonal reduces the com-
pleteness to second order.

Shape function S,(x) corresponds to the term of order t
in a Taylor series at x =0; in particular, we require

1 dj
. S,(x = 0) = 5 J„j,t =0, 1,2 .

)1 x) (6)

SD(x)+SD(x —1)= 1,
S, (x)+SD(x —1)-+S,(x —1)=x,
S2(x)+S0(x —1)+2S,(x —1)+S2(x —1)=x

The coefficients of S,(x —1) in these equations form a
Pascal's triangle.

Assuming (5) also holds for the orthogonal functions,
we need only specify the functions over the interval from
0 to 1. It is useful to change to the variable u through

Hence the leading term in S2(x) is x, etc. We also re-
quire that derivatives of S,(x) of order 0—2 vanish at
x =+1, which guarantees continuity through the second
derivative.

The polynomial completeness conditions can be put in
equation form by requiring that the Taylor-series fit to
the monomials 1, x, x, etc. be exact. For the interval
0 ~ x ~ 1, only the functions centered at 0 and 1 contrib-
ute, and the Taylor-series fit fT(x) to an arbitrary func-
tion f (x) is given by

fT(x) =f (0)S0(x)+f '(0)S, (x)+ —,
' f"(0)S2(x)

+f (1)S (0x—1)+f'(1)S,(x —1)

+ ,' f"(1)S2(x—1)—.

Thus the completeness conditions through quadratic or-
der are [using (6) to evaluate the coefficients in (7)]

arid

S0(x)=1—3x +2x

S,(x)=x —2x +x

S,(x)=( —1)'S,( ix i ), x (0 .

(4)
u =2x —1, —1~u ~1 .

The purpose of this transformation is to be able to ex-
pand our shape functions in Legendre polynomials P.(u),
which will be of great help in enforcing orthogonality
(and which also reduces roundoff error). We assume the
expansion

Note that an approximate fit to a function can be gen-
erated very rapidly by specifying the coefficient of S„o to
be the value of the function at site n, and similarly the
coefficient of S„, to be the derivative at site n. This
Taylor-series fit is exact for cubic polynomials.

Nonorthogonal shape functions of this kind can be
generated to any order one wishes. Using m shape func-
tions at each site, representing derivatives up to order
m —1, we can represent exactly any polynomial up to or-

J
S,(x)= g CJP~(u (x)),

j=0
(10)

where J as well as the C, 's remains to be determined.
Note that S,(x (u )

—1)=( —1)'S,(x ( —u) ).
The orthogonality conditions are difT'erent from those

usually found because we require orthogonality between
functions on diferent sites. An orthogonalization pro-
cedure such as Gram-Schmidt cannot produce this form
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of shifted orthogonality and retain the locality of the
functions. The equations to be satisfied between func-
tions on sites 0 and 1 are

dx S,(x)S, (x —1)=0 (t, t'=0, 1,2) .
0

Using (10) this becomes

J
( 1)t+j

'&" 2+1J
(12)

In writing the completeness conditions (8), we stopped
with second order. We now show that the orthogonality
conditions make third-order completeness impossible
with only three functions per site (with the derivative
conditions we have imposed). From (7) the completeness
condition for x would be

—1.0 —0.5 0.0 0.5 1.0

So(x —1)+3S,(x —1)+3S2(x —1)=x

Note first that (11)and (13) would imply

I dx S,(x)x =0 .
0

Now (8) and (13) can be combined to give

—So(x)+3S,(x)—3S2(x)=(x —1)

(13)

(14)

(15)

FICs. 1. Second-order orthonormal shape functions S,(x),
t=0, 1,2. These finite-element basis functions are orthogonal
not only among themselves but also with the shifted functions
S„,(x)—:S,(x —n), n =+1,+2, . . . . The functions are piece-
wise polynomials with S,(x) =0 for ~x~ ~ 1. The full set S„,(x)
can represent any second-order polynomial exactly. Products of
these one-dimensional functions are used to form basis functions
in three dimensions.

S,(r) =S, (x)S, (y)S, (z) . (16)

For the quadratic-complete orthonormal functions we
could form 27 different 3D shape functions per site, but
not all of these combinations are useful in obtaining
higher-order completeness. Since we cannot represent
three of the third-order terms (x,y, and z ) in this way,
it makes little sense to use combinations representing
higher-order monomials such as x y [which corresponds
to Sz(x)Sz(y)So(z)]. Also, for regions where little resolu-
tion is needed (such as the tails of atoms), a lower degree

Multiplying by x and integrating, we find a clear con-
tradiction. This inconsistency means we cannot impose
(13).

We used a computer algebra package to solve the six
unique orthogonality integrals while imposing the com-
pleteness and derivative conditions. The nonlinear equa-
tions had to be solved iteratively using a linearization
procedure. We found that J~ 9 was necessary to satisfy
all the conditions; we set J=9, which results in the same
number of equations as unknowns. Note that so far we
have only imposed orthogonality with functions on neigh-
boring sites; the functions still need to be orthogonalized
with the other functions on the same site. Because S&(x)
is an odd function, it is already orthogonal to So(x) and
$2(x), but So(x) and S2(x) are not orthogonal. To or-
thogonalize them, we subtract S,(x) times an appropriate
constant from Sz(x). Finally, for convenience we nor-
malize each function. The resulting orthonormal func-
tions are plotted in Fig. 1; the coefficients are given in
Table I. In the Appendix we give the coefficients for and
plot the next higher-order orthonormal basis set, with
four shape functions per site and cubic completeness.

To obtain 3D shape functions, we use products of the
1D functions in the form

0
0
0
0
0
0
0
0
0
0

0.5
—0.786 889 902 441 989 970

0.0
0.491 615 313206 678 780
0.0

—0.299 950 601 616016280
0.0
0.114628 031 815 739 560
0.0

—0.019402 840 964 412 152

0.445 927 185 090 425 120
—0.538 200 231 906 334 480
—0.504 166 671 807 620 870

0.922 261 373 873 345 610
0.052 033 360 721 463 265

—0.562 701 865 684 613440
0.011 283 001 415 129 673
0.215 040 099 986 343 020

—0.005 076 875 419 397 167
—0.036 399 376 268 740 846

0.0
0.358 836047 975 377 270

—1.094 977 487 117334 100
0.986 392 104 229 709 470
0.297 516 730 737 903 800

—0.828 869 858 721 492 330
0.064 514028 065 764 367
0.288 053 362 008 504 730

—0.029 028 595 428 002 422
—0.042 436 331 750 430 691

TABLE I. Coefficients for orthonormal shape functions hav-

ing second-order completeness. These finite-element basis func-
tions are expressed in terms of Legendre polynomials through
(10) and are plotted in Fig. 1.

C
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struct the Hamiltonian matrix, and second, diagonalize
that matrix to find the ground state (and possibly some
excited states). The finite-element basis requires that
more attention be paid to the first calculation than is
often the case, since the integrals involved are not known
analytically. The fact that the resulting matrix is both
very large and very sparse means that standard matrix di-
agonalization techniques are not appropriate. In this sec-
tion we show how to do both parts of the calculation in
an efficient manner. We also give results for two test
cases, the hydrogen atom and the hydrogen molecular
ion, for which analytic solutions are available.

The basic principle used in solving the Schrodinger
equation is the variational method: the ground-state en-
ergy E of the Hamiltonian H is given by

FIG. 2. Errors in calculated hydrogen atom wave functions.
Approximations to the H wave function were obtained by di-
agonalizing the Hamiltonian matrix for two different finite ele-
ment basis sets. The curves show the error from the exact solu-
tion as a function of the distance from the nucleus r along the
line y =z=0. (Both functions are scaled so that the exact solu-
tion is e "}. For both curves R, =4 and E2=2 (see Table II};
for the dashed curve D=7 and a= 1, while for the solid curve
D= 12 and a=0.6. For both cases the error is much larger near
the nucleus.

of completeness may be sufficient. If only linear com-
pleteness is desired, four combinations suffice, represent-
ing the four 3D monomials up to linear order. Quadratic
completeness requires 10 combinations, and up to 17
combinations can be used to get as much of third-order
completeness as possible. In the calculations presented in
this paper, we put different numbers of functions (4, 10,
or 17) on different sites depending on their distance from
the center of the atom or molecule. This allowed us a
certain amount of variability in the resolutiori of the
basis, but as our test calculations on hydrogen show,
more variability would have been desirable in order to
make the errors in the wave function near the nucleus
and in the tails comparable (see Fig. 2).

III. ONE-ELECTRON PROBLEMS

The solution of the one-electron Schrodinger equation
in a basis involves two separate calculations: first, con-

and the ground state g is the minimizing state. In our
case we minimize wave functions of the form

0, = f d r S;(r)Si(r) . (21)

Since we use orthonormal basis functions, 0;.=6;, and
the generalized equation reverts to the standard eigenval-
ue equation.

The fact that each 3D basis function is made of a prod-
uct of 1D basis functions makes the calculation of the
kinetic-energy part of the Hamiltonian matrix very sim-
ple and the calculation of the potential-energy part tract-
able. In the kinetic-energy case we have (setting
III=m =e =1)

X '4tS t(r)
n, t

by varying the P„,'s. This immediate leads to the general-
ized eigenvalue equation

gH; g =E g 0;J.gi,
J J

where i and j index basis functions on all sites, i.e.,
i= In, tI, where

H,, = f d r S, (r)HS (r) (20)

and

f dx f dy f dz S„,(x)S„,(y)S„, (z)( —
—,'V')S, , (x)S, , (y)S ...(z)

=K. ..,5,5. ..5,5. ..+5,5. ..E. ..,5,5. ..+5,5. ..5,5,K
X X X X g P P g Z Z Z Z X X X X P g y g Z Z Z Z X X X X y P JP y Z Z Z Z

(22)

where

a'K, , = f dx S„, (x) —— S, , (x) . (23)
n„t, n X X

Note that because of the translational invariance of our
grid, K, , depends on n„and n

'
only through their

difference n„n„', and K—is 0 for ~In„n'
~

) 1. Because-
the shape functions are expressed in terms of Legendre
polynomials, the integrals K are easily evaluated analyti-
cally.

In the simplest case of a single atom centered at the
origin, the potential-energy matrix elements have the
form
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V„,„,=f d r S„,(r)—S„,.(r) .1
(24)

To evaluate these, we use an integral transform of 1/r:

(25)

Now I" appears in a form which separates into products of
x, y, and z terms. Thus we have

V„,„,= f dw f dx S„,(x)S, , (x)e

X [x ~y][x ~z] . (26)
The integrals in the square brackets can be evaluated
analytically, but the resulting expressions are both time
consuming to evaluate and susceptible to round oA' error
even in double precision. We have found it more ex-
pedient to evaluate the integrals numerically as they are
needed, storing" the results so that the same integral is
never done twice. The outer integral must be done nu-
merically. Despite its superficial appearance, the in-
tegrand is well behaved and finite near co=0. The sim-
plest way to deal with the upper limit is to break the in-
tegral into two parts, ' from 0 to co„and from ~, to ~,
and change variables in the second interval to I/co. Be-
cause the integration routine for the outer integral tends
to use the same values of co for many difterent integrals,
each square-bracketed integral is typically used
thousands of times, so the time spent in evaluating them
is generally negligible. This means that using the integral
transform for 1/r for practical purposes has transformed
the integrals in (24) into well-behaved one-dimensional
numerical integrals.

The number of integrals of the form (24) which need to
be calculated is reduced, typically by a factor of 100, by
three symmetry relations: (1) symmetry under the inter-
change of (n„t ) and (n', t,') with (n, t ) and (n', t')
(plus x~z and y~z); (2) symmetry under
(n„t„)+ (n,', t„' ) (and similarly for y and z); and (3) sym-
metry under ( nn„')~( n„n—') (a—nd similarly for y
and z; depending on the parity of the shape functions t
and t' the exchange may cause a change of sign). We cal-
culate V„,„, only once for each symmetry-related set; we
obtain the other elements of the set by using these sym-
metries.

Because of the very short range of the finite-element
functions, the Hamiltonian matrix is very sparse. Each
basis function overlaps basis functions on 27 sites; those
on its site plus the basis functions on the 26 surrounding
"neighbor"' sites. For the case where there are 10 basis
functions per site, each basis function will overlap 270
other basis functions. In practice the actual number of
nonzero overlaps is much smaller. In the case of the
kinetic-energy matrix the orthogonality of the functions
coupled with their factorization into x, y, and z terms re-
sults in about 20 nonzero overlaps for the 10 functions
per site case [cf. Eq. (22)]. The orthogonality of the basis
also enhances the sparsity of the potential energy matrix:
since any constant potential would result in a diagonal
potential matrix, only the gradient or higher derivatives
of the potential can produce off-diagonal terms. Further-

more, note that the potential-energy matrix element cor-
responding to the overlap function 0 (r) =S„,(r)S„., (r) is
the Coulomb energy of the charge o(r) in the potential
1/r O. rthogonality implies that the total charge is zero,
so if 0(r) is spherica1ly symmetric, then the matrix ele-
ment is zero. In practice o (r) is never completely spheri-
cally symmetric, but if we neglect elements whose abso-
lute value is less than, say, 10 (as we do in our calcula-
tions), the sparsity can often be enhanced dramatically, as
is shown in Fig. 3.

The sparseness of the Hamiltonian matrix allows the
use of large numbers of basis functions without exorbi-
tant computer resources provided eScient ways of deal-
ing with the matrices are known. In some of the larger
calculations presented below, the number of basis func-
tions X was more than 500000. Standard matrix diago- '

nalization routines, with calculation times proportional
to N, are not feasible for X this large. Fortunately, there
are sparse matrix algorithms which can find a few eigen-
values and eigenvectors in a calculation time not much
worse than X, one of which we describe later.

The algorithms we use for finding eigenvalues and
eigenvectors are based on the inuerse iteration method. '

In this iterative method one repeatedly solves the system
of equations

(H —
A, )P'=P,

1.0

0.5
a5

V3

I

o o
0 10 15 20

FIG. 3. Sparsity of the potential-energy matrix. For a typical
site d spacings from a helium nucleus, the figure shows in two
different ways the average number of matrix elements in the
corresponding row of the matrix having magnitude greater than
10 '. The number of basis functions per site T was varied as in
our electronic-structure calculations, with T= 17 for d ~ 6,
T=10 for 7~d «12, and T=4 for d ~13. The solid curve
shows the sparsity normalized to unity at d=O (the actual spar-
city was 280 at d=O). The dashed curve shows the sparsity di-
vided by the maximum possible number of nonzero matrix ele-
ments given that each basis function only overlaps with the
functions on the 27 sites in its "neighborhood, " i.e., 27 X T (sym-
metry may reduce this number somewhat). For sites fairly far
from the nucleus the orthogonality of the basis increases the
sparseness dramatically; in a nonorthogonal basis we would ex-
pect the dashed curve to remain near unity even for fairly large
d.
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where A, and P are approximations to the desired eigen-
value and eigenvectors. At each iteration the solution P'
of the previous step becomes the new P. If X is close to
an eigenvalue of H, the matrix (H —A, ) is nearly singular
and the component of P in the direction of the eigenvec-
tor will be greatly enhanced. For sparse matrices we
solve (27) using iterative matrix algorithms such as the
conjugate-gradient method' or simultaneous overrelaxa-
tion' (SOR). (These methods both work only for
positive-definite matrices, which means that A, must be
less than the minimum eigenvalue of H. In finding the
ground state, this is not a problem, but the methods must
be modified to deal with excited states. In this paper we
consider only ground states. ) The convergence rate can
be increased by making A, closer to the desired eigenvalue;
this can be done by correcting A, at each step through

(2&)

With a good initial guess for A, this algorithm often con-
verges in only two or three steps. There is a catch, how-
ever: most iterative methods for solving (27) converge
slowly if A, is very close to the correct eigenvalue. Often
the best course is to stop "improving" A, once it is fairly
close to the correct eigenvalue.

We can speed up the inverse iteration algorithm often
by an order of magnitude by combining the iterations to
solve (27) with the iterations to project out the eigenstate.
The key idea is that there is no point solving (27) to great
accuracy until P is almost the correct eigenstate. We il-
lustrate this by describing the method we used to find the
ground state of the hydrogen atom (see below). We start
off with a guess for A, and P. Since the conjugate-gradient
method is iterative, it needs an initial "guess" for the
solution P', we use the guess

(29)

We iterate the conjugate-gradient method until the
squared relative error in the solution

R =[(H —A, )P' —P] /P' (30)

is less than 0.1. We then substitute the improved but still
relatively inaccurate P' for P, construct tl) „;„.,~

from (29)
again, and continue the conjugate-gradient iterations un-
til R (0.01 (this will usually be about the same number
of iterations as to get to 0.1, since we are starting closer
to the correct solution). We then substitute P' for P again
and continue, each time reducing the error criterion by a
factor of 10. We stop when the energy obtained from P'
difFers from that obtained with P by less than 10

Since the inverse iteration technique has reduced the
problem of finding eigenvalues and eigenvectors to solv-
ing the system of Eq. (27), it is important to have as
efBcient a method as possible for solving this system. A
Uery efficient iterative method for solving (27) when H —

A,

is positive definite is the multigrid method, which we de-
scribe in the next section in the context of Poisson s equa-
tion. After discussing the simpler problem of solving
Poisson's equation we will return to the problem of using
multigrid to solve (27). The results presented for H2+
were obtained using the multigrid method.

Table II summarizes our results for the hydrogen
atom. The first five runs were done with a relatively large
lattice spacing to determine how far out the lattice should
extend to get an accurate ground state energy. The next
three runs show the effects of varying the parameters R

&

and R 2. From the sixth run it is apparent that the region
within 2 a.u. of the nucleus is very sensitive to the resolu-
tion of the basis; most of the error in the energy comes

TABLE II. Finite-element calculations for the hydrogen atom. The calculations were done a
(2D+1) lattice with spacing a using the quadratic-complete orthonormal shape functions discussed in
Sec. II. There were four (functions per site for sites whose distance from the nucleus r was greater than
R& (linear completeness), 10 functions per site for R, ~ r &R

&
(quadratic completeness), and 17 func-

tions per site for r &R2 (nearly cubic completeness). The total number of basis functions is X. The
ground state was found using inverse iteration coupled with the conjugate-gradient method. The
second to the last column shows the total number of conjugate-gradient steps taken, and the last
column shows how closely the approximate solutions satisfied the virial theorem. (The procedure used
for finding the ground state in the last calculation was slightly different from the others so the number
of iterations is not shown. )

5
6
7
8

10
7
7
7
6

12
18
24

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.2
0.6
0.4
0.3

bE (%)

1.623
1.537
1.522
1.520
1.519
2.689
1.438
1.369
2.503
0.395
0.136
0.0065

Ri

4.0
4.0
4.0
4.0
4.0
4.0
4.0
5.0
4.0
4.0
4.0
4.0

R2

2.0
2.0
2.0
2.0
2.0
0.0
3.0
2.0
2.0
2.0
2.0
2.0

7097
10 561
15 273
21 425
38 817
15 042
15 903
16 821

9947
71 119

231 231
538 313

Iter.

85
98
99
98
99
96
93
99
98

142
193

2 ~pot ~Ekin (%)

0.68
1.12
1.20
1.22
1.23
2.41
1.19
1.53
2.14
0.256
0.042

—0.007
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TABLE III. Finite-element calculations for the hydrogen
molecular ion. The basis set was the same as that in Table II,
with R, and R2 measured from the center of the molecule. The
separation between the nuclei was 2.0 a.u. , and the spacings a
were chosen so the nuclei always fell on grid sites. The lowest
eigenstate of the Hamiltonian matrix was found using inverse
iteration coupled with the multigrid method. The exact energy
(excluding the nuclear repulsion) is (Ref. 23) —1.102 6342.
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1 I I I I I f I I '1 1
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10
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20

15

15

15

15

20
20
25

0.5
0.5
0.5

1

3

3

3
1

3

1

3
1

3
1

3

0.25

0.25

0.2

1.084
1.077
0.141

0.462

0.452

0.514

0.158

0.108

0.101

0.051

0.278

0.029
0.184

2.0
2.0
4.0
2.0

2.0

2.0

3.0
4.0

3.0
4.0
2.0
4.0
2.0

1.5
1.5
2.0
1.5

1.5

0.0

0.0
0.0
2.0

2.0
1.5
2.0

39 447

64 903
51 497

127437

283 957

124 714

137 590

162 082

144 065

168 557

294 813
392 909
568 155

IV. MANY-PARTICLE ALGORITHMS

Several additional algorithms must be developed per-
taining to the electron-electron interaction in order to
perform electronic-structure calculations for many-
particle systems. The exact nature of the algorithms de-
pends on what electronic-structure method is to be used.
In this paper we consider only the Hartree approxima-
tion, one of the simplest methods. (For the ground states
of the two-electron systems we consider here, the Hartree
and Hartree-Fock approximations are identical. )

In the Hartree approximation we write the spatial part

from this region. It is also clear that the fitting ability of
17 functions per site is significantly better than 10 func-
tions per site, even though the order of completeness is
the same (quadratic order). The last four runs show the
results of systematically decreasing the grid spacing.
These runs can be used to extrapolate to the complete
basis limit a ~0.

Table III give results for H2+. The grid was chosen so
that both nuclei fell exactly on lattice sites. Hence the
potential-energy matrix could be calculated quite simply
from the matrix for a single hydrogen nucleus (by adding
the matrix to itself with a shift). Surprisingly, more accu-
rate calculations are possible for Hz+ than for H, since
the tails of the wave function fall off faster for Hz+. This
means that fewer basis functions have to be "wasted" in
the tails, so more can be concentrated near the nuclei.

Figure 4 shows how to extrapolate to the complete
basis-set limit a~0. Both for H and H2+ extrapolation
reduces the error in the energy by about an order of mag-
nitude over the most accurate data point.

.....-"0
p p

0.0 0. 1 0.2 0.3
8.7

FIG. 4. Extrapolations to the infinite basis-set limit a~0.
The solid curve shows the last three calculations in Table II.
The exponent 2.7 was set by requiring that the last four calcula-
tions in Table II fall on as straight a line as possible; the fourth
point {a=1.2) is off the scale. Extrapolating to a=0 gives
DE=0.01%. The same exponent was then used for two sets of
calculations for the hydrogen molecular ion. The upper curve is
for the runs in Table III with R

&
=2, R2 =1.5, and Da=5; the

lower curve is for the runs with R
&
=4, Rz =2. The lower curve

also extrapolates to AE =0.01%. In both of these cases, the ex-
trapolation has reduced the error by about an order of magni-
tude from that of the last data point; probably that is all that
can be expected from this type of extrapolation. A smaller ex-
ponent would be more appropriate for the upper curve, which is
not as straight as the lower, since in the calculations for the
upper curve the higher-order basis functions were confined to a
relatively small region, and significant errors in the energy re-
sulted from the use of only a linearly complete basis in regions
of the molecule where the wave function varied rapidly.

of the wave function as a simple product of single-particle
orbitals P, each of which is an eigenstate of an efFective

single particle Harniltonian. The e6'ective Hamiltonian
for particle a includes, in addition to the kinetic energy
and nuclear potential terms, an additional potential
U (r) arising from the other electrons:

In order to use the potential U (r) to find tp we must
calculate the matrix

U,, = fd'r S, (r)U (r)SJ(r), (32)

fd'r'S;(r)S~(r), Sk(r')S&(r')

and then surnrning over these stored integrals. The prob-
lem with this approach is that the number of these in-

which is analogous to the matrix V of the previous sec-
tion. Once we have U;, the techniques discussed in the
previous section can be used to find g . Since the orbitals

are expressed in terms of the S s, an approach often
taken to evaluate U; involves tabulating all integrals of
the form
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A. Collapse of the ~ave function into a density

The first step in our approach is a simplification of the
charge density terms of the form p(r) =

~g~ . In the form
~ g~, the density is expressed as a double sum over the
basis functions; we will collapse it into a single sum.
More generally, we would like to be able to collapse the
product of any two different functions P,

' and P; into a
single function p, In a complete basis this means deter-
mining coefficients p; which satisfy

g P,'Q,-S, (r)S, (r)= g p, S, (r) . (34)

tegrals grows with the number of basis functions X as X
for extended basis functions, and as CN for a localized
basis. With the basis functions considered here the con-
stant C is on the order of 10 . We adopt a different ap-
proach with a calculation time proportional to X. We
present in this section two techniques which allow us to
do Hartree calculations very efficiently. The first is a pro-
cedure for obtaining an expansion of the charge density
in terms of our basis set from the expansions of the wave
functions. The second is an efficient way of solving the
Poisson equation to obtain the electrostatic potential
from the charge density. We demonstrate the utility of
these techniques by using them to solve the helium atom
and the hydrogen molecule within the Hartree approxi-
mation.

n n' n"
0

& &
t&p

=OxOyOz (37)

where

0 =0
I, t„' t"

=f dx S„,(x)S, (x)S ... (x) (38)

TABLE IV. One-dimensional triple overlap matrix. Defined
in {38),this matrix is useful in forming basis set expansions for
the electronic density from the wave functions. The orthogonal-
ity of the basis makes the ofF-site elements (n "=1) much small-
er than the on-site elements {n "=0).

with similar formulas for 0 and 0, . Numerical values
for 0 are shown in Table IV. If the functions are not all
on the same site the elements are at most a few percent of
typical on-site elements. In three dimensions, the largest
off-site elements will be those where only one of 0, 0„,
and 0, is off site; others will be smaller by at least a fac-
tor of about 50. A possible approximation is to simply
neglect all offsite elements of 0 (i,j,k), but this procedure
is not exact even in the limit a ~0. A better procedure is
to make an approximation reminiscent of local-density-
functional theory: in evaluating p„, using (35) (for the
particular site n), replace g„', , where n' is a neighbor of

Of course we cannot satisfy this equation exactly in a
finite basis, but the completeness properties of the basis
mean that the density can be represented with an accura-
cy which can be increased systematically by decreasing a.
One approach to obtaining the p, 's is to multiply (34) by
S&(r) and then integrate over r. This leads to

pk = g 0(i,j,k)p,'g (35)

where the triplet overlap matrix is

0(i j,k)= Jd r S,(r)S.(r)Sk(r) .

The pk s obtained this way minimize the error (in the
least-squares sense) in (34). Note that 0 (i,j,k) is zero un-
less i, j, and k are all mutual neighbors; nevertheless, the
number of terms in the double sum over i and j may be
over 10 . This many terms makes direct use of (35) im-
practicable for large calculations.

Fortunately, the orthogonality of the basis functions al-
laws us to use an approximation to 0 (i,j,k) which can be
evaluated very rapidly. It turns out that 0 (i,j,k) is dom-
inated by the terms where i, j, and k index basis functions
all on the same site. We will construct a truncated ver-
sion of 0(i,j,k) which only connects basis functions on
the same site but for smooth functions g constructs a
good approximation to the p produced with the full
0(ij,k).

Note that because of the product form of the basis
functions S„, (returning to the expanded notation
i =

I n, t) ), we can factor the triplet overlap matrix as

1

2
1

2
2
0
1

2
2
2

It
n„

0 0 n"

1.0
0.0

—0.037 871 563 4
0.964 088 611 2
0.0
0.943 683 669 8
0.964088 611 2
0.0
0.638 049 715 8
0.0

—0.306 985 143 6

0.0
0.007 341 346 9

—0.018 935 781 7
0.007 341 346 9
0.0

—0.017 893 015 7
0.018 935 781 7

—0.017 893 015 7
0.0
0.017 955 694 4

—0.011 422 206 8
—0.014 262 026 6

0.028 613 189 2
—0.029 542 012 1

0.006 559 968 0
0.028 158 165 1

—0.032 860 927 0
0.016382 366 5
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n, by g„',, (and similarly for f ). By making g„., indepen-
dent of n', we have made the calculation of p„, a local
operation, equivalent to using the on-site triple overlap
matrix:

n n' n"
O(t, t', t")= g 0

n', n"

and using instead of (35)

(39)

(40)

In addition to its rapid calculation time, this approxima-
tion has several other advantages. First, 0 is symmetric
with respect to interchanges of t, t', and t", just as 0 is
symmetric with respect to interchanges of i, j, and k.
Second, the approximation becomes exact for smooth
functions as a —+0. And third, the total density is
preserved exactly; i.e., if p; is given by (40), then

I I I I I i

0.005—
I i I I I I I I i I

Q

~ W

5 0.000
0

-0.005—
i I I i I I I I I I I i I I I I

0 1

X

FIG. 5. Errors in reducing the product of two functions into
a single function. Given two functions, each expressed as an ex-
pansion in terms of a finite-element basis, this figure illustrates
errors involved in different methods for writing the product of
the two functions as an expansion in the basis. The basis used
here has 10 functions per site and a lattice spacing a=O.S. The
two functions it

—(r)= g, l(,—S;(r) whose product was taken
were approximate fits to the functions exp[ —(x+—') —y' —z']
(the fits were done with a Taylor-series expansion, but whatever
errors are present in the fits are irrelevant since the later com-
parisons are done with the fits rather than the original Gauss-
ians). The solid curve shows the difference between the exact
product g (r)P (r) and p(r), the best least-squares fit to the ex-
act product, where p(r}= g, p;S;(r} and the p; were evaluated
using the full triple overlap matrix O. The same difference func-
tion was calculated (but is not shown) for the p; produced by the
local approximation O. The dashed curve shows the additional
error arising from the local approximation. Both curves are for
the line y =z =0. %'e see that the additional error is fairly
small compared to the error arising because of the incomplete-
ness of the basis. The results of additional tests with smaller
values of a show that as a is decreased, the relative size of the
additional error to the incompleteness error remains approxi-
mately the same, but that both errors decrease as a is decreased.

f d r g p;S;(r)= f d r g i)'jlgJS;(r)SJ(r) .

To prove this last property, note erst that

fd r $„,(r) =5„o . (42)

From (35) (with O~O), this statement is true provided
O(0, t', t")=5... . which follows from the symmetry
O(0, t', t")=O(t', O, t") and from

QS,o(r)=1 . (44)

The elements of O(t, t', t") can be obtained fairly easily
by noting that it can be factorized as

O(t, t', t")=O(t„,t,', t„")O(t„t,', t,")O(t„t,', t,") .

In order to test the accuracy of using 0 instead of 0,
we performed a simple test calculation comparing the
two procedures. It is important to note that some of the
error is unavoidable because of the incompleteness of the
basis. As long as the additional error from using 0 is
small compared with the error from the incompleteness
of the basis, it is sensible to use O. As the erst step of the
test we used a Taylor-series fit to fInd the expansion
coefficients P,

—of the functions exp[(x+ —,
'

) —y —z ], us-

ing a basis with 10 functions per site. We then used (35)
with both 0 and 0 to determine coefticients of the density

p, We compare p(r) —g+(r)1t (r), where
p(r)= g,. p;S, (r) (and similarly for g

+—
), for the two

cases. The results are shown in Fig. 5. We found that,
indeed, the extra error from using 0 was small compared
to the error due to incompleteness of the basis.

B So&ving the Poisson equation

The second step in obtaining the Hartree potential U
is solving the Poisson equation. This involves two issues:
determining appropriate boundary conditions and speci-
fying the method used to solve the linear equations. A
number of di6'erent approaches are available for each of
these problems; we use a multipole expansion to deter-
mine the boundary conditions and the multigrid method
for solving the system of equations.

In the continuum limit, the solution of the Poisson
equation (dropping the superscript a):

V2U(r)+4np(r) =0
is given by

U(r) = fd r', p(r')1

[r—r'
f

(46)

(47)

prouided one imposes the boundary condition U(r)~0 as
r —+ Oo. The problem with using (47) directly is that the
calculation time is proportional to X; we can solve the
linear equations for the finite-element version of (46)
much more quickly (with a calculation time proportional
to K). To obtain the basis set version of (46), we multiply

This equation and the orthogonality of the S's means that
(41) is equivalent to

(43)
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both sides of the equation by S;(r) and integrate over r
(expanding both U and p in terms of the basis) to obtain

g [V']„U,+4', =0 .
J

(48)

4vrp, —g—[V ], u

J
(49)

where u is the current approximation to the correct
solution U. . The error in the solution Au—:U —u

satisfies

+[V ], Au, =R
J

(50)

Since the high-frequency components of Au are small, it
makes sense to solve (50) on a coarser grid. Most often
one simply doubles a, leaving the boundaries where they

The matrix [V ];~ is (up to a constant factor) just the
kinetic-energy part of the Hamiltonian matrix discussed
in the previous section.

Because we use a grid of finite extent, we cannot direct-
ly require that U(r) be 0 at infinity. Imposing the correct
boundary conditions for a finite region involves using an
approximation to the solution (47) at the boundary. We
accomplish this with a rnultipole expansion of U(r) up to
the quadrupole rnornents. The evaluation of the charge,
dipole moment, and quadrupole moments of p(r) can be
done in a single sweep through the grid, using the precal-
culated moments of the individual basis functions. The
multipole moments give an approximation analytic ex-
pression for U(r) valid for large ~r~. The values U~ for i
on the boundary are determined by a Taylor-series fit (see
Sec. II) to this expression. '

The multigrid method' is a procedure developed for
solving elliptic differential equations (such as the Poisson
equation) very rapidly. Most often the equations are ex-
pressed in a finite-difference formulation, but the tech-
nique can also be applied to the finite-element method.
Multigrid techniques have also been developed to solve a
number of additional problems, including nonlinear equa-
tions and eigenvalue problems (see below). We will de-
scribe just the basic method as we use it here; various
enhancements and extensions can be found in the litera-
ture.

Relaxation methods, such as Gauss-Seidel, are very
efficient at reducing the high frequency error-in the solu-
tion to (48). They are very slow, however, in reducing the
1ow frequency c-omponents of the error, i.e., errors for
wavelengths of more than a few lattice spacings. The key
idea of the multigrid method is to use relaxation on a se-
quence of coarser grids to reduce all frequency com-
ponents of the error at the same rate.

We will now describe the basic steps of the multigrid
method. We will first describe it in terms of finite
differences on just two grids, and then discuss the more
general case with finite elements and several grids. First,
starting with some guess for U, one or more relaxation
sweeps are done on (48) (the form of the equation is the
same in finite differences as finite elements). The error in
the solution after these sweeps will be fairly smooth on
the scale of the lattice spacing a. We form the residual

are, and obtaining —, as many sites on the grid. A suitable
approximation of the residual R is made on the coarse
grid, e.g., a smoothing convolution is done on the fine
grid and then the values on the coarse grid are directly
copied from the corresponding points on the fine grid.
Using some suitable method (e.g., conjugate gradient),
one solves for Au on the coarse grid. This is used as an
approximation to Au for the original fine grid; i.e., we in-
terpolate the coarse-grid solution onto the fine grid and
add it into u . Since there are many fewer sites on the
coarse grid, finding the exact solution there is much fas-
ter than on the fine grid. The coarse-grid correction
greatly reduces the low-frequency error; the combination
of relaxation steps and coarse-grid correction reduces the
error for all frequencies. Since only the error is passed to
the coarser grid, the process can be iterated for increas-
ing accuracy.

Multigrid with several grids is essentially a recursive
application of the two-grid algorithm. Instead of solving
the coarse-grid equation exactly, relaxation steps are
done, the residual computed, and a coarse grid correction
is obtained from an even coarser grid. The recursion
stops when the grid is small enough to be solved very rap-
idly with, say, conjugate gradient. There is no need to
iterate each coarse-grid equation to an exact solution be-
fore passing it to the finer grid, since the solution is only
used as an approximate correction to the next finer grid.
All one really wants is to get the low-frequency errors to
be reduced as fast as the high-frequency errors, so genera-
ly only one or two relaxation and correction passes are
needed on each grid before the correction is passed along.
One multigrid "pass" consists of a few relaxations on the
finest grid plus sweeps through all the coarser grids to ob-
tain a correction to the finest grid. Generally the finest
grid residual will be reduced by roughly constant factor
(which can be as high as 10) with each pass. Since there
are so many fewer points on the coarse grids, the compu-
tational time spent on them is usually negligible com-
pared to that on the finest grid. Normally very accurate
solutions (with errors on the order of 10 '

) can be found
with only about 20 times as much work as a single fine-
grid relaxation, regardless of the size of the problem.

One possible way to adapt multigrid to our finite-
element basis set would involve using basis functions
defined on coarser grids, but in our calculations we used a
different method. To determine a "coarse-grid" correc-
tion to the error in the finite-element version of (48), a
finite-difference grid is used with the same spacing as the
finite-element grid. (Since the basis functions have 4 to
17 degrees of freedom per site, this is in some sense a
"coarser grid. ") The advantage of the method is that the
standard finite-difference multigrid methods discussed
above can be used for the coarser grids. Then the only
new things to be specified are how to transfer R; to the
finite difference mesh, and how to interpolate Au back toJ
the basis functions. We should emphasize that since the
finite-difference grids only provide approximate correc-
tions to the finite-element solution, there is no single
correct set of procedures for the transfer to and from the
finite-difference grids. Poor choices of the procedures
only affect the speed of convergence, not the final answer.
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For the transfer to the finite-difference mesh, we have
found that using the finite-element coe%cient R„p as the
value of Rn on the finite-difference grid works well. For
the transfer back, we calculate the derivatives hu„up to
quadratic order for each site of the grid using standard
finite-difference formulas, and then use a Taylor-series fit
to get the finite-element coeScients.

C. Multigrid for eigenstates

Several procedures are available for adapting the mul-
tigrid to calculate eigenstates. ' In the method we use in-
verse iteration is coupled with multigrid, with multigrid
taking the same role as the conjugate gradient method in
the algorithm discussed in Sec. III. We use multigrid to
solve the system

g [H —A. ]; P,'=P; .
J

(51)

We use the same finite-difference coarse grids as the Pois-
son equation. There are two principal differences be-
tween applying multigrid to (51) and to (48). The first is
the presence of the potential-energy terms VJ in the ma-
trix. These terms present no difhculty to the method, but
we must specify how to write the potential-energy terms
on the finite-difference grids. We chose one of the sim-
plest procedures: for the finest finite-difFerence grid we
set

rzFD —a' n, n' ~n, n' Vn0; n '0 (52)

where Vnp. 0 is the diagonal element of the finite-element
potential energy matrix. This is an especially convenient
choice since the Vnp. „.p are already tabulated. We deter-
mine the matrix elements of V for the coarser grid by
working our way down from the finest grid, taking for
the coefricient of V„"n on a coarse grid a weighted aver-
age of V„"„on points in the neighborhood of n on the
next finer grid.

The second difference between (48) and (51) is that, de-
pending on the choice of A, , [H —

A, ];J. may not be positive
definite (whereas the corresponding matrix for the Pois-
son equation is always positive definite). Gauss-Seidel re-
laxation converges only for positive-definite matrices,
which in this case means A, must be less than the
minimum eigenvalue of H. Thus the method can only be
used to find the ground state (unless the ground state is
found first and the P; is orthogonalized to it at each step;
we only calculate ground states in this paper).

As with inverse iteration coupled with the conjugate
gradient method, we can combine the two types of
iterations —multigrid and inverse iteration. The result is
an algorithm which is much faster than the conjugate-
gradient algorithm. As a comparison of the two
methods, we applied them both to the same problem: the
third calculation in Table III. The outer loop in both cal-
culations was the same, inverse iteration with X=2, and
both required 13 steps (for convergence of the energy to
within 10 ). The inner loops were different, with the
conjugate-gradient method taking as many steps as neces-
sary to achieve a given accuracy (which was increased for
each inverse iteration step; see Sec. III). A total of 230

TABLE V. Finite-element Hartree calculations for the heli-
um atom. The basis set was the same as that in Table II. In
each of the runs R1=4 and R2 =2. The exact Hartree energy
for helium is (Ref. 8) —2.861 6800.
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15
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0.6
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11
6
11

0.4
6
19

—2.8101
—2.8209
—2.8209
—2.8436
—2.8522

AE (%)

1.8
1.4

1.4

0.63

0.33

conjugate-gradient passes were required. In the multigrid
calculation, only one pass was necessary for each inverse
iteration step. Each multigrid pass had three fine-grid re-
laxations, for a total of 39 relaxations (the computer time
for the coarse-grid relaxations was very minor). The
dominant part of a conjugate-gradient pass is a multipli-
cation by the Hamiltonian matrix, which takes roughly
the same amount of time as a fine-grid relaxation. Hence
the multigrid calculation (neglecting set-up times) was
about 39 5.9 times as eScient as the conjugate-gradient
calculation. For larger calculations we expect the differ-
ence to be even greater.

V. HARTREE CALCULATIONS

The procedure for carrying out Hartree calculations is
a combination of the algorithms discussed above. First,
we use a guess for the Hartree orbital to determine an
electronic density. The density is used to find an electro-
static potential via the Poisson equation, the potential is
put into an effective Hamiltonian, and the ground state of
the effective Hamiltonian becomes the new orbital. This
process is iterated until self-consistency is reached. In
the Hartree calculations presented here, we have used the
conjugate gradient method coupled with inverse iteration
for diagonalizing the effective Hamiltonian, and the mul-
tigrid method for solving the Poisson equation.

One new technique is needed to obtain a complete Har-
tree procedure. After the Poisson equation has been
solved to obtain the Hartree potential U;, we must still
find the matrix elements of U with the basis functions as
given in (32). It is clear that the exact matrix elements
can be obtained using the triple overlap matrix 0, but as
in Sec. IV we instead use the local approximation O. An

11
15
19

0.7
0.7
0.35

—1.841 50
—1.841 50
—1.847 35

0.35
0.35
0.03

TABLE VI. Finite-element Hartree calculations for the hy-
drogen molecule. The basis set was the same as that in Table
III, with an internuclear separation of 1.4 a.u. The exact Har-
tree energy (excluding the internuclear repulsion) is (Ref. 6)—1.8479153. For the first two runs, R1=5 and R2=3, and for
the last run R, =4 and R2 =2.

&E (%)
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important property of 0 is its symmetry with respect to
interchanges of t, t', and t"; this guarantees the matrix
obtained from U using 0 is symmetric. Since the Har-
tree potential is usually quite smooth compared to the
wave functions or density, the local approximation is
quite good.
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0.0
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0.0

—0.265 078 315 259 477 876
0.0
0.085 858 192 877 879 419
0.0

—0.012004 603 057 556 039

0.448 584 202 954 864000
—0.557 718 642 566 173 813
—0.492 273 006 292 793 268

0.921 709 410002 34S 821
0.011 713918004094 849

—0.504 568 952 474 117419
0.055 871 919994 894 147
0.163 428 601 842 841 202

—0.028 893 199978 292 442
—0.022 850416 804 895 791

0.004 996 16S 317232 713

0.0
0.344 635 683 647 103 622

—1.091 146 864 218 575 225
1.066 133 335 081 282 872
0.073 026 142 500 267 162

—0.715 67S 450 255 091 707
0.348 313074 232 240 353
0.034 376 292 862 846 634

—0.180 124 100080 427 303
0.149087 511437 541 317
0.031 146 767 484 934 356

—0.070 460 383 193024 763
0.0
0.010687 990 500 902 682

TABLE VII. Coefficients for orthonormal shape functions
having third-order completeness.

In our calculations we were able to reduce the calcula-
tion time substantially by combining all of the iterations
involved in the calculation: those in solving Poisson's
equation, those in the inverse iteration procedure for
finding the ground state, and those for attaining overall
self-consistency. The method for combining them is very
similar to that described in Sec. III. In the first step a
guess for the orbital, which does not have to be very ac-
curate, is used [using (39)] to obtain a density to use in
the Poisson equation. The boundary conditions are set
using a multipole expansion, and then enough multigrid
passes are done to determine the Hartree potential to a
specified. , initially relatively poor accuracy. The matrix
elements of the Hartree potential are found and added to
the Hamiltonian. Then we use the initial guess for the
orbital as the starting guess for an inverse-iteration
conjugate-gradient pass to a limited accuracy. &e use
the same accuracy as we used for the Poisson equation
with multigrid. The improved orbital is used to start the
process all over again, this time with higher accuracy.
The whole process is iterated to convergence.

Tables V and VI show results for Hartree calculations
of helium and the hydrogen molecule. More accurate re-
sults are possible for H2 because the nuclear cusp in the
Hartree orbital varies more sharply for He than for H2.
Since the spherical symmetry in He is not used in our cal-
culations, the computational dif5culty is roughly the
same except for the difference in the nuclear cusps.

VI. SUMMARY AND CONCLUSIONS

In thi. s paper we have demonstrated that the finite-
element method is practical for electronic-structure cal-
culations of small molecules. Specifically, in Sec. II we
discussed nonorthogonal finite-element basis functions
(shape functions}, which have been used extensively in en-
gineer&ng and occasionally in electronic structure, and in-
troduced orthogonal shape functions, which to our
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0.013 101010284009 823
—0.039 303 030 852 029 470

0.116246 329 145 453 556
0.225 402 676 931 866 057

—0.900 899 255 704 480 010
0.432 614442 173 855 762
1.289 424 862 991 679 046

—1.439 352 143 094 399434
—0.676 924038 192 844 153

1.213 984 450 479 868 221
0.203 436 459 672 219 361

—0.463 681 250 089 613053
—0.055 399 111961 588 983

0.070 334 854 450 451 917
0.011013 743 765 551 359

z
0.0 0.2 0.4 0.6 0.8 1.0

FICx. 6. Third-order orthonormal shape functions S,(x),
t=0, 1,2,3. These functions have the same orthonormality prop-
erties as the second-order functions in Fig. 1. This basis set can
represent any third-order polynomial exactly.
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knowledge have not been used before. The strict locality
of these functions give them many advantages, including
flexibility (e.g. , more functions can be placed near the nu-
clei) and calculation times proportional to the number of
basis functions.

In Sec. III we discussed the use of the finite element for
single-particle problems. Included were techniques for
quickly doing the integrals needed to set up the Hamil-
tonian matrix and efficient ways of solving the sparse ei-
genvalue problem which gives the ground state. The ei-
genvalue methods were all based on inverse iteration,
sometimes coupled with the conjugate-gradient method,
and, as discussed in Sec. IV, the multigrid method. These
techniques were used to find the ground states of H and
H~+.

Section IV dealt with some of the algorithms needed in
order to do many-particle systems. One of these is an
efficient way of representing the product of two functions
(each expressed as an expansion in the basis functions) in
terms of a single similar expansion in the basis. This al-
gorithm is useful in obtaining an expansion of the elec-
tronic density, to be used in solving the Poisson equation,
from the single-particle orbitals. We discussed the mul-
tigrid method for solving the Poisson equations, a very
efficient and Aexible method able to solve a wide variety
of matrix problems arising from partial differential equa-
tions. We coupled the multigrid method with a multipole
expansion to produce an algorithm for obtaining the elec-
trostatic potential from a charge density. In Sec. V we
used these methods to solve the Hartree equations for He
and H&.

The most important difference between this work and
previous applications of the finite-element method to
electronic structure is the three dimensional, cartesian
coordinate basis used here. Previous applications have
been to atoms or diatomics where symmetry could be
used to reduce the dimensionality of the problem. This
approach has produced very accurate results, but cannot
be extended to larger molecules. Whi1e our test calcula-
tions have been done only on atoms and diatomics, the
extension of the method to larger molecules will be

straightforward.
We believe there is only one major hurdle remaining

before the finite-element method can become competitive
with other commonly used bases: adapting the basis to
better deal with the region near the nuclei. We have
shown that the computational advantages resulting from
the locality of the shape functions make calculations with
very large (10 —10 ) bases feasible. Unfortunately, the
difficulty of fitting the nuclear cusps meant that so many
functions were needed per atom that calculations could
be done only on small systems. An advance in adapting
the basis to the nuclei which reduced the number of basis
functions needed per atom from 10 to 10 would allow a
basis the same size as we used here to fit a 100 atom sys-
tem. Such an advance, which we believe is quite conceiv-
able, might allow the previous successes of the finite-
element method in atoms and diatomics to be extended to
much larger systems.
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APPENDIX

In this appendix we describe cubic-complete orthonor-
mal shape functions, the next higher order than the ones
used in the calculation in the main text. Table VII shows
the coefficients for and Fig. 6 shows plots of the shape
functions. The procedure by which this set, which has
four shape functions per site, was generated was very
similar to the procedure for the quadratic-complete set,
but more effort was required to obtain solutions to the
nonlinear equations. It is not clear to what order this can
be continued, since in solving nonlinear sets of equations
there is no guarantee of real solutions.
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