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Nonlinear lattice relaxation of photogenerated charge-transfer excitation in halogen-bridged
mixed-valence metal complexes. I. Soliton and self-trapped exciton
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The ground and excited states of a one-dimensional extended Peierls-Hubbard model with half-
filled-band electrons are studied so as to clarify the lattice relaxation paths of photogenerated
charge-transfer excitations in halogen-bridged mixed-valence metal complexes. The adiabatic
potential-energy surfaces that describe the nonlinear relaxation from the Franck-Condon state to
the solitonic states as well as to the self-trapped state of the exciton (STE) are calculated within the
mean-field theory for electrons. It is shown that the lowest excited state is a pair of doubly charged
solitons, and it gives a new absorption band with an energy of about a half of the gap. It is also
shown that the STE is separated from this soliton pair by only a small barrier, in agreement with the
experiments on the unusual short decay time of this state.

I. INTRODUCTION

Optical properties of halogen-bridged mixed-valence
metal complexes (HMMC's) have been the object of very
active researches in recent years, as one of typical materi-
als with a quasi-one-dimensional charge-density-wave
(CDW) state. ' This material is composed of
transition-metal ions M+ ( =Pt+, Pd+, Ni ) bridged
by halogen ions X ( =Cl, Br,I ), as schematically
shown in Fig. 1. M+ has an unpaired electron in its d 2

orbital (z is parallel to the chain), and this orbital makes
an energy band through the supertransfer between neigh-
boring two d 2 orbitals. This supertransfer comes from

the hybridyzation between the d & orbital and the p, or-

bital of X. Thus, this system is expected to be a metal
with a half-filled energy band.

Because of the electron-phonon (e-ph) coupling, how-
ever, the charge transfer occurs between neighboring two
M's so as to give the following mixed-valence state:

wherein X has displaced towards M ' ' (where 5
denotes the degree of charge transfer). This is nothing
but the CDW state with twice the period of the original
lattice. This state has a strong-light-absorption band in
the visible region, ' and it corresponds to the charge-
transfer (CT) excitation from (M+' + 'M+' ') to
(M M+ ). Since this ground state is stabilized by the
aforementioned charge transfer and the displacement of
X, such a redistribution of the charge due to the excita-
tion triggers a drastic motion ofX, and after the relaxa-
tion, it results in nonlinear structural excited states such
as the solitons and the polarons, as well as the self-
trapped excitons.

In this connection, Kurita et al. have found that new
two light-absorption bands appear when the CT band is
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FIG. 1. Schematic structure of the halogen-bridged metal
complex.

excited by an intense light. These photoinduced absorp-
tion bands are named A and B, and their energies are
about 70% and 80% of the energy gap, respectively.
These bands, being almost equal to the previously ob-
served ones by the pressure effect, are expected to come
from the intrinsic nonlinear excited states created after
the relaxation. The main purpose, in the present paper, is
to clarify this relaxation process of the CT excitation.

To study the CDW in HMMC's is of great advantage,
as compared with the polyacetylene, because we have
many kinds of crystals with an almost same structure.
Each crystal has its own electronic property which
changes almost continuously as the combination of M
and X changes. This continuous change makes it possible
for us to get a deep insight into the common nature of the
CDW. For example, the energy gap decreases as the
atomic radius of M (rM ) decreases or as the radius of X
(rz) increases. The decrease of re makes the intraorbital
Coulombic repulsion increase, and it reduces the energy
gap, while the increase of rz makes the supertransfer in-
crease, resulting in the reduction of the energy gap, pro-
vided the e-ph coupling remains unaltered. Judging from
these results, Nasu has proposed a new theory that the
electronic state of HMMC is realized through a delicate
balance between the three main factors: the super-
transfer of an electron, the interelectron Coulombic
repulsion, and the e-ph coupling. This theory was proved
to be true by the discovery of a new HMMC composed of
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M=Ni and X=Br, wherein the Peierls distortion is ab-
sent because of the large Coulornbic repulsion of Ni. It is
in the spin density wave state.

For these reasons, in the present paper, we calculate
the ground and excited states of HMMC's, making use of
the one-dimensional Peierls-Hubbard model, which takes
the aforementioned three main factors into account with
an almost equal weight of importance.

Very recently, Baeriswyl and Bishop' have described
the exciton, the polaron, the bipolaron, and the solitonic
defects of HMMC in the strong limit of the e-ph cou-
pling, and discussed the effect of Coulombic interactions
on the optical absorption from the defects. Onodera"
also studied the soliton in the weak limit. However, for
the reasons mentioned before, we will study, in the
present paper, intermediate cases of the e-ph coupling.

where a& is the creation operator of the electron at site l
(
—oo ~l ~ 00) with spin cr (=a,P), and T is the energy

of the supertransfer between neighboring two d-
& orbitals.

~ is the phonon energy of X, and ql is its dimensionless
coordinate. The kinetic energy of X is neglected ac-
cording to the adiabatic approximation. S is the e-ph
coupling energy, while U and V denote the intrasite and
intersite Coulombic repulsions, respectively.

According to the Huckel theory, ' T is about 1 eV.
Combining this value with other experimental results
such as the energies of the CT band and the lumines-
cence, we assume the following relation holds in our sys-
tem: 2S=T~ U)) V. It corresponds to the intermedi-
ate coupling case. Transforming as h:—0/T, s=S/T,
u = U/T, u = V/T, and Q&

=q&&co/S, we get the follow-
ing dimensionless Harniltonian h:

II. EXTENDED PEIERLS-HUBBARD MODEL
AND NUMERICAL RESULTS

To describe the ground and excited states of the CDW,
we introduce the following one-dimensional extended
Peierls-Hubbard model with half-filled-band electrons
(setting A'= 1):

H= Tg(a, —a, +, +H c )+~. g. q,'/2
l, o. I

h = —g(a, a,+, +H.c. )+s g Q,'/2
l, o.

+s g(QI Q Ii+) ni
l, o.

+urn& n,p+u g nt n,
1 l, o., o'

(2.2)

+&See g (q, q&+, )n, +—U g n, n, p
l, o

+ V g nl n&+, „n«=—a&~a&

l, o., o'
(2.1)

Within the mean-field theory, we get a reduced Hamil-
tonian hHF, wherein n&~ and (a&+ & ~a&~) in the fourth and
fifth terms of h are replaced by their averages (n& ) and
ml

ni (n/ ), (a/+] ai ) mi

h ~hHF= —g[(1+umi )ai aI+) +H. c.]+g [s(Q( —Ql+))+u(nl, )+u((n(+))+(nl )))]ai ai
l, o. l, o

+s g Q( /2 ug —( n I ) ( nip)
—u g ( ni ) ( n I+, ) + u g m(* m I

1 1 1 l, a
(2.3)

Here ( nl ) and m& are unknown parameters, and
should be determined self-consistently. ( n& ) is given as

(2.4)

Our main purpose of this section is to calculate the adi-
abatic potential-energy surfaces that describe the lattice
relaxation paths of the photogenerated CT excitation. In
the case of ordinary insulators, the CT exciton, just after
the excitation, is in a plane-wave state extending over the
crystal. This state is usually called the Franck-Condon
state. After the lattice relaxation having been completed,
however, the exciton is in a localized state, being trapped
by a self-induced local lattice distortion. ' This is called
the self-trapped state of exciton (STE). In the case of
CDW-type insulators, however, we have another relaxa-
tion channel. That is the nonlinear relaxation to the
structural excited states such as the soliton pairs, wherein
the phase of the Peierls distortion is locally inverted.

To cover all these possibilities of the relaxation, we in-

troduce the following pattern for QI
..

Q, =( —1)'Q t 1+bQ[tanh8(II I

—&o/2) —1]I, (2.5)

where ( —1) Q denotes the Peierls distortion in the
ground state of the CDW, and this Q should be deter-
mined beforehand. The second term in the curly brackets
denotes the local lattice displacement from this ground
state. b,Q is its amplitude and [ ] denotes its pattern. 8
denotes the spatial extension of the pattern, and lp

denotes the intersoliton distance. When lp=0, this pat-
tern just corresponds to the STE-type local lattice distor-
tion, and in this case 0 corresponds to the reciprocal
width of the STE. In the case of Ip))1, on the other
hand, 0 corresponds to the reciprocal width of a soliton.
This can be easily seen when we put b, Q = l.

To determine the adiabatic potential energy surface,
we solve the self-consistency equations for (n& ) and mi
for given values of EQ and lo, while 8 is determined to
minimize the total energy. Thus we can obtain the ener-
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gies of the ground state EG and of the excited states E'
(n=l 23 . .

n

E
, . . . , as well as their wave functions !E ) d

), which are numbered according to their energies

frrom lower ones to upper ones. As for the excited states,
we also take into account the difference between h and

HF within the first-order perturbation theory,

(
Cow

«. !(h —h„„)!E„). (2.6)

h =~~e +constant terms . (2.8)

Here e& is the A,th eigenvalue of h H„, and fi ( l is its
wave function. In the next, we rewrite h in terms of A it

and A& . Expectation values of h rewritten in this form
can be easily calculated numerically, and we can, thus7 0 7

4

Adding this correction to the original energy E„' com-

ing from h H„, we can obtain the new energies of the ex-
cited states E (n = 1,2, . . . ) as

n

E. =E.' +&E.' l(h h F)IE. ) . (2.9)

In the practical calculations, we at first numerically
determine the following new operatora or

A~ (2.7)
I

that can diagonalize h HF as

2
SOLITON PAIR

SADDLE POINT
!l

10
INTER SOLITON DISTANCE 0 0

FIG. 2. Schchematic nature of EG as a function of b, g and lo.

Figure 2 shows a very schematic nature of EG common
to t e cases of intermediate couplin . The

Q =0 and in =0 corresponds to the CDW ground state,
while the local minimum at b, Q= 1 d l =an 0

= ~ corre-
p ir. s a pair o dou-sponds to the soliton-antisoliton p

' It '

such as th
y c arged solitons. There are other types of 1'ypes o so itons,

suc as the spin soliton and the singly charged soliton.
However, according to our calculation, other ones have
higher energies than this.

This result can be intuitively understood in the follow-

be
ing way. When the e-ph coupling is strong S/T) 1 5)
CDW int '

comes almost equal to unity and th e groun state ofd

M+2,
, in t is case, is just the alternate stack f M+0 an

+2M+4~+2M+4M+2M+4M+2M+4M+2M+4 +2 +4M M

As one of structural excited statetates from this ground state, we can also think of the following state.

M+'M+4M+'M+'M+'M+'!M+4M+"M+'M+4M+' +',M

wherein 2e is transferred across the central line. We
can see that the total excess charge in the left part of the
chain is 2e, while that in the right is 2e+. In our previ-
ous paper, we have already shown that this state is a lo-
cally stable state in the adiabatic potential fia energy sur ace
o t e attice, and its energy is almost same as that of the
ground state, provided the e-ph coupling is strong. The

l

I

appearance of such a new low-lying excited state is main-
e-p coup ing, w erey ue to the site-diagonal nature of e- h 1

t e lattice displacement modulates, not the transfer ener-

gy, but the energy level of the d & orbital. From these

results, we can also easily infer that, when central two
M's are separated hy several units of (M+ M+

M+ M+ M+ M+"M+ M+ [M+ M+ M+ M+ jM+ M+ M+ M+ M+ M+

a pair of doubly charged solitons appears. Figure 3
shows the charge-density profile of this type soliton cal-
culated numerically. Its width is about 6 in the unit of
t e lattice constant, since the e-ph coupling of this case is
not in the strong coupling, but in the intermediate region.
The dashed line in Fig. 2 denotes the road that going over
the saddle point from the ground state of CDW to this
soliton pair, since these two minima are separated by a
potential barrier.

Figure 4 shows a very schematic nature of the adiabat-
ic potential surface of E, and the Franck-Condon state

1

is at b,Q =0 and lo =0. As b, Q increases from zero along

I

the line l =0 E reac"es to a local minimum corre-

hole are bound together not only by the local lattice dis-
tortion but also b
from V

y t e electron-hole attraction comin
om V through the correction term Eq. (2.6). Th local

minimum at b =1 anan" '0= Dc corresponds to a pair of
another type solitons. It has a charge +e and a spin +—,',
according to our calculation. The STE and this soliton
pair are separated by only a small barrier, and the dashed
ine denotes the road that goes over the saddle point.

Figure 5 shows the numerical result for the potential
surface as a function of b, Q along the line l =0 In thise ine o

—. In this
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FIG. 4. Schematic naturture of E„as a function of EQ and 10.

calculation 8 is dedetermined to minimize E . All the en-

ergies are referenced from the ene gy g
, and this notation is used hereafter. This fi

se -trapping process of the CT
'

a ion. s ~ increases from zero, the STE s li
from the electron-hole air c

sp its o
- o e pair continuum, and at around the

oca minimum it emits a luuminescence of an energy h v',
w ic is about a half of the exciting h

' 'ng energy v.
igure shows the adiabatic energies a f

~~ an are determined to minimize E„.We

can see that the lowest excited state is a air of d
en ione e ore. Since there is onl a

small barrier between the STE and this
tion between them

an this pair, the transi-
en em is expected to occur easil thr

tunneling or th th 1
' ' . 's ale erma activation. It is al

Fig. 6 that the STE can
'

s a e tocan decay into the ground state to
n.-.d-. -ly h-ugh h'. bis amer region. Accordin to
the very recent experiment b W d . anin

bein ex
et al. the lifetime of the STE i
the

'
s y a a et al. and Tanin

e is of the order of 100 psec,
eing exceptionally shorter than that of ordinar

i a ides. Our result is consistent with
is experiment.
When a pair of solitons is generated, we can ex ect t

get a new absorption band due to thue to t e excitation from this
s s own in Fig. 6, the ener hv"

1 '1 f h Ab
a a o i e gap, which corres on

1.0 2.0 III. CONCLUSIONS

FIG. 5. gies as a function of b.Q atAdiabatic potential ener ies

CDW.
t e energies are refereng ferenced from the ground state of

We have thus studied the rounde ground and excited states of

tended Peierls-Hubbard
in M 's, using the one-dim ensional ex-

1u ar model. The lowest
s a e is s own to be a pair of doubly
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charged solitons, and it causes a new absorption band
with an energy of about a half of the gap. The STE is
also shown to be a locally stable state, separated from this
soliton pair only by a small barrier, in agreement with re-
cent experiments on the unusual short decay time of this
state.
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