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We study the spin-% quantum ferromagnetic and antiferromagnetic Heisenberg model using
Handscomb’s Monte Carlo (MC) method on square lattices of various sizes. As the temperature is
lowered the calculated correlation length in the antiferromagnetic case grows more rapidly than in
the ferromagnetic case. We also obtain the correlation length in the leading order of the high-
temperature series expansion which, at high temperatures, agrees very well with the MC results.
The correlation length obtained from the MC calculation for the ferromagnetic and antiferromag-
netic case is compared with existing theories. Taking the average value for the antiferromagnetic
coupling between the values suggested by neutron- and Raman-scattering experiments done on
La,CuQ,, we compare our results for the correlation length with those observed by the neutron-
scattering experiments. We find that our results for the correlation lengths away from the three-
dimensional (3D) Néel temperature Ty ~200 K are consistent with the experimental findings. In
order to obtain agreement close to the Néel temperature, however, we need to introduce an inter-
layer coupling between the CuO, planes. The effect on a 3D coupling is only discussed in the frame-
work of the quantum mechanical nonlinear 0 model in three space dimensions. For the case of
La,CuO, we find that close to Ty the o model in 3+ 1 dimensions reduces to the classical 3D
Heisenberg model whose critical properties are known and fit the neutron-scattering data for
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T~Ty.

I. INTRODUCTION

The copper-oxide superconductors' show interesting
magnetic properties which might provide the key to the
theoretical understanding of the superconducting mecha-
nism in these substances. The La,CuO,_, material has a
susceptibility anomaly at a Néel temperature Ty which is
sensitive to the value of y, increasing from T, ~0 for
y=0to Ty ~295 K for y=0.03.2 Neutron-scattering ex-
periments>* show that the materials order antiferromag-
netically. More specifically, in Ref. 4 the authors study
the magnetic correlations in single-crystal La,CuO,.
They observe strong two-dimensional (2D) antiferro-
magnetic (AF) behavior; the spins order instantaneously
over distances exceeding 200 A, in a wide temperature
range 200-300 K, but there is no average staggered mag-
netization. Neutron scattering* and Raman scattering
from magnon pairs® provide a large value for the AF cou-
pling J ~ 10° K. More recently the correlation length as
a function of temperature has been measured by
neutron-scattering experiments of Endoh et al.®

There are theoretical studies, on the other hand, which
examine the possibility of superconductivity mechanisms
originating purely from electronic degrees of freedom. In
some of these studies the magnetic properties of these
substances are responsible for the microscopic coherence
leading to the superconducting state. For instance, a
common point of departure is the Hubbard model in its
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strong-coupling limit.”® In this limit and at half-filling
this model is equivalent to the spin-; antiferromagnetic

Heisenberg model (AFHM)

H=J3% S§;8;, (1.1)
(ij)

where (i,j) denotes nearest-neighbor unit cells in the
Cu-O plane and S; is the spin operator of the
conduction-band electron located at the ith cell. The
quantum-mechanical Hamiltonian operator (1.1) is ex-
pected to describe the dynamics of spin fluctuations in
the undoped La-Cu-O material.

Recently, we stimulated’ the quantum AFHM in 2D
and calculated the correlation length as a function of
temperature. We found that at low temperatures the
correlation length grows very rapidly with decreasing
temperature, suggesting an essential singularity. Taking
the value of the antiferromagnetic coupling J ~10° K as
suggested by the neutron- or Raman-scattering experi-
ments, extrapolation of our results to room temperatures
gives correlation lengths of the same order of magnitude
to those observed. This calculation supports the idea that
the spin dynamics of the La,CuO, could be modeled with
the Heisenberg model. After the above work was finished
the behavior of the correlation length as a function of
temperature measured from neutron scattering became
available to us.® The goal of the present paper is twofold.
On the one hand, we offer more details about the simula-

575 ©1989 The American Physical Society



576 EFSTRATIOS MANOUSAKIS AND ROMAN SALVADOR 39

tion of Ref. 9 and report new results for the correlation
length obtained from simulating the two-dimensional
quantum ferromagnetic Heisenberg model (FHM) of spin
1. The second goal is to make quantitative contact with
the detailed behavior of the correlation length as ob-
tained from the neutron-scattering data.®

In this paper we simulate the quantum ferromagnetic
and antiferromagnetic Heisenberg model (1.1) with spin {
in two space dimensions using Handscomb’s method. We
perform the calculation on various size lattices (107, 207,
and 30°) and measure among other quantities the spin-
spin correlation function. At high temperatures the cal-
culated correlation length both from the numerical simu-
lation and from the leading-order high-temperature series
expansion agree remarkably well. In the ferromagnetic
case the behavior of the correlation length at low temper-
atures fits reasonably well to the scaling form predicted
by the perturbative renormalization group (PRG) results
or spin-wave theory. In the antiferromagnetic case, how-
ever, the correlation length grows more rapidly than in
the ferromagnetic case. Varying the temperature from
~0.7J to ~0.4J, § grows from ~1 (in lattice spacing
units) to about half the size of our largest system. This
behavior of the correlation length suggests an essential
singularity different from that obtained from PRG
analysis. A dramatic growth of correlations is also re-
vealed by recent neutron-scattering experiments done on
the La,CuO, material at room temperatures. Taking the
value of J=1100 K (the average value between those
measured by neutron or Raman-scattering experiments),
extrapolation of our results at 7 ~200-300 K gives
correlation lengths in the same neighborhood to those re-
ported.“‘6 It is clear, however, that the detailed behavior
of the spin correlation length as reported in the most re-
cent work of Endoh et al.® close to the 3D Néel ordering
temperature cannot be understood in terms of the dy-
namics of a 2D quantum Heisenberg model alone. We
show that it is necessary to introduce a small interlayer
coupling for those samples having finite critical Néel tem-
perature. It is, however, practically difficult to study the
role of the third space dimension within the full 3D quan-
tum AFHM. In the last part of this paper we attempt to
describe the behavior of the correlation length close to
the Néel temperature within the framework of a quantum
nonlinear o model in three space dimensions with a weak
coupling in the third space direction. This model de-
scribes some of the long-wavelength physics contained in
the full Heisenberg model and it is simpler; hence we can
hope that some realistic features of the materials close to
Ty can be described with it. We find that close to Ty
this model reduces to a classical 3D Heisenberg model
whose critical properties are known and fit the neutron-
scattering data reasonably well.

II. CALCULATION

A. Ferromagnetic case

The Hamiltonian (1.1) apart from a constant equal to
—NJ /2, N being the total number of unit cells, can be

written as

= % 2 P, 2.1
(i, j)

where P;; is the permutation operator which interchanges
the spin eigenvalues of the sites and / and j. The thermo-
dynamic average of any observable O in Handscomb’s ap-
proach'? can be calculated as

Tr(Ge 1) Si=0ZcUCHNUC,)

(0)= , (2.2)
Tr(e PM) SIS )

II(C,):(_—B;]'/—%)—Tr(P,-]PiZ P, 2.3)
Tr(OP; P, - P,)

QC,)= - — (2.4)

" OTHP, P Py)

where i, denotes a link, (i j) for instance, C,
={i,i5,...,I,} is a sequence of r operators. Now, we
explain how the trace of a string of operators is calculat-
ed inside the Hilbert space spanned by the 2V states
lo,0,5,...,0x), where o, is the eigenvalue of the z
component of the spin of the ith site of the lattice. A se-
quence C,={i,,i,, ...,i,} of operators applied on a state
lo),0,,...,0y) creates a final state which can be ex-
pressed as a product of cyclic permutations of the o’s.
The trace over the Hilbert space of the entire lattice is
the product of traces taken over the subspace of the sites
involved in every cycle, including the cycles of length one
(no permutation). The trace over each cycle is two be-
cause the spins of the sites in the cycle must be parallel
for states giving nonzero contribution. The trace over
the entire lattice is 2" where n. is the total number of cy-
cles, created after the application of the operators. In
this method a particular state of the system is determined
by the sequence C,. Given the sequence we can find the
cycles by direct application of the product of the opera-
tors on the lattice and from the cycles we know the states
of the Hilbert space contributing to the trace.

In the ferromagnetic case, J <O, and therefore
II(C,)> 0, which can be treated as a probability distribu-
tion. A Markov chain generating the distribution I1(C,)
of sequences C, is the following. At each step of the ran-
dom walk we add or remove an operator from the current
sequence C, with probability f, and 1—f,, respectively.
We select a given operator to be added with probability
1/N, (N,=2N is the total number of bonds) and the
specific location in the string with probability 1/(r +1).
We remove a given operator with probability 1/r. The
acceptance probability for a transition from the state C,
to a state C,, having r'=r=*1 operators and satisfying
the detailed balance, is given by

T(C.—C,) TI(C,.)
T(C,—C.) 1I(C,)

P(C,—C',)=min |1, , (2.5)

where T(C,—C/.) is the probability to select the
configuration C/ starting from C, and the ratio is given
by
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T(C,—>C:+l)

! /s (2.6)
T(C , ,—C,)

Nb 1 _fr +1
The probability f, is chosen as f, =1 and f,=1. Sam-
pling the space of sequences C, of operators we sample
the entire Hilbert space. At any moment from a se-

quence C, we can find the states giving nonzero trace for
that particular string of operators.

B. Antiferromagnetic case

In this case we express the Hamiltonian (1.1), apart
from a constant equal to NJ /2, as

—BH=(BJ/2) 3, (h}—h;) . 2.7
(i, j)
The operator 4;; is equal to S,*ij +S,-'Sj+, flips antipar-
allel spins, and gives zero in the case of parallel spins.
The matrix elements of A ,%- are zero except those diagonal
elements, which are equal to 1, between states in which
the spin of i and j are antiparallel. This Hamiltonian can
also be derived from the Hubbard model in the strong-
coupling limit and at half-filling (see Ref. 8). It describes
processes in which the electron hops to a nearest-
neighbor cell occupied by an electron of opposite spin,
making the site doubly occupied momentarily and in the
final state the two electrons return either to the original
configuration (h,%» term) or to the one with spins ex-
changed (h;; term).
Any observable O in this case is calculated using (2.2)
and the distribution I1(C, ) is now defined!! as
n(c,):(—n”iB—Jr—{ﬂTr(Q,-lQ,-z Q). 28
Tr(o\QilQiz T Qi,)
e Tr(Qi]Qi2 T Qir) '

(2.9

where Q; =h} or h;;. r(r,)is the number of h’s (h%’s) in
the sequence of r=r,+r, operators. The trace of any
string of Q operators is zero unless the 4 operators in that
string form closed loops. Hence for a square lattice the
number of 4 operators in a string must be even and con-
sequently II(C,) is always non-negative. To give a
nonzero trace any string of operators must satisfy anoth-
er condition explained below.

Here we explain how the trace of a particular string of
operators is calculated. A set of lattice sites connected by
operators is called a cluster. An isolated site not connect-
ed by an operator to any other site is also a cluster. The
trace of any string of operators is the product of the
traces of all the clusters including the monomers. Each
cluster has either trace equal to zero or two. If there is
one state of a cluster giving nonzero contribution to the
trace there will be one and only one additional state giv-
ing nonzero contribution: The state obtained from the
first by flipping all the spins in the cluster simultaneously.
In fact, given an operator sequence, we can construct ei-
ther two possible states contributing to the trace in a
given cluster or none. In the latter case the particular se-
quence is not allowed. Therefore the trace over a partic-

ular cluster is either zero or two and the trace of any
product of operators over the entire lattice is either zero

or 2", where n. is the total number of clusters. Next we
give the algorithm used to calculate the trace numerical-
ly. We start from the Hilbert space spanned by the set
So=1{l0,05,..,05)} and we apply all the operators in
the sequence consecutively. If we have no operator, i.e.,
the trace of the identity operator, we have N monomers
and the number of states giving nonzero contribution to
the trace is 2V. Presence of operators eliminates some of
the states and produces a Hilbert subspace S(C,) which
consists of all the states giving nonzero contribution to
the trace and is a function of the particular sequence C,.
For example, if there is only one operator there are N —2
monomers and a dimer, and the subspace S(C,, is the
direct product of the 2V ~2 states of the monomers with
the two possible states of the dimer. If there are more
operators the general rule is that the subspace of the Hil-
bert space giving nonzero contribution to the trace is the
direct product of the two or zero states which contribute
to the trace over the Hilbert subspace of each cluster. To
obtain S(C,) we start from S, and apply the operators
one by one and produce the subspaces
S(C,),S(C;),...,S(C,). In the steps of the application
of the r operators, out of the 2" possible states of the sys-
tem (n, being the number of clusters when r’, with
0<r’'<r, operators have been applied) we only keep
record of one representative state from S(C,) and the
clusters. Knowing the clusters we can obtain all the oth-
er states of S(C,.) which give nonzero contribution to the
trace of a particular string of the operators by simultane-
ous flip of all the spins in a given number of clusters. We
start from the state where all the sites are monomers
selecting the up spin for all of them and then apply the
operators consectively. When an operator is applied on
the spins of two sites which belong to the same cluster we
obtain zero (nonzero) if the spins of the sites are the same
(different). When an operator is applied on two sites
which belong to different clusters, we always obtain
nonzero. In this case we merge the two clusters in one
and if the current spins on these sites are parallel we
change all the spins in one of the clusters to make them
antiparallel. Finally we perform the operation prescribed
by the specific kind of the operator of the sequence.
Namely, if the operator is & we exchange the spins, other-
wise if the operator is h? we do not perform any opera-
tion.

A Markov chain that generates a distribution I[1(C,) of
sequences C, is the following. At each step of the ran-
dom walk we can add or remove any number n, or n, of
operators, respectively. Let n,=n, +n,, the total num-
ber of operators we add or delete. Being in the state C,
with r operators, we decide to add or delete an operator
with probability f, and 1— f,, respectively. We select a
given operator to be added with probability 1/2N, and
the specific location in the string with probability
1/(r +1). We remove a given operator with probability
1/r. The acceptance probability for a transition from the
state C, having r operators to the state C, having
r'=r+n, —ny operators and satisfying the detailed bal-
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ance is given by Eq. (2.5), where T(C,—C,.) in this case
is the probability to select the configuration C, starting
from C,. The probability P and the ratio of T°s do not
depend on the specific path connecting the states C, and
C,.. When r'> r the ratio of T’s is equal to

T(Cr—‘)crl') 1 T fr
T(C.—C,) |2N, 1—f, 1
fr+] fr'—l
X |7 — (2.10)
1*".fr+2 l_fr’

We take of f, o=+ and f,=1. For each value of n, the
detailed balance is satisfied. We select n, from the inter-
val [1,N,] which guarantees that the Monte Carlo steps
cover the entire sample space. We have tested our pro-
gram by comparing the energy at several temperatures to
the exact one-dimensional case.!> We have also calculat-
ed observables calculated in Refs. 10 and 11 and we agree
completely. Our main interest here is the calculation of
the spin-correlation function G(7) not calculated in Refs.
10 and 11. It is defined by Egs. (2.2) and (2.3) taking

6=(i1)71—‘;— > S,()S,(i+7),
' 2.11)

9
\‘

)=(i1)f%2 (S,(D)S,(i+7)) .

The plus (minus) sign corresponds to the ferromagnetic
(antiferromagnetic) regular (staggered) spin-correlation
function. In our approach the calculation of the correla-
tion function is easy; for each string of operators we have
all the possible states contributing to the trace. In the an-
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tiferromagnetic (ferromagnetic) case if i and i +7 do not
belong to the same cluster (cycle) they are uncorrelated.
Therefore i and i +7 must run over the same cluster or
cycle. In the ferromagnetic case all the spins in the same
cycle must be parallel. In the antiferromagnetic case the
relative spin direction depends on the order of the opera-
tors.

We have performed calculations on lattices with sizes
10X10, 20X20, and 30X30 with periodic and open
boundary conditions. The number of iterations per-
formed depends on the temperature and lattice size. Typ-
ically, for the ferromagnetic case and the antiferromag-
netic for the higher temperatures and smaller lattices, we
performed 500000 iterations for thermalization and
1000000 iterations for measurements. In the antiferro-
magnetic case however, for the lower temperatures and
bigger lattices longer runs were required both for
thermalization and measurements. The quantities which
require more iterations to reach their equilibrium value
are the number of operators of type A in a string of Q
operators, i.e., 7|, and the correlation function. For ex-
ample, for our 20X 20 lattice and at temperature 0.4J we
performed 8000000 iterations for thermalization and
12 000 000 for measurements.

III. HIGH-TEMPERATURE SERIES

The correlation function and the correlation length can
be calculated by high-temperature series expansion. Here
we calculate the leading order.

In the ferromagnetic case the leading contribution to
the expectation value of O =S,(0)S,(r) is of rth order
and it is given by

r Tr[S,(0)S,(r)P, P - P ]
. BJ 1 z z 1] 12 lr
lim G(r)= |—— | — , (3.1a)
T—o 2 r! .. T L) Tr(1)
[
where the sum is over all possible orderings (/,,...,/,) . BJ "Tr[S,(0)S,(r) Py Py -~ P, |, ]
of the r links (0,1),(1,2),...,(r—1,r) joining the sites  Jm Glr)= |-~ D ,
0,1, ...,r. Next, we show that application of the above
permutation operators in any order on the r links of the (3.1b)

string with » + 1 sites gives only one cycle. Before apply-
ing the permutation operators we have r +1 cycles of
length 1. In general, when we apply an operator, we ei-
ther (a) merge two cycles, when we apply it on two sites
which belong to two different cycles or (b) we split one
cycle into two when we apply it on two sites which be-
long to the same cycle (this line of arguments is also fol-
lowed by Handscomb!?). In our case, in the process of
applying the r distinct link operators we can only merge
cycles and never split one in two. Moreover, all sites will
be joined together because there are operators for every
link and therefore we generate one and only one cycle.
Hence, as explained in Sec. II (see also Ref. 10), the trace
of cycle is 2 and equal to the trace of the generic cycle

0—1—-2— -+ —r—0. Therefore,

The factor 1/(r!) is canceled by the r! factor which gives
the number of possible rearrangements of » permutation
operators corresponding to links between the sites 0 and
r. The trace of the denominator is 2"V because there are N
monomers. The trace of the numerator is 2~ because
there are N —r —1 monomers and one cluster with » + 1
sites. Therefore

,
lim G(r)= |BLLL | —o—rvam , (3.2)
T— o 4
where the correlation length & is given by
1
li = .
Am SO =T/ 3:3)
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In the antiferromagnetic case the leading contribution is

BJ "Tr[S,(0)S,(rh2h2, - -k} ]
2 Tr(1) '

lim G(r)=

T—>x

(3.4)

In this case the ratio of the traces is also 27" and the
correlation function and correlation lengths are also
given by (3.2) and (3.3), respectively.

Higher-order corrections will be of order 1/7, i.e.,

1
In(4T /J)+0(1/T) °

Such corrections become important for T/J ~1. Here
we restrict ourselves only to the leading contribution
which as we shall see compares remarkably well with the
MC resultsat T/J > 1.

lim &(T)= (3.5)

T—

IV. RESULTS

In Fig. 1 we give an equilibrium configuration of clus-
ters in the case of the AF model, inside the 20X 20 lat-
tice, for temperature T=0.5J (top figure) where the
correlation length is about 3.5. The solid (open) circles
denote up (down) spin. The clusters are drawn by solid
lines. There is a large cluster involving most of the lattice
sites and some other smaller ones. Inside our system,
each cluster, including the monomers, has only two possi-
ble spin states: the one indicated and any other which
can be obtained by flipping all the spins of any number of
clusters simultaneously. The lower part of Fig. 1 shows
the cluster distribution for a 10X 10 lattice and tempera-
tures 0.4J (left) and 1.5J (right). In the left case we see al-
most a Néel configuration and only two clusters, one be-
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FIG. 1. Top: The clusters in a 20 lattice at equilibrium and
at T=1.0J. Bottom: The clusters in a 10? lattice at T=0.4J
(left) and at T=1.5J (right).

ing monomer and another containing 99 sites.
Depending on the boundary conditions (BC) the large
distance behavior of the correlation function is given by

Ae 75T open BC

lim G(7)= , cosh[r—L /2/&(T)], periodic BC , @D

T o0

where L is the size of the lattice. In general there is a
power of the distance in front of the exponential. At
sufficiently large distances, i.e., in the interval
né<rt<(n+m)& with n >>1and m /n <<1 the variation
of the power can be ignored and the correlation function
will still behave as an exponential. Several authors!? use
the projected correlation function G,(x), defined by

» (4.2a)

G (x)=<§z(0)§z(x)):% S Gx,y),
¥

which is the correlation function of the following opera-

tor:

Sz(x)z%ESZ(x,y) . (4.2b)
y
The zero-momentum projection is used to avoid the fluc-
tuations around the longest wavelength. The small fluc-
tuations are responsible for the power law in front of the
exponential and G,(x) behaves according to Egs. (4.1).
Extraction of correlation lengths from this correlation
function, however, involves larger statistical errors.
Figure 2 shows the correlation function G calculated
for T=J for the ferromagnetic and antiferromagnetic
cases for lattices of sizes 10%, 20%, and 30%. The lines are
obtained by fitting all except the first few small-7 points
of the correlation function to the forms of Eq. (4.1). The
correlation lengths extracted for each case for the above
temperature are given in Table I. Within error bars they
are independent of the lattice size and boundary condi-
tions. Figure 3 shows the projected correlation function
G, for the same temperature and lattices. The extracted
correlation lengths are also given in Table I. They are
also independent of the lattice size within error bars and
agree with those obtained from the regular correlation
function (previous graph). As the temperature is lowered
and the correlation length becomes comparable to the lat-
tice size the form (4.1) is not accurate and better esti-
mates could be obtained by fitting the projected correla-
tion function (4.2) to an exponential. In Ref. 9 in the cal-
culation of the correlation length for antiferromagnetic
case we used the correlation function G. In Fig. 6 we will
compare the correlation lengths obtained with G and G,
for the antiferromagnetic case. For temperatures
T/J>0.5 the &’s extracted from G, and G agree within
error bars. At the lowest temperature & extracted from
the projected correlation function G, is higher by ~20%
to that obtained from the regular G. At even lower tem-
peratures when the values of the correlation lengths ex-
tracted from different size lattices disagree the calcula-
tion of £ will require larger lattices. In the rest of the pa-
per we discuss the results obtained with the projected
correlation function G,.
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FIG. 2. (a) The correlation function for lattices of size 102,

207 and 30” and temperature T =J for the quantum Heisenberg
ferromagnet. (b) The staggered correlation function for the
same lattices and temperature for the quantum Heisenberg anti-
ferromagnet.

In Fig. 4 we present the correlation length as a func-
tion of T for various-size lattices in the case of Heisen-
berg ferromagnet. We notice that the values for the three
lattices (10%, 20%, 30% all agree within error bars for
T/J >0.4 and for our two largest lattices (20%, 30%) for
T/J >0.35. Therefore the results are free of finite-size
effects for T'/J > 0.35. The dotted line gives the result of
high-temperature series expansion (HTE) [Eq. (3.3)]. The
HTE results agree very well with the numerical results at
high temperature (7' /J >1). At low temperature one ex-
pects from spin-wave theory the following form:
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FIG. 3. (a) The projected correlation function for lattices of
size 107, 20% and 30 and temperature T =J for the quantum
Heisenberg ferromagnet. (b) The projected staggered correla-
tion function for the same lattices and temperature for the
quantum Heisenberg antiferromagnet.

E(T)= - e2m//T (4.3)
T

The calculation of Takahashi'® gives / =1 and b = for
spin 4 and for the susceptibility X the same expression
with / =0 and b =1. Therefore for the stronger singulari-
ty X ~&2. Yamaji and Kondo,'” on the other hand, calcu-
late only X from the above quantities and find b =1 and
I=1. A similar expression is found by Dalton and
Wood.'®. The scaling (4.3) is the same as it is believed to
be for the classical ferromagnetic model!” based on per-

TABLE I. The correlation lengths for lattices L X L with L= 10, 20, and 30 with open or periodic
boundary conditions extracted from the plain (G) or projected (G, ) for the ferromagnetic and antiferro-
magnetic case and T/J=1. The numbers in parentheses denote the error on the last digit of the report-

ed value.
Ferromagnetic Antiferromagnetic
Plain Projected Plain Projected
l Periodic Periodic Open Periodic Open Periodic
10 0.75(2) 0.87(2) 0.96(3) 0.92(2) 0.96(3) 1.05(2)
20 0.76(2) 0.77(2) 0.90(3) 0.88(2) 1.04(3) 0.97(2)
30 0.94(2) 0.95(2)
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FIG. 4. The correlation lengths as a function of temperature
for lattices of sizes 10?, 20%, and 30? for the quantum ferromag-
net. Error bars smaller than the diameter of the open circles are
omitted. The dotted line is the result of the high-temperature
series expansion §(T)=1/In(4T /J). The curves are fits to the
form (4.3) and they are labeled by the value /.

turbative renormalization group calculations. In that
case, =1 and b=S? Taking the long-wavelength limit
of the quantum Heisenberg model one could reduce it to
the nonlinear o model in which case the exponent b cor-
responds to the renormalized spin stiffness.!® We fit the
results for £ which are free of finite-size effects to the
form (4.3) in the low-temperature interval 0.3 <7T/J <1,
using a@ and b as parameters and for three values of the
power /=0,1,1. The results of the fit are shown in Fig. 4
and the values of the parameters a and b for different I’s
are given in Table II. Our value of b is closer to that ob-
tained from Yamaji and Kondo’s calculation and is less
than half the value obtained by Takahashi. Notice that
the / =0 curve fits the high-temperature points also. We
will come back to this point later.

In the antiferromagnetic case the correlation length in-
creases very rapidly in a small temperature range. In Fig.
5 we present the calculated staggered correlation func-
tions for our 20 < 20 lattice for various temperatures. We
note that the correlations grow very rapidly in the tem-
perature region 1.0J-0.4J and for T'=0.4J they extend
up to the longest possible distance of our 2020 system.

TABLE II. The results of the fits to the form (4.3) for various
I's for the ferromagnetic and antiferromagnetic case using the
plain correlation function G [Eq. (2.11)] or the projected [Eq.
4.2)].

Ferromagnetic Antiferromagnetic
/ a b a b
0 0.28(1) 0.172(5) 0.25(2) 0.22(1)
1 0.36(1) 0.127(3) 0.35(2) 0.164(5)
1 0.46(3) 0.082(5) 0.50(4) 0.106(5)
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FIG. 5. The staggered correlation function for the antiferro-
magnetic Heisenberg model for a 207 lattice at various tempera-
tures. Errors bars smaller than the diameter of the open circles
are omitted.

When we repeated the calculation for T'/J=0.4 which we
have reported in Ref. 9, we observed the following. De-
pending on the start the system relaxes very slowly
(8 10° iterations) at different metastable phases giving
different correlation lengths. For various runs we found
the same correlation length as reported in Ref. 9 or
higher. This phenomenon was only seen for this point
T /J=0.4, for all other higher temperature runs the re-
sults are independent of the initial start. We decided to
exclude this point and in the rest of the discussion of the
antiferromagnetic case we only use the results for
T/J>045.

The correlation length as a function of temperature is
plotted in Fig. 6 on a logarithmic scale. The circles cor-

T T T
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§D - 2 1
a 5.0 i % 1
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I -
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) 1.0 / g —
s : 3
r Q ]
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i CR- 1
o
o . L]
0.5 1 5 10

T/J

FIG. 6. Comparison of the numerical results for the correla-
tion length as a function of T for the case of the AFHM extract-
ed from the plain [G, Eq. (2.11)] and projected correlation func-
tion [G,, Eq. (4.2)]. The dotted line denotes the leading order in
high-temperature expansion.
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respond to the correlation length extracted from the
correlation function G and the crosses to those extracted
from the projected G, [Eq. (4.2)]. We notice that at the
lowest temperature they disagree by ~20% but at higher
temperatures they agree within error bars. The dotted
line corresponds to the high-temperature series result
given by Eq. (3.3). In the range of temperatures
0.5J < T < 10J the results are independent of lattice size.
We may notice that the behavior is clearly not linear. In
fact, the slope —d In&(T)/d(InT') increases rapidly with
decreasing T.

The dashed lines in Fig. 7 give the best fit of the nu-
merical data to the forms (4.3) for l=0,%, and /=1, in
the same range 0.45 < T/J < 1. The values of the param-
eters g and b are given in Table II and b is somewhat
larger than that in the ferromagnetic model. Within the
framework of the PRG the fact that the value of b is
smaller from the classical value could be accounted for by
quantum fluctuations. The dotted line gives the HTE re-
sults [Eq. (3.3)].

The average staggered magnetization is zero at any
finite temperature due to the Mermin-Wagner theorem.!®
The theorem does not exclude a transition to a phase
where the correlation length diverges below some finite
T.. A well-known example is the XY model?® where a
phase with topological order exists and it is thought to be
related to vortices. Topological excitations different from
those in the XY model are known to exist in the 2D clas-
sical Heisenberg model?! also. It is believed,?"!”"?2 how-
ever, that in the classical case they do not give rise to an
infinite correlation length at finite temperatures. In the
quantum AFHM the structure of the ground state is un-
known. We attempted to fit the behavior of the correla-
tion length to an exponential function as in the
Kosterlitz-Thouless (KT) (Ref. 20) case

vvr|’

1=

10.0 —
e 1=1/2 X 10x10 :
oy 1=1 ]
ED 50 O 20x20 ]
3 ® 30x30 R
=
@]
5
=
[} 1.0
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[
o -
&) 0.5

T/J

FIG. 7. The correlation lengths as a function of temperature
for lattices of sizes 10%, 202, and 30” and open BC’s for the quan-
tum antiferromagnet. Error bars smaller that the diameter of
the open circles are omitted. The dotted line is the result of the
high-temperature series expansion §&(7)=1/In(47J). The
curves are fits to the form (4.3) and they are labeled by the value
1. The solid line is the result of the fit to the form (4.4).

B/\T‘TC!"

E(T)= Ae , (4.4)

where A4, B, T,, and v are obtained by fitting the calculat-
ed points in the interval 0.45<T/J < 1. The results of
the fit are 4=0.156, B=1.604, T,=0.3J, and v=0.45.
Notice that the value of v~0.5 is the same as that in the
KT theory. The result of the fit is shown in Fig. 7 by the
solid line labeled KT. The data suggests an essential
singularity in the correlation length of similar type as
that in the XY model. Fitting the ferromagnetic results
with the form (4.3) we obtain 7, ~0 and v~ 1 consistent
with the fact that the form (4.2) / =0 reduces to (4.3) with
T.=0 and v=1 and fits the numerical results for the
quantum ferromagnet very well (see Fig. 4).

What we can tell at the moment from the numerical
simulation is that the ferromagnetic results fit to the scal-
ing forms suggested by spin-wave theories and PRG. In
the antiferromagnetic case, however, we have seen an
essential singularity, which fits better to a KT-type form.
The possibility of a transition to a phase with zero aver-
age staggered magnetization and topological order giving
rise to algebraic decay of the correlations cannot be
theoretically excluded. For the sake of comparison we
plot both the correlation length for both FHM and
AFHM in Fig. 8 and the high-temperature series result.
We see that even though at high enough temperature all
the three results agree well at lower temperatures the re-
sults for the antiferromagnetic case increase more rapid-

ly.
V. COMPARISON WITH EXPERIMENT

In this section we attempt to make contact with
neutron-scattering data®® done on single crystal of
La,CuQO,. The temperature scale J is taken to be 1100 K,
the average between the values reported by neutron and
Raman scattering. In Fig. 9 we plot our numerical re-
sults together with the experimental data. It is notable
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FIG. 8. Comparison of the correlation lengths as a function
of T for the ferromagnetic and antiferromagnetic Heisenberg
model. The dotted line denotes results from high-temperature
expansion.
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FIG. 9. Comparison of the neutron-scattering data (open cir-
cles and crosses corresponding to two different samples) with
the results of our calculation (solid circles). We have used for
the energy scale J the value 1100 K, which the average between
the values reported by neutron- and Raman-scattering experi-
ments. There is little common overlap between the range of the
theoretical and experimental results. The experimental data,
however, seem to be a smooth continuation of the theoretical
results away from the 7Ty ~200 K.

that with no free parameter a relatively simple model
such as the 2D quantum AFHM gives results which are
in the same neighborhood with the data. Unfortunately
the range of the experimental data is T <500 K and the
theoretical data free of finite-size effects exist up to
&~10a (a being the lattice spacing), therefore there is lit-
tle overlap in the range between theoretical and experi-
mental results. It is also clear that at lower temperatures
close to the 3D Néel temperature our 2D calculation
should not agree with the behavior of the neutron-
scattering data.

The three-dimensional (3D) AF ordering of
La,CuO,_,, happens at a much lower temperature scale
than the AF coupling J, namely T ~200 K. This can be
explained both due to weak-layer coupling inherent in
these materials and due to the special crystalline arrange-
ment which frustrates a 3D order. The orthorombic dis-
tortion presumably relieves some frustration and pro-
duces three-dimensional Néel order at Ty, ~200 K. Close
to Ty =195 K, it is necessary to introduce a small inter-
layer coupling for those samples having finite critical
Neéel temperature. It is, however, practically difficult to
study the role of the third space dimension within the full
3D AFHM. In this section we attempt to describe the
behavior of the correlation length close to the Néel tem-
perature within the framework of a quantum nonlinear o
model in three space dimensions with a weak coupling in
the third space direction. This model**!® describes some
of the long-wavelength physics contained in the full
Heisenberg model and it is simpler; hence we can hope
that some realistic features of the materials, that may be

important for understanding their behavior, can be de-
scribed within the physics of this model.

We define the effective Euclidean action for the non-
linear 0 model**'® in three space dimensions with aniso-
tropic coupling in the third space dimension as

1
Se,T:EfOBdeffdx dy dz

(8,02)°+(3,0)?

+R(3,0)?

1

+
(#ic )?

(afn)z] , (5.1

where  is a three-component vector field living on a unit
sphere 33_,Q2=1) and c is the velocity of spin waves.
In this model, the partition function is the path integral
over the space-time vector function (field) & with weight
e el This model may be derived from the Heisenberg
model by slicing the temperature (Trotter approximation)
and generating the imaginary-time direction by introduc-
ing the coherent basis and taking the continuum limit.
The fact that, in the original problem in the calculation
of the partition function and the observables, the trace re-
quires to start and end at the same state, reflects periodic
boundary conditions in the Euclidean time direction, i.e.,
Q(r,7+B)=Q(r,7). The parameter R is the ratio of the
spin-stiffness constants in the directions parallel and per-
pendicular to the CuO, plane and it is expected to be very
small on phenomenological grounds. In this model the
average of the field Q is proportional to the average stag-
gered magnetization. Rescaling the z and 7 variable by
R ~'"? and #ic, respectively, we obtain

fﬁﬁcd fdx dy dz

X[(3,2)*+(3,Q)*
+(3,0)*+(8.0)%] .

of =~ 2gﬁc

(5.2)

At temperatures 7 ~200- 400 K taking the experimental
value of #ic ~4000— 5000 K A the physical value of Bfic is
approximately 10-20 A. At these temperatures, how-
ever, the correlation length is >200 A. Therefore the
upper limit of the Euclidean time integration Bfic <<§&,
and consequently the imaginary-time integration may be
approximated by the mean-value theorem. Hence we ob-
tain the classical 3D Heisenberg model

Ser~50r [ [ [ dx dy 218,000+ (3,00

+(3,0)%]

(5.3)

with g'=g/(V'R B). The above approximation breaks
down at temperature T where &~ f%ic. This temperature
is higher than 500 K which is outside the range of the ex-
perimental data.

In a three-dimensional classical Heisenberg model we
expect that the behavior of the correlation length is given
by
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é‘(T):-—L'— ,

(5.4)
| T—Ty|"

and it is known for this model that v~0.7.2* Using the
observed value of T =195 K and the above value of
v=0.7, there is only one unknown parameter in Eq. (5.4),
a multiplicative constant. We should, of course, keep in
mind that the unit of length in the z direction has to be
rescaled by a factor VR and so the constant C in Eq.
(5.4) for correlations perpendicular and parallel to the
CuO, plane is different: C,=VRC,,

In Fig. 10 we plot the experimental correlation length
&(T) (open circles) as a function of T— T’y on a logarith-
mic scale. The solid circles are the results of our calcula-
tion of the 2D quantum AFHM. The solid lines corre-
spond to Eq. (5.4) using the experimental Ty =195 K and
v=0.7. Namely they are straight lines with slope v=0.7
with different constants C for the two different samples.

Now we provide a rough estimate of the expected 3D
critical region using mean-field theory. For the sake of
numerical estimates we put the theory (5.3) on a 3D lat-
tice. In mean-field theory the critical value of g’ for a
three-dimensional ordering is given by g.(a)=2a, where
a is the unit of the lattice spacing, which gives rise to a
Néel temperature

(5.5a)

If we set R =0 in (5.1) and put the theory on a lattice we
can obtain an estimate of g (a)~a /[JS(S +1)], where a
is the lattice spacing of the CuO, plane in the real materi-
al. Therefore

_ kgTy
T 2JS(S+1)

and using the experimental estimates for J and Ty =200
K we obtain. VR ~0.1. The crossover from 3D order to
2D behavior will happen when &,(T)~a, ~10-20 A e,
when V'R &xy~a,. Using the neutron-scattering data
and the above estimate of R we obtain that the above
equation is satisfied when £, , ~100 A, which correspond
to T~350 K. In Fig. 10 we probably see a crossover
from three to two dimensions at about ~ 300 K.

(5.5b)
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FIG. 10. 3D effects close to the Néel temperature. Compar-
ison of the neutron-scattering data (open circles, two different
samples) with the results of our calculation (solid circles) as a
function of T— Ty. The solid lines have slopes v=0.7.

The quantum-mechanical nonlinear ¢ model in two
space dimensions has been studied,'® using perturbative
renormalization-group approach. The authors of Ref. 18
obtained a good fit to the experimental data® with the
singular function (4.3). They argue that the interlayer
coupling is very small. Our findings also indicate that it
is very small but alters the behavior of the correlation
length in the neighborhood of Ty considerably.
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