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Brillouin scattering in incommensurate R12ZnBr4 and RbzZnC14
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In R12ZnBr4 and Rb2ZnC14, Brillouin scattering of longitudinal-acoustic phonons is performed as
a function of the temperature. Small anomalies, arising through a coupling with the soft-going
modes, are observed in both the phonon velocity and damping near the transition from the ortho-
rhombic to the modulated phase. The anomalies are quantitatively accounted for with a
comprehensive analysis based on an adaptation of Levanyuk's Landau theory for sound absorption
near second-order phase transitions. In the incommensurate regime, two mechanisms appear to
contribute by about equal weights: an e6'ective coupling bilinear in the strain and amplitude Auc-

tuations, and a coupling linear in the strain, but quadratic in the amplitude fluctuations. Above the
transition, the soft-mode counterpart of the latter coupling remains. Estimates of these contribu-
tions derived from the theory with parameter values from other sources are found to be in confor-
mity with the experiment. The analysis further yields the amplitude-mode and soft-mode relaxation
times as well as the transition temperatures. Additionally, the anomalous phonon velocity and

damping observed in Rb~ZnBr4 near a transition at 115 K are analyzed. Finally, the elastic con-
stants of Rb~ZnBr4 and Rb2ZnC14 are determined at 300 K.

I. INTRODUCTION

This paper is concerned with a detailed experimental
investigation of the frequency and damping of
longitudinal-acoustic phono ns in Rb2ZnBr4 and
Rb2ZnC14 by means of Brillouin spectroscopy, and with a
comprehensive interpretation of the results in terms of a
phenomenological Landau theory. Both systems, as well
as a few other compounds having the P-KzSQ~ structure,
are of interest because they undergo a transition from a
high-temperature normal phase to a displacively modu-
lated phase. In its normal phase, RbzZnBr4 is ortho-
rhombic with space group D2h =Pmcn (choice of axes
such that b )c & a) and paraelectric. ' Below Ti =353
K, the structure becomes modulated with a nearly
temperature-independent wave vector qo=( —,

' —5)c',
with 5=0.04, but remains paraelectric. At the lock-
in transition at T2=194 K, the parameter 5 drops to
zero. An orthorhombic commensurate structure with
space group C2, =P2&cn results, whose unit cell is tripled
in length along the c axis in comparison with the normal
phase. This structure is ferroelectric along the a
axis. ' ' Additional transitions have been found at
T3=115 K, T4=76 K, and T5=50 K with specific-
heat, NMR, ' x-ray, and dielectric " experiments.
Between T3 and T4, Rb2ZnBr4 is observed to be antifer-
roelectric along the b axis, while the ferroelectric order
along the a axis extends from T2 down to below 30 K.
In the compound Rb2ZnC14, isostructural with
Rb2ZnBr4, the transition from the normal to the incom-
mensurate phase takes place at T& =304 K.

Brillouin scattering, like ultrasonic techniques, probes
the coupling between the order parameter and the strains
through its effects on the elastic behavior. In the present
cases, the order parameter may be identified with the
averaged coordinate Q (qo) of the soft-phonon mode in-

voking the transition to the modulated phase. ' The as-
sociated acoustic anomalies of the frequency and
linewidth are inherently small, and can only be retrieved
with a careful analysis correcting for the instrumental
profile and the finite range of scattering angles. This is
done below to find that the anomalies are of order 1%
only. The elastic properties of Rb2ZnC14 have previously
been investigated with ultrasonic techniques' ' and Bril-
louin scattering. ' ' Brillouin scattering was, however,
restricted to frequency shifts.

In the interpretation in terms of a phenomenological
Landau theory, the objective is to achieve a quantitative
account of the frequency and linewidth anomalies at both
sides of the transition. To this end, terms up to second
order in the ogder-parameter fluctuations need be re-
tained in the expansion of the interaction between the or-
der parameter and the strains. The formalism developed
below is an adaptation of the theory by Levanyuk' for
sound absorption near second-order phase transitions, as
applied by Yao et al. ' to the case of the ferroelectric-
ferroelastic phase transition in terbium molybdate. In
the equations of motion of the acoustic modes, terms
quadratic in the order-parameter fluctuations appear to
account for the elastic anomalies above the transition.
Below the transition, however, the anomalies are made
up, in about equal portions, of the quadratic terms and
terms bilinear in the order-parameter Auctuations and the
strain. The present treatment explicitly takes the quadra-
tic terms into consideration, and in this respect goes
beyond previous analyses of .Brillouin anomalies in in-
commensurate systems, notably K2Se04.

II. EXPERIMENTAL

The Brillouin spectrometer is of conventional design.
As light source an argon-ion laser operating in a single
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mode at a wavelength of 514.5 nm and at a power level of
100 mW or less is used. The incident beam is focused,
with suitable polarization, onto the sample to a diameter
of about 80 pm. The scattered light is analyzed by means
of an actively stabilized triple-pass Fabry-Perot inter-
ferometer (Burleigh RC 110 with DAS 1 digital data ac-
quisition and stabilization unit, but with the high-voltage
supplied externally for greater stability), operating at a
free spectral range of about 6 GHz with a finesse of 50 to
60. All data have been taken in a 90'+1 scattering
geometry. Stray light is reduced with a second collima-
tor, following the interferometer. To eliminate low-lying
Raman lines, a grating monochromator with a band-
width of about 8 cm ' is employed as a filter. The ana-
lyzed light is detected with a cooled photomultiplier (S20
photocathode), whose output is fed to standard photon-
counting equipment providing digital input signals for
the DAS 1. The background signal is approximately 1

count/s. Typical runs consist of 500 to 2000 scans over
512 channels, with a channel dwell time of 1 ms, in-
creased to 20 ms when scanning through the Brillouin
peaks. The free spectral range has been calibrated with
reference to the Brillouin shifts of the [110] longitudinal-
and transverse-acoustic phonons in KC1, which from the
known elastic constants and refractive indices are calcu-
lated to amount to 15.960 and 7.315 GHz, respectively.
The calibration error is estimated to be 0.5%%uo, mainly
residing in the uncertainty of the scattering angle.

Single crystals of Rb2ZnBr4 and RbzZnC14, approxi-
mately 4 cm in volume, have been grown with the Stock-
barger method under a nitrogen atmosphere, with the
melt crystallizing at a rate of 3 mm/h. They are trans-
parent and colorless, and possess cleavage planes perpen-
dicular to the b axis with a spread of approximately one
degree of arc. The structure has been checked with x-ray
diffraction. For use in the Brillouin-scattering experi-
ments, specimens of approximately 3X4X5 mm in size
have been cut from these crystals as necessary for the
various scattering geometries, i.e., such that the incoming
and outgoing beams are both perpendicular to crystal
faces. The specimens have been mounted in an optical
cryostat to a precision of about one degree of arc in their
orientations. The temperature of the mount is regulated
to within 0.02 K. Temperatures have been measured
with a calibrated platinum resistor. Sample heating due
to the laser beam is estimated to be less than a few tenths
of a Kelvin.

In the analysis of the Brillouin peaks, the peak posi-
tion, the phonon-induced broadening, and the peak
height are taken as adjustable parameters. The anoma-
lous Brillouin frequency shifts and damping rates of
acoustic phonons in RbzZnBr4 and Rb2ZnC14 typically
are a fraction of the instrumental width only. In carrying
out the fits, therefore, we first determine, separately for
each spectrum, an e+ectiue instrumental profile by convo-
luting the bare instrumental profile, as measured from the
unshifted line, with the distribution of Brillouin frequen-
cy shifts associated with the finite acceptance angle. A
Lorentzian with a width corresponding to the phonon
lifetime is in turn convoluted with this effective instru-
mental profile, and the result is fitted to the observed
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FIG. 1. Brillouin spectrum of C»-mode L acoustic phonons
in Rb2ZnBr4 at 333 K. Lines belong to different orders of the
interferometer transmission, as indicated. The free spectral
range is 6.155 GHz. Solid curves are fits, as discussed in text.
Counting time per channel totals 1.12 s. The channel dwell time
has been increased 20-fold in the passages through the Stokes
and anti-Stokes lines, with corresponding scaling down of the
channel contents.

Brillouin peaks. The fits appear to be of excellent quality,
as is exemplified in Fig. 1. All double convolutions have
been evaluated numerically, repeatedly in the course of
the fitting. As it appeared, the bare instrumental profile
is adequately parametrized with a Lorentzian to a power
p varying between 2.3 and 2.9 (see fits to the Rayleigh
lines in Fig. 1), compared to a p of exactly 3 for an ideal
triple-pass instrument. Even in the case of optimal align-
ment, however, mirror imperfections, the finite accep-
tance angle, the active stabilization of the interferometer,
and the residual instability of the laser frequency within
the interferometer stabilization time ( —10 s) all tend to
raise the wings of the transmission profile at the expense
of its central peak, thereby reducing the fitted p. Further,
the uncertainty in p is substantial due to its strong corre-
lation with the width of the profile.

As for the spread in Brillouin frequencies due to the
finite acceptance angle, we recall that the Brillouin-
frequency shift v is related to the acoustic-phonon phase
velocity v through

v= (n, +n, —2n, n, cos8)'v

0

with 8 the scattering angle inside the crystal, Ao the laser
wavelength in vacuum, and n,. and n, the refractive in-
dices for the incident and scattered light. In the present
setup, the detected beam is limited to a circular cross sec-
tion, providing an acceptance angle as small as 1.4.
Thus, the scattering angle outside the crystal, O„extends
to 0.7' to either side of the median scattering condition
(0=8,=90 ), with a weight which to very good approxi-
mation varies with 0, according to a semicircle. To con-
vert this to frequencies, we use that in the case of 90
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scattering a departure of 8, by 50, affects v linearly by
the amount

5v=v[n;/(n, +n, )]58,

[cf. Eq. (1)]. Here, the angular dispersions of U, n;, and n,
are ignored, but account is taken of the refraction at the
sample surface, i.e., 50, /56=n, F. or longitudinal pho-
nons in RbzZnBr4 (n; =n, = 1.67), for example, the distri-
bution of Brillouin frequencies due to the scattering
geometry alone is thus given by the analytic form
(5v,„—5v )' with 5v,„=40 MHz. As already noted,
this distribution is to be convoluted with the bare instru-
mental profile to obtain an effective instrumental profile.
This results in corrections of approximately 25—35 MHz
in the phonon-induced broadening, compared to an in-
strumental width of 63 MHz. As concerns the neglect of
the angular dispersions, detailed numerical calculations
indicate that they may be entirely disregarded for pho-
nons traveling along the crystal axes, and for other
geometries have effects that are at least an order of mag-
nitude smaller than 5v.

The refractive indices of Rb2ZnBr4, necessary to ex-
tract the elastic constants from the Brillouin frequencies,
have been measured at room temperature and Xp=514.5
nm by use of a minimum deviation method with toluene
as an immersion Quid. The results are n, =1.672+0.003,
nb =1.663+0.003, and n, =1.680+0.003, from which n,-

and n, may be derived. Literature values are available
for the refractive indices of Rb2ZnC14. '

III. RESULTS

A. Elastic constants

To determine the elastic constants of Rb2ZnBr4 at 300
K, Brillouin shifts have been measured for a selection of
scattering geometries. The results are tabulated in Table
I, together with the expressions for p v connected with
each mode observed. It is noted that these expressions

are approximations for geometries for which the incident
and detected light beams differ in their polarizations. In
these cases, the phonon wave vector is not precisely
aligned along the bisectrix of the photon wave vectors be-
cause of the finite anisotropy of the refraction, but nu-
merical calculations indicate the departures not to exceed
0.3' and to have effects significantly below the experimen-
tal precision. The elastic constants have been deduced
from the measured frequencies by fttting Eq. (1) with the
expressions for p v specified in Table I inserted. The
mass density p is taken to be 3.683X10 kg/m . The re-
sults are, in GPa,

C] &

= 17.07+0. 16

C~2 = 17.54+0. 16,

C33 =22.63+0.19,

C44 =4.73+0.04,

C55 =5. 13+0.07,

C66 =3.41+0.07,

C,2 =7.85+0. 13

C&3 =8 ~ 70+0. 16

CQ3 8.30+0.15 .

Here, the uncertainties correspond to one standard devia-
tion. The present results differ from those from ultrason-
ic experiments by on the average 4% to either side.
There is no apparent cause for the differences, but it is
noted that in the latter case the crystals were, as distinct
from the present ones, grown from an aqueous solution.
Figure 2 shows the angular dispersion of the near-zone-
center acoustic-phonon phase velocity, as calculated from
the elastic constants just found. Note that the a and b
axes are nearly identical as far as the elastic behavior is
concerned.

In a similar way we have determined the elastic con-

TABLE I. Scattering geometries and observed Brillouin frequency shifts used in the determination of the elastic constants of
R12ZnBr4 at 300 K. I., QL, T, and QT denote longitudinal, quasilongitudinal, transverse, and quasitransverse acoustic modes, re-
spectively.

Scattering
geometry

xy (z,z)xy
xy(z, z)xy
xz (y,y)xz

xz (y, xz)xz
y(z, z)x

y(z, y)x
z(x, x)y

z(x, z)y

z(y, y)x

z (y, z)x

&obs

(GHz)

9.956
10.077
11.325
5.225
9.606
5.230
5.286

10.472
5.756
4.988

10.516
5.554
4.811

Mode

L
L
L
T

QL
QT
T

QL
QT

QL
QT
T

2
Pm V

C~2

C3

4 [C|)+C~~+2C66+[(C|i—C22)'+4(Ci~+C66) ] 1

4 [C||+C~~+2C66—[(C„—C22) +4(C,2+C66)'] ]
—,'(C44+ C» )

4[C22+C33+2C~4+[(Cu C33) +4(C~, +C44) ]'

4 [C22+C33+2C~~ [(C~2 C33) +4(C~3+C~) 1

2 (Css+ C66)

4 [C|)+C,3+2C„+[(C||—C33) +4(C,3+C„)']' ']
—'[C||+C33+2C5,—[(C„—C„) +4(C„+C,5) ]' ']

—,'(C44+ C66)
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FICx. 2. Polar diagram of the acoustic-phonon phase velocity
in Rb2ZnBr4, as calculated from measured elastic constants at
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non modes are indicated by QL, QT, and T, respectively. On
the axes the QL modes turn strictly longitudinal.

stants of Rb2ZnC14. The results are, in GPa,

FIG. 3. As Fig. 2, but for Rb2ZnC14.

discerned in the linewidth data (Fig. 5). The data of the
C33 mode, on the other hand, do not reveal a significant
anomaly near T, . (ii) At the incommensurate-to-
commensurate (I C) transit-ion at T2 =194 K, a small but
distinct step is apparent in the Brillouin frequency of the
C» mode, but absent from the frequencies of the C22 and

C ] &

= 19~ 27+0. 19

C22 =20.96+0.19,

C33 28 ~ 2+0.5

C44 =6.10+0.05,

C55 =6.22+0.05,

C66 =3.67+0.08,

C)2 =8.53+0.14,

CI3 =9.2+0.6,
C23 =9.4+0.2 .

These values coincide within errors with those found by
Luspin et al. ,

' yet are slightly more accurate. Figure 3,
then, gives the calculated angular dispersion of the
acoustic-phonon phase velocity for RbzZnC14.
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Figures 4 and 5 show the variation of the Brillouin
shift and the linewidth of longitudinal-acoustic phonons
in RbzZnBr4 in the temperature range of 55 to 380 K. It
is noted that the data are the less accurate the lower the
temperature because of the associated reduction of the
scattered light intensity. All data were taken on heating
runs. The most distinctive features are as the following:
(i) In an interval of about 20 K around the normal-to-
incommensurate (X I) transition at T& =-353 K, the C&&
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FIG. 4. Brillouin frequency shifts vs the temperature of C»-,
C»-, and C33 mode L acoustic phonons in R12ZnBr4, as mea-
sured in the scattering geometries specified in Table I. Enlarge-
ments around T&, T3, and T4 are presented in Figs. 7 and 8.
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course corresponds to the amplitudons and phasons in
the incommensurate regime. The calculation is conduct-
ed by use of the Lagrange formalism in a classical contin-
uum approximation, with inclusion of the interaction of
the acoustic and soft-going modes. First, a set of coupled
equations of motion is derived for the soft-phonon coor-
dinates and the strain, with the latter restricted to
longitudinal-acoustic ones. For the incommensurate re-
gime, these equations are subsequently rewritten to am-
plitudon, phason, and strain variables, with the order pa-
rameter occurring explicitly. After linearization for
small strains and application of the Auctuation-
dissipation theorem, an expression is then deduced for
the linear elastic susceptibility up to second order in the
order parameter fluctuations. Both the first- and second-
order contributions appear to afFect the frequency and
damping of the acoustic modes as measured with Bril-
louin scattering.

We first consider the static modulation and the static
uniform strains resulting from it. The internal energy
density appropriate for P-KzSO4-type crystals may be ex-
panded in the soft-phonon complex coordinate Q(q=0)
and the strains e; of the acoustical waves, to read
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FIG. 5. Linemidths (FTHM) vs the temperature for C»-,
C2z-, and C33 mode L acoustic phonons in Rb&ZnBr4.

and C22 modes behave anomalously. This is most clearly
discerned in the linewidth data (Fig. 5). The data of the
C33 mode, on the other hand, do not reveal a significant
anomaly near T, . (ii) At the incommensurate-to-
commensurate (I C) transition a-t T2 = 194 K, a small but
distinct step is apparent in the Brillouin frequency of the
C» mode, but absent from the frequencies of the C22 and
C33 modes. The C» and C33 modes tend to show a
slightly enhanced linewidth near T2. (iii) At lower tem-
peratures, anomalies in the Brillouin frequency are ob-
served just below T3 = 115 K and at T4 =76 K. The
anomaly near T3, which extends over a temperature in-
terval of about 5 K, is accompanied with a substantial
enhancement of the linewidth for all three directions.
The anomaly at T4 involves distinct steps in the frequen-
cies of the C» and C33 modes, without any measurable
effects on the linewidth.

Here, the coeScient A is taken proportional to T —Ti.
The first two terms are the leading terms in the Landau
expansion, giving rise to a second-order phase transition
at T;, The next two terms, in which the C; are the elas-
tic constants unperturbed by the soft mode, represent the
elastic energy. The remaining terms finally represent the
lowest-order nonlinear interaction between the strains
and pairs of soft phonons allowed by the relevant space
group Pmcn. It is noted that the fourth-order h terms,
although in the present systems escaping determination
(cf. Sec. V), have below been carried through, with the ex-
ception of Eqs. (4) and (5).

Upon defining QQ*=p, the order parameter po= (p)
and the static strains e0, follow from the minimum ener-

gy conditions BU/Bp =0 and BU/Be; =0, which yield

3 3 6
A +Bpo+2 g g, eo,. +2 g h; eo;eo. +2 g h, , eo, =0,

i=4

(3a)

IV. ACOUSTIC ANOMALIES

3r ( ~J+2h Jpo)eDj= gipo
j=1

(3b)

To derive explicit expressions for the anomalous elastic
constants and the damping of the acoustic modes due to
interaction with the soft-going mode, we resort to the ap-
proach of Levanyuk' and Yao et al. ' This method al-
lows us to relate the elastic susceptibility to the order pa-
rameter as well as its Auctuations, the latter of which of

and eo;=0 (i=4,5,6) The only n. onzero static strains
thus are the longitudinal ones e0, , eo2, and e03 They are
given by

3

eo;= —g (C ),. 'g~po (i =1,2, 3) .
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p()
= —A

3

B —2 g (C ),, 'gg,

Using this result, we have for the order parameter below
T

in which the field variable 4 is to be identified with p, P,
or u, . After taking the derivatives of the equations for u;
with respect to x;, the space-time Fourier transforms of
the equations of motion for p, P, and e; become

Equations (4) and (5) are to lowest order in the order pa-
rameter, which amounts to neglect of the h terms.

For a calculation of the dynamical properties, the
internal energy density, Eq. (2), needs to be supple-
mented with a gradient term of the form

g; D;(aQ/ax; )(aQ'/ax; ), describing the soft-mode
dispersion. ' To make the calculation tractable, we limit
ourselves to longitudinal-acoustic phonons traveling
along the crystal axes, simplifying Eq. (2) in its strain
dependency. Upon writing Q =pe '~, with p and
dependent on space and time, the potential energy densi-

ty is then given by
3 a

U = 'A p + ,—'Bp + —,
'—gD;

Bx

2 '2
+ z

ax;

3 3 3

+—,
' g C,oe,~+ g g;e~p + g h;J. e;eip

The kinetic energy density similarly reads'

3
T= —,'pQQ +—,'p

3

=lP(p'+P'0')+-, 'P- X u'

in which o., is the driving stress associated with the strain
e;, and f and f& are the driving forces for the fluctua-
tions of the amplitude and phase of the soft mode. Final-
ly, damping is included in a phenomenological way by
means of a Rayleigh dissipation function of the form

3

F = ,'pr(p'+p'4 ')+-,'p X y,.e

in which I denotes the damping of the soft mode, while
the last term represents a wave-vector-dependent damp-
ing of magnitude y,.q, of the C,.;-mode acoustic phonon.

The equations of motion for p, P, and e; are subse-
quently obtained from the Lagrange formalism for con-
tinuous systems,

L =T —U —U,„, ,

in which p is the efFective mass density for the soft mode,
p is the mass density, and u;(r) are displacements in the
x; direction, related to the longitudinal elastic strains by
e; =au;/ax;. To probe the fiuctuations, fictitious exter-
nal driving forces are included by adding to the potential
energy density

3

U,„,= —g o;e; pf pgf~, ——

3
p—Q i—pr Q+ g D, q, P(q,.Q)+pIpeQPeQQ)

i =1

3

+ A p(q, Q)+B Ipepe p) o Q—D, I pe q, Peq, P).
3 3

+2 X g Ie *p)q n+2 X heal
Ie *e)*p)q,n

=f (q, Q)+I/sf~)qn, (lla)
3

( PQ i@1 )IpepeQQ)q o+ g D q IP+Peq P)q n~

= I puffy jq, n

( pen— i p y—, k, co+ C,, k, )e, ( k, co ) +g; k; I p e p ) ~

3

+2 g h)k; Ie)+pep)k =k;o(k, co),
j=1

(1 lb)

(1 lc)

where the symbols I e ) and I e e ) denote convolutions
of the functions within, q and 0 are the soft-mode wave
vector and angular frequency, and the corresponding
quantities of the acoustic wave are, for clarity, denoted
by k and cu.

We first apply Eqs. (11}to the incommensurate regime,
in which both the amplitude and the phase of Q may fiuc-
tuate. To separate out these fluctuations and those of the
strains about the equilibrium values po, $0, and eo;, we set

p(q, Q) =p05(q)5(Q)+P„(q, Q)/2'

P(q, Q) =$05(q)5(Q) —P&(q, Q)/2' po,

e, (k, co) =e0, 5(k)5(co)+5e, (k, co),

(12)

Substituting Eqs. (12) into Eqs. (11) and eliminating the
static terms by use of Eq. (3), we find for the equations of
motion of the amplitudons, the phasons, and the
longitudinal-acoustic waves

P„(q,Q)=y„(q, Q)f~(q, Q)
3—2'~'yo„(q, Q} g g,'P05e, (q, Q)

where, following Bruce and Cowley, we have intro-
duced the amplitudon and the phason coordinates

P„=(5Q *e '+5Qe ') /2'
(13)

P~=l (5g*e —5Qe )/2'

d aL, ' a aI. aL, aF
dt aqI, ax,. a(av/ax, ) av

a aF
, =, ax; a(aq/ax, }

(10)

3—2m~(q Q} g g I5e;+P~)q, n

P~(q, Q) =y~(q, Q)f ~(q, Q),

(14a)

(14b)
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o,. (k, ~)= 5e, (k, co)+2h, ,po5e, (k, co)
1

y, (k, co)

pling equals

P„(q,Q) =y„(q, Q)f„(q,Q), (18)

where

+2' g,'poP„(k, co)+ ,'g, '—jPaeP„}k„
+2'"h„poI 5e, e P„}„„, (14c)

we have

5e;(k, co)+2h, ,p 5e, (k, ~)
1

y, (k, co)

f~(q, Q)=2'~ f (q, Q),

f~(q, Q)= —2'~ f~(q, Q),

—4g p~„(k,co)5e, (k, co)

—2g,'( IP„'*y'„[5., *P,' }}„). (19)

and the g, are renormalized by the static strains, Eq. (4),
according to

3

g,'=g,. +2 g h,"eo
j=1

(15)

We note that Eqs. (14) have been linearized in 5e, Fur-
ther, in Eqs. (14a) and (14b) terms in P„and P& of order
higher than the first are discarded. In Eq. (14c), however,
terms of second order in P~ are kept, enabling us to cal-
culate the second-order effect of the order-parameter fiuc-
tuations on the elastic behavior. As is seen from Eq.
(14b), the phasons do not interact with the strains within
the assumptions underlying Eq. (2). The susceptibilities
entering Eqs. (14) are those in the absence of interaction,
as is indicated with the superscript 0. They have the
standard form of the susceptibility of a damped harmonic
oscillator, and are given by

The double convolution occurring in Eq. (19) is evaluated
with the help of the Auctuation-dissipation theorem,

(P (q, Q)P (q', Q') )

k, T
Imp„(q, Q)5(q+q')5(Q+ Q'),

(2') Q
(20)

to reduce to

I~(k, co)= J y„(k—q, co —Q)lmy„(q, Q) dq . (22)

Below T;, the elastic susceptibilities y, (k, co) =5e; /
/

( o,.(k, co) ) then are given by

( tP„eg„ I5e;eP„}}i, ) = 45e;(k, o~)I„(k,co), (21)
(2m)

with

y~ (q, Q) = I/p[Q „(q)—Q —i I Q], (16a)

(16b)

(16c)

y&(q, Q) =1/p[Q&(q) Q i I Q—], —

y, (k, co)=1/(p /k; )[(k; /p )C;; co iy;k—; co]—,

1 1 +2" po 4g p4"'~ (k ~)
X,, k ~ y, (k, co)

k~T—2g,
' I„(k,co) .

(2~)
(23)

with the dispersion relations, in circular frequencies,

2 I 2
3

2Q„(q)=—28po+ g D;q;
I'=1

3

Q&(q)= —g D;q;

(17)

We note that the amplitudon susceptibility has been de-
rived by use of the condition for static equilibrium Eq.
(3a). The frequencies of the phasons do not contain po
and vanish at q=O, reflecting their independence of the
phase of the modulation wave. As the damping is finite,
the phasons are overdamped for small wave vectors. The
amplitudons do not become overdamped until approach-
ing T;, where their frequency vanishes.

We proceed with deriving the effect of the amplitudons
on the elastic susceptibilities associated with the
longitudinal-acoustic phonons. To this end, we substitute
Eq. (14a) into Eq. (14c). As we are concerned with the
linear susceptibilities, only terms linear in 5e; need be
considered, which has been anticipated in Eqs. (14). Fur-
ther, after averaging over the order-parameter Auctua-
tions, only terms of order even in P„remain. Noting
that the amplitudon coordinate in the absence of cou-

Equation (23) constitutes the final result of the present
Landau theory. The second term on the right-hand side
of Eq. (23) is the lowest-order contribution resulting from
the h part of the interaction in Eq. (2), which is quadratic
in both the order parameter and the strains. The third
and fourth terms primarily arise from the g part of the in-
teraction, which is quadratic in the order parameter, but
linear in the strains [cf. Eq. (15)]. The fiuctuations being
separated out according to Eq. (12), the third term
represents an effective bilinear coupling of the strain Auc-
tuations and the order-parameter fluctuations. Induced
by the static order parameter, it vanishes above T;. Simi-
larly, the fourth term provides a coupling linear in the
strain but quadratic in the order-parameter fluctuations.
It contributes at both sides of T;, and is referred to as the
fluctuation term.

We proceed with bringing Eq. (23) into a form that al-
lows comparison with experiment. The amplitudon sus-
ceptibility, Eq. (16a), is substituted into the fiuctuation in-
tegral I„(k,co) while making the approximation
p z (k —q, co —Q ) =y z ( —q, co —Q ), which is correct for
co/I « 1. (In the present systems co/I' & 0.1; cf. Sec. V.)
The integration over Q can then be carried out straight-
forwardly by contour integration, yielding
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2' I (1—ico/2I )dq

p (1—ico/I )n„(q)[4n (q) —2icoI (1 —ico/2I )]

Neglecting terms of order co/I in Eq. (24), and integrating over the wave vector, we find

(24)

I~(k, co) = [ [n'„(o)—,'1~r]'/2 —n „(o)], (25)

with D / standing for (D1D2D3)'/ . In the third, bilinear, term on the right-hand side of Eq. (23), we further approxi-
mate n„(k)—co in y~(k, co) to n~(0) to obtain y„(k,co)=[p(n„(0)—icoI )] '. Within these approximations, the
elastic constant C,, and the damping I, of longitudinal-acous tic phonons traveling along the x, axis can, by comparison
with Eq. (16c), finally be identified as

with

k,
I;=y;k; +2

&2 2
g,

-' k~T

pn (0) 1+co r 4m@' D. (coI )'

gi Po 2~~ ki «kaT+
n2 (0) 1+ 2p p g 1/2D 3/2 3/2ri/2

I
1 [(1+ 1 2 2)1/2 1]I

1/2

( )1/2

I 2[(1+—'co r )' + 1 ] I
' —2

( )1/2

r=t /n~(0) . (27)

Figure 6 shows the (cor) dependences of the contributions to C,, and I, arising from the bilinear and fiuctuation
terms in Eq. (23), or rather, the functions contained within the large parentheses in Eq. (26). These functions are suc-
cessively denoted by F„(cor), with n = 1, 2, 3, and 4.

In the high-temperature phase, the equilibrium values po and eo; equal zero. The above description still holds, except
that the mode the acoustic phonon couples with is the high-temperature soft mode rather than the amplitudon. By
analogy with Eq. (23), we have

1

y, (k, co)

k~T—2g, I~(k, co),
y, (k, co)

' (2~)
(28)

from which integration yields

[ 1[(1+1~2+)1/2 1]Ii/2

)
1/2

I2[(1+—'co r )'/ +1]I' —2

(
)1/2

g, k~T
C;;=C,;+ 1/2D 3/2( r )1/2

g,'k, T
I;=y, k, +i &

8 1/2D 3/2 3/2I 1/2
pm

(29)

with

r=r/n, '(o) .

The dispersion relation of the high-temperature soft
mode reads

0 3

n (q)= —A+ QDcI (31)

V. DISCUSSION

(mx)

FIG. 6. Dependence of (cur) ' of the functions I'„(d'or) ap-
pearing within the large parentheses in Eqs. (26), representing
the bilinear and fluctuation parts of C;; and I;. The parameter
(d'or) ' increases from right to left to facilitate comparison with
experimental data below the transition, i.e., the point where
(a)r} ' vanishes.

k;
5v, = (C;; —C;;), 5b, ; =(I;—y;k; )/2~, (32)

The Brillouin scattering experiments provide the fre-
quency shift v, and the full width at half maximum
(FWHM) 6,. invoked by phonons traveling at a given
wave vector along the x; axis. The anomalous parts 6v;
and 6A; of these quantities are related to the excess elas-
tic constants and damping [cf. Eqs. (26) and (29)j by
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k2g &2 2

K1=
harp p, coQ z (0)

k 'k T
K2(T) =

2 16~2 1/2D 3/2~3/2I 1/2

(33)

provided that, as is the case in our systems, the frequency
anomaly is small relative to the phonon frequency. The
nonanomalous parts v; and 6; are in turn given by

0 (21/2 /g )(CO/p )1/2
7

which follows by use of Eq. (1), and b, , =y;k; /2'. Note
that in C;; and I; the prefactors to the functions F, (cow)

and F3(car) in the bilinear terms become equal upon con-
version to frequencies, as do the prefactors to F2(cur) and
F~(car) in the fiuctuation terms. After conversion to fre-
quencies these prefactors are, respectively,

we distinguish between the amplitudon relaxation below
T1 and the soft-mode relaxation above T„ in both cases
adopting the usual Landau

~
T —T, ~

' dependence. That
is,

r(T)=r'„s Ti /~ T —T, ~
. (34)

It is noted that experimental verification of Eq. (34) is
available in the incommensurate phase in the case of
K2Se04. ' Although simple Landau theory predicts
that rs =2r'„[cf. Eqs. (5), (17), (27), (30), and (31)], these
parameters are fitted independently.

In the actual fitting, fits of excellent quality have been
achieved simultaneously to the frequency and linewidth
data of each mode. The output values for T1 7g 'Tg and
K2( T, )/K, appear to coincide within errors. In the case
of the C11 mode, the theory with the fitted parameters in-
serted is compared with the data in Fig. 7(a); for the C22
mode the comparison is made in Fig. 7(b). A noteworthy

A. R12ZnBr4 near the N-I transition

We first discuss the adjustment of the theoretical ex-
pressions for the frequency v; =5v;+ v; and the linewidth
b, , =56,, +5, , i.e., Eqs. (32) with Eqs. (26) or Eqs. (29) in-
serted and augmented with the backgrounds, to coincide
with the experimental data of Rb2ZnBr4 in the tempera-
ture regime around the N-I transition. The quantities to
be fitted are the prefactors K1 and K2 of the bilinear and
fluctuation terms, the transition temperature T1, the re-
laxation time ~, and finally the backgrounds v; and 6;.
In the fits, all contributions arising from the fourth-order
h terms are ignored, in particular the part Zh, ,po in C;;.
The rationale for doing so is that it proved impossible to
discern a contribution in C,, dependent on po, which
below T, would go as (T& —T) ~ with P=O. 35. In this
respect, therefore, K2ZnBr4 is notably different from the
case of K2Se04. ' Second, the h terms apparently be-
ing small, they may very well be rivaled by nonlinear in-
teractions quadratic in the strains with optical phonons
other than the soft mode, which below T1 similarly give
rise to a temperature-dependent elastic susceptibility pro-
portional to the static strain [cf. Eq. (5)]. All of these
eA'ects have, therefore, been stored in the background v;.
At T1 the latter is taken continuous in value, but not
necessarily continuous in the first derivative. In fact, v;
appears to be adequately represented by polynomials in T
of at most degree one above T1, and of at most degree
two below T1. The background 5, of the linewidth is as-
sumed to be independent of the temperature over the
range of the fits.

As to the other parameters, K1 is taken to be indepen-
dent of the temperature, which amounts to, first, the as-
sumption that po and Az(0) have identical temperature
dependences, as in the Landau approximation [cf. Eq.
(17)], and, second, the neglect of the renormalizing h
terms in the g interaction [cf. Eq. (15)]. The parameter
K2 is explicitly dependent on the temperature. Leaving
this dependence in the expressions, we take Kz(Ti ), or
rather Kz( T, )/K„as the fitting parameter. Also depen-
dent on the temperature is the relaxation time ~. Here
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FICx. 7. Frequency and linewidth of (a) C»-mode and (b)
C»-mode L acoustic phonons in Rb~ZnBr4 near T&. Solid lines
are simultaneous fits to the frequency and linewidth data.
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TABLE II. Output values of fits for the Cl& and C» modes
in Rb2ZnBr4 near T& ~

+A

+S
T]
IC2( T, )/Kl
El (Cll mode)
K& (C22 mode)

(3.2+0.3) X 10 ' s
(3+2)X10 " s

353.1+0.7 K
0.56+0.1 1

39+3 MHz
68+5 MHz

conclusion deduced from these adjustments is, therefore,
that the theory developed in Sec. IV is indeed capable of
reproducing the anomalous parts of both the Brillouin
frequencies and widths with a consistent set of parame-
ters. The weighted averages of the output parameters are
collected in Table II, as is E„which of course depends
on the particular mode. It clearly is of interest to corn-
pare these results with those from other sources, and,
whenever possible, with estimates derived from the
theory. The present result for T, lies within the range of
T&'s deduced from neutron scattering, but deviates from
the values around 347 K from dielectric, ' ' x-ray, and
specific-heat experiments. Of more interest are ~z and

Another technique that allows probing of the ampli-
tudon frequency and damping is Raman scattering. Ra-
man experiments on Rb2ZnBr4 (Refs. 28—30) have been
analyzed ' to find for the width of the amplitudon, in our
notation, I /2m. =13 cm ' at about 40 K below T„ the
closest distance at which the softening Raman line could
be observed. At this point Q~/2m=10 crn ', whence
with Eq. (27) r z =8 X 10 ' s, which is half an order
smaller than our result. It should be emphasized, howev-
er, that our experiments have been performed closer to
T~ and therefore are likely to provide a more reliable es-
timate of the amplitudon relaxation just below the transi-
tion. As for the regime above the transition, the soft-
mode parameters I /2m. and Qs/2' are available, al-
though with considerable uncertainty, from an analysis of
dift'use neutron scattering. On the basis of a damped
harmonic oscillator model, I /2m has been found to be of
order 0.1 THz around 200 C, while d(As/2n) /dT
—5X10' Hz /K. This leads to ~& —10 ' s, which

compared to our value is within the range of the com-
bined uncertainties.

As concerns the prefactors of the bilinear and Auctua-
tion parts, E& and E2, it is feasible to compare them with
estimates calculated from the theoretical expressions de-
rived above. We first discuss the ratio K (2T, )/K„ in
which the coupling strength drops out. The experimental
result IC2(T, )/IC& =0.6 expresses that the bilinear and
Auctuation parts of the acoustic anomalies are of compa-
rable magnitude at Brillouin frequencies. To evaluate a
theoretical estimate we first eliminate Qz by use of Eq.
(27), to arrive at

K2(T) )/K, =(k~T, /16vrpor)(p, l /D co)'

The combination po~ is supposedly independent of the
temperature. The quantity ~ is available from
through Eq. (34). The order parameter po, which has not

been determined directly in Rb2ZnBr4, may be estimated
from the displacements in the incommensurate phase of
the isostructural compound Rb2ZnC14. Here, from EPR
spectra of Mn + substituted for Zn +, the amplitude Q
of the incommensurate rotation of the ZnC14 tetrahedra
was found to vary with temperature just below T, ac-
cording to dQ /dT = —33 deg /K, corresponding to
dpoldT= —2. 5X10 m /K. For the effective-mass
density associated with the amplitudons we adopt
p=0.05p by analogy to K2Se04, for which p may be
derived from the stress dependence of the amplitudon fre-
quency combined with thermal-expansion data. We have
p =3.68X10 kg/m . The damping I is taken from
Raman data as above. For the arnplitudon dispersion no
data are available, but from a comparison with cases such
as KzSe04 (Ref. 33) it is not unreasonable to suppose that
D/p is of the order of the square of the transverse-
acoustic phonon velocity. Accordingly, D /p = l. 2 X 10
m /s . Finally, co=2m. X 10 GHz. Inserting these values,
we find K2( T, )/X, -0.1, which in view of the uncertain-
ties of both the experiments and the parameters inserted
into the theory is not incompatible with the result 0.6
from experiment.

Next, we turn to the absolute magnitude of the prefac-
tors. We consider K, for the C» and C22 modes, after
first rewriting it as k; g pa~/~p pcoI . Of the quantities
additional to the above, k, is accurately known:
k;=2.9X10 m '. This leaves us with the coupling
coefficients g =g;, which are related to the anomalous
thermal-expansion coefficients 6a; through the derivative
of Eq. (4) with respect to the temperature, or
g; = —g . C~ ca~ /(d po/1 T) Like d p. o/d T, estimated
above, the quantities 6a; are not available for RbzZnBr4,
but have been determined in Rb2ZnC14. Some caution
should be exercised when inserting these results because
the 60;, are of either sign, amplifying the uncertainties.
We find g, = —7.8X10 kg/s and go=+1.3X10
kg/s, leading to K&=45 MHz for the C» mode and
K, =124 MHz for the C22 mode, again in consistency
with experiment.

B. Low-temperature transitions of Rb&ZnBr4

In addition to the S-I transition at Ti, Rb2ZnBr4 un-
dergoes a series of phase transitions at lower tempera-
tures. Of these, the transition at T3=115 K has previ-
ously been found to be of second order by specific-heat
experiments and nuclear quadrupole resonance (NQR). '

Our data near T3 show acoustic anomalies closely resem-
bling those occurring near T, . This not only lends sup-
port to the conclusion that the transition is of second or-
der, but also suggests that the anomalies are caused by a
similar mechanism, i.e., a coupling linear in the strain
and quadratic in the coordinates of the soft mode associ-
ated with the transition. Assuming this to be the case, we
have fitted the theoretical expressions for the frequency
and the linewidth to the data for the C», C22, and C33
modes around T3 in a manner similar to the procedure
outlined above for use near T&. Here, w& and w) take the
place of ~z and wz, respectively. The results, presented
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in Figs. 8(a)—8(c), are found to excellently track the data
for all three modes considered. The fitted values of the
K& of the three modes as well as the weighted averages of
the results for T&, r &, r &, and Kz(T&)/K& are collected
in Table III. Only for T3 and ~& a comparison with re-
sults from other sources is feasible. Values of T3 extract-
ed from x-ray, dielectric, '" specific-heat, and NQR
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FIG. 8. Frequency and linewidth of (a) C&i-mode, (b) C»-
mode, and (c) C33 mode L acoustic phonon in Rb2ZnBr4 near
T3 and T4. Solid lines are fits.

(Ref. lo) experiments range from 108 to 12O K, in accord
with our result. The quantity ~ & is also derivable from
Raman spectra. Below 90 K, a strongly temperature-
dependent Raman mode has been observed, which has
been associated with the transition at T3. From the
spectrum at 90 K, we have deduced the frequency
0&/2m and the linewidth I /2m of this mode, with the
results -8 and -3 cm ', respectively. This leads to
~ &

—5 X 10 ' s, about half an order smaller than our
finding.

In our experiments, the phase transitions at T2 and T4
are apparent by anomalies of a distinctly different nature.
The transition from the incommensurate phase to the
commensurate ferroelectric phase at Tz is accompanied
by a small step in the Brillouin frequency of the C» mode
(Fig. 4), presumably due to coupling of the strain with the
spontaneous polarization below the transition. For the
other modes no significant effects on the frequency are
observed. The linewidth data (Fig. 5) are indicative of a
small increase of the damping of the C&, and C33 modes
just above the transition. Our result T2 = 193.8+0.8 K is
in good agreement with the results from dielec-
tric' ' "' and specific-heat measurements. The transi-
tion at T4 is accompanied by small steps in the frequen-
cies of the C» and C33 modes, without noticeable effects
on the linewidth. For the transition temperature we find

T4 =77.1+0.5 K, while values found from x-ray, dielec-
tric, '" and specific-heat experiments range from 73 to
80 K.

C. RbZZnC14 near Ti

The X-I transition in Rb&ZnC14 has been investigated
earlier with the technique of Brillouin spectroscopy by
several authors. Luspin et al. ' have reported on the
temperature dependence of the elastic constants C» to
C66. With regard to the longitudinal modes, they found
that near T, the elastic constant C» shows a steplike
anomaly, as does C22, although one of smaller magnitude.
Yamanaka et al. ' ' have studied the C» mode with
somewhat greater precision. In neither study, however,
has an effect on the linewidth been observed. By con-
trast, our experiments reveal anomalies both in the fre-
quency and the linewidth that are of a shape similar to
those found in Rb2znBr4 near T, . Figure 9 shows the
measured frequencies and linewidths of the C» mode
near T, in R12ZnC14, along with the theoretical curves
after fitting to the data. The relevant output parameters
of the fit are presented in Table IV. The result for T& lies
on the higher side of the range of the TI's obtained from
dielectric, specific-heat, and x-ray experiments. As
concerns ~~, from Raman experiments we estimate the
frequency and linewidth of the amplitudon at a tempera-
ture 70 K below T& to be about 17 and 8 cm ', respec-
tively, yielding ~z -3X10 ' s, which is an order of
magnitude smaller than our result. No other experiment
is available providing w&. An estimate of the ratio
Kz(T, )/K, can be arrived at in the same way as in the
case of Rb2ZnBr4. For the effective-mass density of the
soft mode we again adopt O.O5p-, or O. 15 X 10 kg/cm .
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TABLE III. Output »lues of its for the C», C», and C33
modes in Rb2ZnBr4 near T3.

TABLE IV. Output »lues of the 6t for the C& ] mode in
Rb2znCl& near Tj.

.T3
E2(T3)/I( )

K, (C» mode)
K, (C22 mode)
K ] ( C33 mode)

(2.2+0.4) X 10 ' s
(1.6+0.9) X 10 " s

115.2+0.3 K
0.36+0.12

49+3 MHz
112+9 MHz
61+5 MHz

+A

S
Tf
&~(T) )aC,
K)

(2.3+0.2) X 10 ' s
(2.1+0.9)X 10 ' s

303.9+0.5 K
0.65+0.12
122%5 MHz

VI. CGNCI, UDING REMARKS

Brillouin spectroscopy has yielded information on the
amplitudon and the soft mode, in particular their relaxa-
tion, via the coupling with the acoustic modes. In the
analysis of the anomalies at the transition, a quantitative
account has been given of both the bilinear and Auctua-
tion parts of the Brillouin shift and broadening. A salient
result is that, under the conditions met in a Brillouin ex-
periment, these parts are both of relevance in the com-
pounds considered. This was borne out by the simultane-
ous fits to the linewidth and frequency data, and, within
the uncertainties, substantiated by the theory upon in-
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FIG. 9. Frequency and linewidth of the C»-mode acoustic
phonon in Rb2ZnCl& near T&, as measured in the xy(z, z)xy
scattering geometry. Solid lines are its.

The order parameter po is taken from the results derived
from EPR, 1 is deduced from Raman data, D/p is
set equal to -2X10 m /s, and co=2mX11 GHz. En-

serting these values, we arrive at Kz(T, )/E, -0.05, an
order smaller than the experimental finding. To estimate
K„we first calculate, as above, the coupling constant g &

from the thermal-expansion coeScients, the elastic con-
stants, and dpold T from EPR, to arrive at
g, = —9.4X10 kg/s . Together with k, =2.7X10 m
and p =2.93X10 kg/m, this yields a theoretical El
amounting to 80 MHz.

serting realistic estimates for the parameters. The theory
was also able to reproduce the absolute magnitude of the
efFects.

The linewidth in the incommensurate phase is affected
by the amplitudon relaxation primarily through the bilin-
ear term, except very close to the transition. Above the
transition, the anomalous linewidth is, of course, solely
determined by the Auctuation term. The data allowed to
deduce the relaxation of the amplitudon and, to a lesser
degree of accuracy, the relaxation of the soft mode. A
Landau dependence of the relaxation on temperature was
found to be ia. conformity with experiment. It appeared,
however, that the experimental ratios of r'„/rs, which
are of order 0.01 to 0.1, differ from the Landau result 0.5.
This is not expected to detract from the conclusions relat-
ed to the bilinear and Auctuation terms, but rather indi-
cates that in Sec. IV it is likely that too simple an expres-
sion for the Landau energy has been used. As concerns
the Brillouin frequency, the jurnp associated with the
transition is efFectively reduced by the fluctuation term,
which, because of the slow decay of its contribution
above T„cannot be discriminated from the background.

In the treatment of Sec. IV, coupling of the acoustic
modes with the phasons has not been incorporated. To
account for an interaction between phasons and the lon-
gitudinal strains, the energy density, Eq. (6), should be
augmented, given that the incommensurate wave vector
points along the c axis, with symmetry-allowed terms of
the form r, e,p (dg/Bz). ' After repeating the derivation
of Sec. IV with inclusion of these terms, their bilinear
contributions to Eq. (23) turn out to amount to

r; pok3g&—(k, co) This resu. lt is similar to the expression
given by Luspin et al. ,

' except for the notable difference
of an explicit dependence on the component of the acous-
tic wave vector along c . It implies that effective bilinear
coupling to the phason does not show up in the case of
C» and Cz2 modes. As for the C33 mode, the data in
Rb2ZnBr4 do not evidence coupling with the phason to be
present, and accordingly indi. cate that its neglect its legi-
timate.

It is finally of interest to note that the present treat-
ment is equally applicable to the results of ultrasonic ex-
periments conducted at lower frequency. Here, E2 has
gained over K, by a factor co ' [cf. Eq. (33)]. Apart
from a compression of the regime of temperatures where
the anomalies occur [cf. Fig. 9 and Eq. (34)], therefore,
the quadratic Auctuation part dominates the anomalous
linewidth and frequency shift. The bilinear part dis-
cussed above is rejected primarily in a nearly constant
frequency shift and a slow increase of the linewidth al-
ready at some distance below T;. In other terms, the 11-



5738 HORIKX, ARTS„DIJKHUIS, AND DE WIJN 39

linear term, which allowed us to derive information on
the relaxation of the fluctuations, is diminished relative to
the fluctuation part. It should be noted, however, that
the increase of the Quctuation term at lower frequencies
may to some extent be offset in the event the amplitudon
and soft-mode dispersions exhibit a gap at the transition.
In this case, ~ ' does not drop to zero, bpt to a 6nite
value 10 ~ The gap thus becomes noticeable, in particu-
lar in the fluctuation part of the linewidth, when the fre-
quency is sufficiently low for (coro) ' to exceed, say, uni-
ty. Some knowledge may therefore be gained from a
comparison of the ultrasonic velocity of the C&& mode in
RbzZncl& in the regime near Tt (Ref. 13) with extrapola-
tions from the present Brillouin study. It then appears

that the effect of the fluctuation term is severely overes-
timated in case a gap is not accounted for. As calcula-
tions show, qualitative agreement may be achieved by as-
suming a vo of order 10 s.
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