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Molecular orbital theory for chemisorption and physisorption: The case of He on metals
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A first-principles tight-binding method is presented, with the basic Hamiltonian parameters relat-
ed to the properties of the constituent atoms of the solid. In a one-electron approach we find the
off-diagonal terms of the Hamiltonian related to the Bardeen tunneling current between the wave
functions of the atoms, and the diagonal energies related to this current and the corresponding over-
lap. Many-body effects are also analyzed within a bond theory, and corrections to the intra-atomic,
interatomic, and exchange interactions are discussed. We apply this approach to the analysis of the
interaction between a He atom and a metal surface. We find that our calculations reproduce most
of the results obtained using a local-density approach and yield a good description of the metal sur-
face roughness as seen by a thermal He atom.

I. INTRODUCTION

Main theoretical approaches to solid-state problems
are based on the use of either extended wave functions or
localized orbitals. ' A point of view based on the use of
localized orbitals can be more convenient for the analysis
of disordered solids, surfaces, molecules, etc. , i.e., systems
having lost a translational symmetry. The localized pic-
ture is intimately related to the molecular-orbital theory,
whereby the orbitals of the constituent atoms are as-
sumed to interact in order to form extended wave func-
tions. The simplest related approach is the Hiickel
theory in molecular physics. As regards solid-state
physics, it is common practice to use an empirical or
semiempirical tight-binding method in order to analyze
the electronic properties of solids. In this last case, a lot
of work has been done to parametrize ' the basic Hamil-
tonians of different crystals. On the other hand, some
theoretical effort has been done recently to put that ap-
proach in a fundamental basis; in this respect, we men-
tion the work of Harris and Sutton et al. who have
developed a tight-binding model based on the results of
the variational principle of the density-functional theory.
Related to this approach, we also mention different calcu-
lations of the electronic structure of solids, from which
the different parameters of a tight-binding model can be
surmized. There also exists a semiempirical tight-binding
model' '" which predicts the chemical trends in the
structural properties of a wide range of nonmetals; this
approach includes charge-transfer and nonorthogonality
effects, and requires properties of the isolated atoms as
empirical input. In spite of these approaches and of oth-
er more semiempirical methods, ' there is a lack of a sim-
ple fundamental approach relating straightforwardly the
tight-binding Hamiltonians to the basic properties of the
constituent atoms, in particular for the case of atoms in-
teracting with a solid surface.

The aim of this work is to fill this gap, presenting a dis-
cussion of how to calculate the different tight-binding pa-
rameters from a first-principles approach using no adjust-
able parameter (a preliminary report of this work was

published in Ref. 13). We discuss our model and our
methods in Sec. II, showing also how total energies can
be calculated with our approach; this discussion is kept at
a very general level, in such a way that applications are
contemplated in Sec. III. In our work, we are mostly
concerned about surface problems but in this paper we
only discuss in detail the case of He physisorbed on metal
surfaces. This will show for a simple and well-known
physical case' ' how our tight-binding approach can be
applied to the calculation of the total energy and the elec-
tronic properties of a surface case.

Let us mention that our approach is related to the
theory of the scanning tunneling microscope. In this
case, tunneling current, image effects, ' and repulsive
forces between surfaces are important, and an appropri-
ate discussion of those effects within a simplified tight-
binding approach would be very convenient. In the dis-
cussion presented in Sec. II, the relationship between the
method presented there and the theory of both the scan-
ning tunneling microscope and the atomic force micro-
scope will be apparent.

II. BASIC THEORY

We present our analysis in two steps. First of all, we
discuss a one-electron model neglecting many-body
effects associated with the electron-electron interaction.
These effects will be discussed later on, in this same sec-
tion.

A. One-electron approach

We start by considering the one-electron Hamiltonian
(atomic units are used):

8=—
—,'V„+ g V;(r —R;),

where V; is the potential created by an atom i, placed at
site R, Following the standard linear-combination-of-
atomic-orbitals (LCAO) solution to Hamiltonian (1), we
define Hamiltonian H,
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8,. = —
—,'V, + V, (r —R, ) (2)

and assume that the eigenvalues and eigenfunctions of 8;
are known:

B,y, =E,q, . (3)

Then, eigenfunctions of 8 are sought within the linear
combination of atomic orbitals, f;:

0= gc0 ~ (4)

Eigenvalues of Hamiltonian P are given by the secular
equation

detI ( @, I

—E +& Iy; ) I
=0 .

Thus, the matrix defining the eigenstates of 8 can be
written as follows:

( ES;+H —;), .

where S; is the overlap between wave functions j and i,

Now, it is convenient to introduce the Lowdin s or-
thogonalized wave functions:

y (S—1/2)

using the overlap matrix S; . Then, using this new or-
thogonalized basis, the matrix de6ning eigenstates reads
as follows:

EI&, +(S ' —),H. , (S '
), , ,

where I, is the unit matrix. Equation (8) shows that we
can introduce an effective Hamiltonian:

8, =S-'".8 S-'"
eft'

for our one-electron problem. This effective Hamiltonian
can be calculated up to second order in the overlap
coe%cients S;~ by assuming S;J.(i&j) to be small. A
straightforward calculation yields the following results:

(10a)(H, fr);; =H;;+ —,
' g (S;.) (H;; H ) —g S; T-;".

J J

specified below. For this purpose, we calculate the ma-
trix elements, H;, by assuming that the atomic potentials
are short-ranged around the corresponding position Ri,
and that they do not overlap. Then, we calculate H," in
the following way. First, we notice that

f g Pg;dr= f P Bg;dr+ f g 8f;.dr, (12)
J

where the whole space 0 is split into subspaces Q; and
Q. (see Fig. 1). We also assume the wave functions 1t,.

and QJ to be real eigenfunctions of Hamiltonians 8; and
Notice that Pg; =E,g, in subspace Q; if we neglect

any other center diff'erent from i and j. Then, Eq. (12)
yields

f g Bg,dr=E; f g P, dr

+ f (q, Ny, y, Nq,—)dr.
+E f /~/dr, (13)

where we have added and subtracted

f f;Bg dr=E f . f, g dr . .

J

On the other hand,

f (P 8P; g;8. P )d—r= ,' f——(g.V g; —g;V P. )dr
J J

,' f —(—QJVQ, /VS) d—s,
V

(14)

where o;. is the surface limiting the volume 0 . . Combin-
ing Eqs. (13) and (14), we obtain the following equation:

.H, dr= —
—,
' -V; —;V -ds

tJ

+E f g g;dr+E, f. g P, dr . (15)
J

(H, ff),J
= TJ =HJ ,'S; (H;;+HJJ ), i~—j— (10b)

These equations show how the diagonal elements of the
effective one-electron Hamiltonian are related to the off-
diagonal terms, T, -, and the overlap matrix, S; . We
should mention that an important effect of the overlap
coefticients in the effective Hamiltonian is to renormalize
the diagonal elements: physically, this renormalization
reAects the repulsion between nonorthogonal orbitals due
to their overlap. In particular, the term —S,z T~ gives a
net repulsive energy appearing in both orbitals i and j.

As regards the oF-diagonal terms, let us show that, un-
der given condition the matrix element T; - coincides with
the Bardeen tunneling current, T;~:

T, = ,' f (@;—V—p QJVQ;)".ds, — (11)
lJ

o.,j being a particular surface between atoms i and j to be

FIC». 1. Muffin-tin model used for Hamiltonian (1). Surface
o.» divides the whole space into two subspaces 0& and Q2. (o.»
is assumed not to go across the muffin-tin potentials of either
atom. )
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Let us remark that in obtaining Eq. (15), we have as-
sumed any three-center integrals to be negligible. This is
equivalent to using a kind of bond approach, in such a
way that the results presented in this paper can be related
to a tight-binding bond theory.

Equation (15) can be written in a more convenient way,
if we choose the surface o;. (see Fig. 1) with the condition

g;g dr= f P;g dr= —,
' f g;g dr= ,'S, —

t J

Then Eq. (15) yields the following result:

f Q, Hg, dr= —
—,
' f (g/Vg; g;V—g )ds.

fj

+ ,'SJ(E;+—E) .

(16)

(17)

With an accuracy of second order in the overlap
coefficients we can replace (E;+E )by (H.;;+H )in Eq".
(17). This yields the equation we are looking for:

f P, HP;dr= ,' f——(Q,VQ; g;VP —) ds
tj

+ —,'S, (H;;+H ) . (18)

Equations (10b) and (18) show that

T;, = —
—,
' f (g Vg; g;Vf ) —ds (19)

lj

this being the Bardeen's tunneling current defined in Eq.
(11). Thus, the off-diagonal elements of the effective
Hamiltonian coincide with the tunneling current calcu-
lated using the initial nonorthogonal atomic basis. This
result is only valid if we calculate T; using a surface o.;.
satisfying condition (16). Equation (19) has been obtained
using three assumptions: (i) first, we have considered
short-range atomic potentials; (ii) second, we have
neglected three-centers integrals this being equivalent to
using a kind of bond theory; (iii) finally we have assumed
E; -H;;. This last assumption implies that Eq. (19) is val-
id up to third order in the overlapping coefficients, this
conditions being consistent with the degree of accuracy
used to calculate H, tt in Eqs. (10). The second assump-
tion, associated with the three-center integrals, does not
affect the accuracy of our result for T, . either.

The first condition about the short-range potential is,
however an oversimplification since, in most cases, atoms
and ions create long-range potentials having a non-
negligible overlap (in a local-density theory, potentials
are short-range; we consider, however, an atomic-orbital
approach and, in this case, electrons see long-range po-
tentials). We have analyzed the case of lang-range poten-
tials by considering diatomic rnolecules; to be specific we
shall discuss presently the case of H2+ molecule. Let us
now comment that for the case of a long-range potential,
we expect T," to be well approximated by the Bardeen's
tunneling current Tj corrected by a constant factor y:

T,, =yr~ . (20)

This guess is supported by the following one-dimensional
argument: consider the tunneling across a one-
dimensional barrier. Simple arguments show that the
tunneling current is proportional to exp( —2d &2W )

where d is the width of the barrier, R. We introduce

long-range effects in the barrier, 8', by assuming that

8'=8'o —a/d .

Then, the tunneling current is proportional to

expI —2d [2( Wo —a/d)]'~ I

=exp[ —2d (2WO)' ]exp[a(2/Wo)'~ ] . (21)

(22)

where R, and R 2 are the coordinates of the two ions, re-
spectively, and d =

~
R, —Rz~.

We discuss this problem by using atomic orbitals gi
and $2, such that

g, (r)=(a /m)'~ e

1(~(r)=(P /ir)'~ e

(23a)

(23b)

Introducing the orthogonalized basis, Pi and $2

0i(r) =7 Pi+I A

A(r) =V4i+~0z

(24a)

(24b)

where X=(1/&1+S +1/&1 —S )/2 and p, =(1/&1+S
—I/&I —S )/2, S being the overlap between orbitals gi
and f2, we define the corresponding operators C, and

C; associated with the new orbitals P, . Then Hamiltoni-
an (22} can be written as follows, using a second quantiza-
tion language:

H = g (E,n, +ezn2 )

+t g(C,.C, +C,tC, )+1/d, (25)

where

E;=fP; —
—,
'V' — —

P, dr1
(26a)

dr . (26b)
1

r —R2

Parameters c,; and t are defined as a function of the or-
thogonalized wave functions P;; we can obtain their ex-
pressions as a function of the atomic orbitals P;, replac-
ing Eqs. (24) in (26}. This yields the following equations:

E; = e, ,
—

—,
' [1—(1—S )'~ ](e.—e, ; )

—St,
1 S o o 1 o—(E, +Ez)+ z t

1 —S 2 1 —S

(27a)

(27b)

This equation suggests that the long-range tail of the bar-
rier affects the tunneling current by a constant factor

y =exp[a(2/ Wo )'~ ] .

Coming back to the case of a H2+ molecule, we consider
the Hamiltonian:
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where

] p2 1 1
—R, —R (28a)

to ] q2 1 1
—,

V' d (28b)

1/(1 —S ) by 1

in Eqs. (27) we recover Eqs. (10). Notice that this simple
case shows that the different terms calculated in (10) have
an accuracy of S in 1; accordingly, the expansion used to
get Eqs. (10) has a large validity: as discussed below, we
find that Eqs. (10) yield good results for H, tt even for
values of S as high as 0.6 or 0.7.

For the case of H, +, taking ci=~z= &, we find
r

S——+t 0

2
(1—S ). (29)

We have compared this exact value for t with the Bar-
deen tunneling current t calculated using Eq. (11) and
wave functions (23) with a=P= l. In Fig. 2, we show d t
and yd t as a function of d; y = 4 has been chosen such
that yt ~t for d —+ (x) .

The results of Fig. 2 show that y t is a fair approxima-
tion to t for all values of d larger than 1.5 a.u. ; even for
d =1 a.u. , with S =0.7, yt is smaller than t by 30%.
Thus, we conclude that yt is a good approximation to t
for all the distances of physical interest. Let us also com-
ment that d t has a broad maximum near the point for
which the equilibrium distance of this molecule is found
(this is 2.50 a.u. in a I.CAO calculation); this relates the
results found here to the well-known d law, proposed
by Harrison' and often used to scale the different off-
diagonal interactions in solids. ' '" We claim that a more
appropriate behavior could be found using the Bardeen
tunneling current as proposed in this paper. '

Similar results have been found for other hydrogenic
levels. Without going into details, let us only mention
that we have found the hopping elements between orbit-

Equations (27) are equivalent to Eqs. (10) if we expand
the different terms up to a second order in S. In other
words, if we replace

1 —(1—S )~ by S/2
and

making use of Eq. (3). If E& &Ez, wave function fz is
more localized than f& and for d ~ oo, we can replace ap-
proximately J g, V, /~dr by —S&z/d, (

—1/d) being the
potential electron 1 sees as created by its own atom at
large distances from the nucleus. Then, according with
Eq. (10b) we can write

T)t ———S)~/d +E~S» —S,~(E, +E~ 2/d )/2—

=Siq(Eq E, )/2 . — (31)

This equation is only valid if E, &E2 and for large dis-
tances. Now, this limit can be used to calculate the
coeScient y such that T&2=y T,2, this can be easily per-
formed calculating T,2 at large distances and comparing
with Eqs. (31). In practice, we use tabulated wave func-
tions from Herman-Skillrnan or Clementi-Roetti
tables. In any case, d has to be large enough for the
atomic wave functions to have a small overlap and the
potential of atom 1, as seen by electron 1, at the atomic
position 2 to be well approximated by ( —1/d).

It is of interest to cornrnent here that in the Hiickel
theory it is common practice to approximate H;J- by

,'KS; (H; +H ), which—ise. quiv. alen"t to approximating

als 2s-2s, 2p-2p, and 3s-3s to be well approximated by
yt for d & 2.50 a.u. , y being a constant depending only
on the orbital energy. In Fig. 3 we show our results for y
as a function of the orbital energy, including the case of
He-He, which is fully discussed below. The curve shown
in this figure is a smooth line obtained by interpolating
along the different points calculated as discussed above.
The results of Fig. 3 can be applied to calculate t =yt,
for any two orbitals of two different atoms having the
same energy. Indeed, at very large distances the wave
functions of both atoms have the same asymptotic behav-
ior: then, we apply to them the same argument as for the
hydrogenic levels, the conclusion being that the factor y
only depends on the orbital energy.

The case of orbitals having different energy levels has
to be analyzed in a different way. In this case, we
proceed in the following way, starting from Eq. (10b).
Assume we consider levels 1 and 2, having E, &E2,' at
very large distances, d ~ 00, we write

H» ——f y, ( ,'V—'+—V,+ Vz)fzdr= f P, V, Pzdr+EzS»

(30)

1-0 ~

0
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FIQ. 2. yd T&& (solid curve) and d T» {dashed curve) as a
function of d for the H&+ case (y =

—, ).

2.0

1.5

0 I S

0.0 -0.5
ORBI TAL ENERGY (a.u.)

-1.0

FIG. 3. yT»/T» as a function of the orbital energy for
d~ao. The particular cases of the 1s levels of H and He are
shown.
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TJ by —,'(& —l )S;~ (H;.;+H~~). Our discussion shows that
it is a better approximation to replace T," by y T; with y
calculated as discussed above.

B. Many-electron efFects and bonds

In the preceding section we have presented the one-
electron version of our approach to tight binding. This is
basically a bond theory as can be easily checked by com-
paring the general results of Eqs. (10) with the results of
Eq. (17) calculated for a single bond. Equation (10) ap-
pears, in the limit of small S, as the superposition of the
difFerent bond contributions obtained as in Eqs. (17). In
this section we discuss many electron effects, but keeping
us at the same level of approximation as in the preceding
section, we only consider those effects in local bonds.

Accordingly we start with the case of two atoms 1 and
2 having electrons which only fill one orbital per atom.
Our starting point is the following Hamiltonian:

Z2
(34a)

t= f p) ——'v- Z1

fr —R, f

Z2

fr —R, f

(34b)

h,. = f P~(r)P,(r'), $2(r')dr dr',1
(34c)

aC) a C2a or C iaC i —aC2 —a C2a which give a
small contribution to the total energy. Hamiltonian (33)
includes different Coulomb interactions between charges
at atoms 1 and 2, the usual hop~ing terms and the
many-body terms like h, n& (C, C2 +C2 Ct ) or
h2n2 (C, C2 +Cz C, ), which change the hopping
interaction as a function of the particle numbers n,
and n2 . On the other hand, the usual exchange in-
teraction appears as J,n, n2 in the last term of Eq. (33).

Different terms of Hamiltonian (33) are defined in the
following way:

Z i Z2

fr, —R, l

ZiZ2
', , fr, —r, f d

U;= fP;(r), P, (r')d. rdr',1

fr —r'
f

J= f P,(r), Pz(r')dr dr',1

r
f

2

J, = f P,(r)(tz(r), P, (r')$2(r')drdr' .
1

r r'—

(34d)

(34e)

(34fl

where i refers to the electrons of the system and R& R2
are the coordinates of the nuclei having charges Z& Z2,
respectively. We assume that electrons fill states
g, (r —R, ) and $2(r —R2) in atoms 1 and 2, respectively
and, now we use these nonorthogonal wave functions to
introduce, as in Eq. (24), the orthogonal basis P„P2. Us-
ing these wave functions P, and $2, we can write many-
body Hamiltonian (32) in the following second quantiza-
tion form:

H= g(c, ,n, +Ezn2 )

c. =s;+—,'S (s; —s ) —St,

t =t —(e&+ez—),S
2

h, =h, ——(U, +J ),p S

(35a)

(35b)

(35c)

As we have explained in Sec. II A, we introduce Eqs. (24)
into Eqs. (34) and calculate the parameters of Hamiltoni-
an (33) as a function of the wave functions for the in-
dependent atoms, g;. This yields the following equation
(up to second order in the overlap, S):

+ g(t+h, n, +h, n, ~)(C, C,~+C,~C,~)

+ U&n &&n&&+ U2n2&n2

Z1Z2+ g [Jn& nz +(J—J, )n& n2 ]+ (33)

p S 0 0
U, =U, + (U; —J )

—2Sh;,

p SJ=J + (2J —Ui —U2) —S(h, +h~),

J —J,=J —J, +J S

(35d)

(35e)

(35fl

where as usual n; =C,. C,. is the number of particles
operator associated with the state g; and the spin o..

In Eq. (33), we have neglected other terms going like
I

where the superscript (0) means that Eqs. (34) have to be
used to calculate the difFerent terms replacing P; by g,
When Eqs. (35) are introduced in Hamiltonian (33) and
different terms are rearranged, the following result is ob-
tained:

H= g t&&+ —,'S [s& —sz+(U, —J )n, —(U2 J)n2 ]——S(t+h, n, +h2n2 )In,

+ g I ez+ ,S [Ez e—&+(Uz—J)n2 ——(U& J)n, —]—S( th+&
&
n+h2nz )I n2

a
+ g ( th+, , n+h2n2 )(C, C2 +Cz C, )+ U, n»n, g+ Uzn2tnz&

+g[J n, n2 +(J J, +J S )n, n—2 ]+— (36)
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This is the main result of our many-electron case: com-
paring with the one-electron approach [Eqs. (10) or Eqs.
(27)] we find the following results.

(i) The hopping term, r, appearing in the one-electron
case is now replaced by t+h&n& +h2n2, where the
last two terms correspond to the hopping interaction due
to electrons of opposite spin.

(ii} In the eff'ective energy level for n, we find the
repulsive term S(t+—h, n, +hin2 ), in agreement
with (i). Moreover, the efFective energy level for n; is
also changed by the contribution:

S
4 [( a+Un i +J n2 )—(ez+Uznz +Jni ')] .

This is similar to the one-electron case; there is, however,
a subtle difference; instead of the total-energy level
c, , + U, n, +J n2 +(J —J, )ni, we only find

ei+ U, n, +J n2 ~, term (J —J, )n2 is missing. The
physical meaning of this result is clear: the correction
term (S /4)[ ] is associated with the hopping of one
electron from state 1(, to state 1tt2, then, there must be one
state filled, the other empty, and no interaction
(J J, )—n i n2 contributes to the energy levels of parti-
cles n, and n2 .

(iii) As regards the Coulomb interaction between
difFerent electrons, we find that in Hamiltonian (36), the
Hubbard terms U; n,-&n; &

are defined by the Coulomb in-
teractions U, of the localized atomic wave functions.
The same result holds for J n, n2, but we find a
correction term to the exchange contribution:

JO+ JOS2

This is the only new effect appearing in Hamiltonian (36),
associated with the orthogonalization of the atomic wave
functions.

In our approach to physisorption and chemisorption
we propose to use the following approximate Hamiltoni-
an:

H= QEini + QE2n2 + g T(Ci C2 +C2 Ci )

+ U]n]yn $$ + U2n2) n2$
0 0

+ g [J n, n2 +(J J, +J S )n—ion2~1

Z1Z2+

where we have introduced mean values for the eft'ective
energies E, and E2, of particles n, and n2, and for the
hopping interaction T:

E;=F;+,'S [(e;+—U;(n,; )+J (nJ ))
(38a)

(38b)

Following the discussion of Sec. II A, in these equations,
T, the hopping parameter, will be approximated by y T,
using in Eq. (11) the atomic wave function P, and $2.
Notice that this approximation implies that we expect the

atomic orbitals not to change much in the molecular
state: this is an accurate result for many physical sys-
tems. '

III. PHYSISORPTION OF He ON METALS

In this section we apply previous results to the case of
He physisorbed on metals. As an introduction to the
problem it is convenient to start discussing the problem
of two He atoms interacting at large distances. This is
done in Sec. III A, while in Sec. III 8 we discuss the case
we are interested in, using a simplified approach. Finally,
in Sec. III C we present our full analysis.

A. He-He interaction

+ Uon ) ) n ) g
+ Uon2) n2)

0 0

+g[J n, n2 +(J J, +S—J)n, n2 ]+

where only the 1s orbitals for both atoms have been in-
cluded.

In this approach, we neglect contributions from higher
orbitals: this implies that the van der Waals interaction
has to be added to the repulsive term given by Hamiltoni-
an (39).

The repulsive energy can be straightforwardly calculat-
ed from Hamiltonian (39), taking (n i ) = (n2 ) =1.
This yields the following total energy:

E =4(eo —ST)+2UO+4J +2( —J, +J S )+ Z)Z2

(40}

where 2eo+ Uo is the total energy of an atom plus the in-
teraction energy of the electrons of atom 1 (or 2) with the
ion 2 (or 1) [see Eq. (28a) for so]. Then, the repulsive en-
ergy is given by

V„= 4ST +2( —J, +J S —)+ V,i„, . (41}

In obtaining Eq. (41), we have defined the electrostatic in-
teraction as follows:

V,i„,=ZiZ2/d +4J +2I,q+2I2, , (42)

where I,2 (Ii, ) is the electrostatic interaction between an
electron of atom 1 (2) with the nucleus of atom 2 (1).

Equation (41} has a simple interpretation: the term
( 4ST) represents the re—pulsion between orbitals of
diferent atoms due to their overlap; the term
2( —J, +J S ) is the exchange interaction between elec-
trons having the same spin: notice the overlap correction
appearing as J S; finally, V,&„, is the classical interac-
tion between the charges of both atoms.

Equation (41} reproduces the well-known repulsive in-

This case can be analyzed using the effective Hamil-
tonian (36) or (37). For the He-He case we find

H = g (eo —ST)(ni +n2 )+ g T(C, C2 +C~ Ci )
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teraction between two He atoms if we write T =y T
and take y =1.20: this value has been included in Fig. 3
where y is shown as function of the orbital energy level
contributing to the tunneling current.

and

(45b)

B. A simple approach to the interaction of He
and metal surfaces

The problem we want to address in this section is a He
atom approaching a metal surface. We start assuming
that the He atom only interacts with a metal surface
atom: this implies that we consider a He atom on the top
position of the metal surface.

In our approach we consider the interaction between
an s orbital of a metal atom and the 1s level of He. Let us
describe the s-metal band by a mean level EM, and an oc-
cupancy per spin, NM. We analyze the interaction be-
tween the metal band and He in the following way.

(i) One-electron terms. This contribution appears
when we consider the overlap and the hybridization be-
tween the metal level EM and the He orbital. As regards
to the overlap, following Eqs. (38) we find the contribu-
tions

T2S «I EH. —J'NM —) ST +—
2 '

EM —EH, —J XM

(46a)

s S
&EH. = —

4 «M EH. J—'NM)—

Notice that in these equations the difference of energies
between orbitals EM and EH, has been shifted by the
term J XM, which is the correction related to the fact
that if one electron jumps between levels EM and EH„
one of these two levels has to be empty. On the other
hand, if we take NM =

—,
' (half-occupied band) the correc-

tion (J /2) plays the role of an image potential for the
helium level.

Combining Eqs. (44) and (45) we obtain the following
results:

S2
((EM+ U~ & &M &+J'—

& AH.

—
( E,+U, &n, &+J &n &)] ST—

—ST— T2

EM —EH, —J NM
(46b)

s SoE, = [(,+U, &, &+J & &)

(43a)
Now, we can use Eq. (31) in order to calculate T since in
the physisorption problem the metal-adsorbate distance is
large. A word of caution has to be put here: Eq. (31) was
calculated for a one-electron model. In the present ap-
proach, we have found that the He level is renormalized
to EH, +J XM, by "image effects. " Then, instead of Eq.
(31) we find

(43b)

where obviously subscript He refers to the rare-gas atom.
Notice that cM includes the interaction between the met-
al electron and the He nucleus, and similarly, E,H in-
cludes the interaction between one He electron and the
metal nucleus. Then, we define the metal and the He
free-atom levels as E~ and EH, and rewrite Eqs. (43a) as
follows:

s S
t«M+IM, H. +J'& AH.

T =
—,'S (EH, +J N~ E~ ) . —

Then, using Eqs. (46) and (47) we find

o
1

EM —EH, —J NM

=S'(EM EH, J'NM )-—

(47)

(48a)

(E,+I, +J—& &)] ST—
S (E~ EH, JNM ) S—T, — —
4 (44a)

where we have taken IM H, -2J, IH, M
= —J,

&nH, &=1, and &n~ &=NM. Similarly

and

I:T+ ,'S «~ EH. J'—N~)]'— —1

EM —EH, —J XM

(48b)

&EH, =
—,'S (EH, EM+J N~) ST—. —(44b)

On the other hand, the nybridization contribution to the
total energy due to the coupling of the helium Is state
with the states of the metal' can be calculated up to the
second-order perturbation theory, yielding

(45a)

These equations show that all the one-electron effects on
the He level cancel each other' at large distances. On
the other hand, the metal level is shifted to higher ener-
gies by S (EM EH, JN~). Th—ese res—ults show that
the one-electron contribution to the repulsion between
one metal atom and He is 2NMS (EM EH, JNM), — —
since 2AM is the number of electrons in the level EM.

Many-body contributions can be included in the same
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way as in the He-He case. Two different contributions
appear; one is the exchange contribution given by [see
Eq. (36)]:

E„=2NM( —J, +J S ) (49a)

a straightforward calculation yields the following result:

V„=2N~S (E~ EH, ——', p)—. (51)

On the other hand, 5 can be related to the metal density,
n, at the He site. Then, we get the following equation:

V„=(64m lp )(EM —EH, ——,'p)n (52a)

showing that the metal-He repulsion is proportional to
the metal density at the He site. Typical values of EM,
EH„and P are the following:

P= 1.6875 a. u. ,

EH, = —0.8965 a. u. ,

EM = —0. 14 a.u.

(52b)

This yields

VI ep cxn (53)

where a=140 eV ao.
We should comment at this point that although Eqs.

(53) have been obtained by assuming the He atom in-
teracting with a single metal atom, the same result holds
for the case of several metal atoms. This can be easily
shown by noticing that the interactions between He and
the metal atoms are additive in the metal density, and as-
suming that the effects of interference between metal
atoms can be neglected (see below). The values for a as
calculated in a local-density approach range between 200
and 750 eV ao (Refs. 16—18). It should be noted, howev-
er, that Eq. (52) has been obtained in the limit of very
large distances. In other words, for the distances of in-
terest, d-8 a.u. , the image potential is not negligible,
and its effects on V„are important. We pass to discuss
a more accurate description of the repulsive potential be-
tween the metal and the He atom.

In the limit of large distances, J goes like 1/d and Eq.
(49a) can be approximated by

E = —2XMJ, . (49b)

Finally we have to include the electrostatic term V,&„
defined by the interaction between the classical charges
on each atom. All the different terms yield the following
repulsive energy:

V„„=2NMS'(E~ E„,)—2NM J—o+ V„„ for d ~ ~ .

(50)

The different contributions appearing in this equation can
be easily calculated if we assume the He orbital to be very
localized in comparison with the metal wave function.
Thus, assuming

(p3 y )
I/2 —Pr

C. Full He-metal interaction

A better interaction can be obtained by improving the
calculation of the different terms contributing to the
repulsive energy. In a more complete approach we de-
scribe the metal using the k eigenfunctions Px, and the
corresponding eigenvectors e(k). Thus, we introduce the
metal Hamiltonian

~M = X «k)CI,'.Ca.
ko.

(54)

Then, we consider the metal as a single atom with many
different levels, interacting with the He atom. To this
system we can apply the discussion of Sec. II, and calcu-
late the different contributions to the interaction energy.

As regards to the one-electron contributions associated
with the metal-atom overlap, we find that the k level is
shifted by the following energy:

5e (k) = —,'Sl, H, [e(k)—EH, ]—Sz H, Tz H, , (55)

—2 g SqH, TqH, —4 g SqH, TqH, ,
k empty k occ

(57)

where a factor of 2 has been introduced due to the elec-
tron spin, and the different sums in k refer either to emp-
ty or occupied states of the metal. Equation (57) can be
written as a function of the metal atomic orbitals, P, , by
means of the equation:

yM y CiyM (58)

Introducing Eq. (58) into (57) and neglecting the overlap
between metal orbitals, we reach the following equations

5V =
—,'QS, H, f (EH, )e(n) ede—
—2+S;H, T;H, f n, (s)ds

l

EF—4g S, H, T, H, f n;(s)de,
l

(59)

where n;(e) is the local density of states in the metal
atom i. This equation reproduces the results of the last
section if we replace (EH, —e) by (EH, +J NM EM). —
Notice that in obtaining Eq. (59) we have neglected the
interferences between the different metal atoms: in this
approximation, the interaction potential appears as the

where Sk H, is the overlap between a k eigenfunction and
the He level, and Tk H, the corresponding hopping ele-
ment. In Eq. (55), we have introduced EH„ the atomic
ls-He level corrected by the image potential as discussed
above. The 1s-He level is also shifted due to the overlap
by the following amount:

5eHC X I 4Sk, HC[ He e(k)] Sk, HCTk, HC 1

k

Combining Eqs. (55) and (56) and taking into account the
k-level occupancy we find that the overlap between the
metal and He orbitals contributes in the following
amount to the interaction energy:

5V =—' g S,[EH, —e(k)]
k empty
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V„=an (z),
where n (z) is the electronic metal density. These results

TABLE I. Values of [V„~=an (z)] for different surfaces and
for the two helium position on metal surfaces.

Metal Top position a (eVa&) Center position a (eVa&)

Ni(110}
CU(110)
Ag(110)

271
342
495

335
407
581

sum of the interactions between the He atom and the
different metal atoms. We should also mention that in
our actual calculation, the repulsive potential is given by
the interaction of metal atoms with the approaching He
atom; on a top position, one metal atom is practically
controlling the interaction, while in a center coordinated
position there are those few metal atoms having the same
distance to He. This allows us to write EH,=EH, +J N~ as discussed in the preceding section,
where X~ is the orbital occupancy per spin of the
nearest-neighbor metal atom to He, and J the Coulomb
interaction between one electron in this orbital and
another in the 1s He level.

On the other hand, we have to consider the hybridiza-
tion energy between the He-orbital and the metal states.
This is defined by the hopping terms:

X k, Hc.'( ko Hew Hea kcr)
k, cr

and the effective 1s-He level EH, =EH, +J X~. This hy-
bridization energy can be calculated using conventional
Green-function techniques; the reader is referred to Ref.
30.

Still, we have to define the hopping parameters, Tk H„
or T; H, if we use a localized description of the metal or-
bitals. T; H, has been obtained using the Bardeen tunnel-
ing current as discussed above. Thus, we write

8T; He=IT; He

and adjust y using the limit of large distances given by
Eq. (47b).

The exchange contribution can be calculated using the
same approach given in Sec. IIB. The main difference
with the calculations of that section is that we now use
the multizeta atomic wave function of Clementi-Roetti
tables.

Finally, let us mention that in order to calculate the to-
tal He-metal interaction we have to include the van der
Waals potential. We have used the results of Refs. 28
and 29, where the different saturation effects associated
with that interaction are included.

We have applied this approach to the calculation of the
interaction of He with the Ni(110), Cu(110), and Ag(110)
surfaces. In our calculation we have considered two
different surface sites: the on-top position and the four-
fold coordinated site. From our analysis we conclude
that, for each site, the repulsive potential can be written
in the local form:

TABLE II. Theoretical hZ~ and experimental AZE(8) cor-
rugations for di6'erent metal surfaces as seen by a He atom hav-

ing 21 meV.

Metal

Ni(110)
CU(110)
Ag(110)

AZz- (A)

0.11
0.12
0.26

AZF (A)

0.074
0.11
0.24

show, however, a dependence of n on the He position
with respect to the metal surface. In Table I we show our
results for a, as calculated for the different surfaces on
the different metals sites.

The main point to be noticed about Table I is the
change of a with the metal site, showing an important in-
crease when going from the top to the center position.
We think these changes are basically due to the non-
negligible overlap between the metal wave function near
the center of the atom and the He-1s orbital. This
change of a is critically related to the surface corruga-
tions as measured with the surface scattering of He
atoms. ' Takada and Kohn' have stressed that this
experimental evidence can only be reasonably explained if
a is assumed to change along the metal surface: this is
what our results of Table I seem to indicate. In Table II
we give the results of our calculation for the corrugation
of different metal surfaces, defined as the difference in the
direction perpendicular to the surface between the classi-
cal turning points for the top and center position, for a
given He energy: we have chosen this energy to be 21
meV.

Our results show a fair agreement with the experimen-
tal evidence. ' This seems to be a critical test to the
method proposed in this paper to calculate the interac-
tion between atom and surfaces.

IV. CONCLUSIONS

In this paper we have presented a first-principles tight-
binding (TB) approach, whereby the different parameters
of the basic TB Hamiltonian can be calculated from the
properties of the constituent atoms, using no adjustable
parameter. The basic approach is a kind of bond theory
with the hopping parameters and the diagonal levels of
the orbitals forming the bond, related to the tunneling
current and the overlap between those orbitals. Many-
body effects can also be introduced in this tight-binding
approach, and we show how to obtain the basic parame-
ters of the interaction Hamiltonian using the wave func-
tions of the constituent atoms.

We have applied this approach to the calculation of the
interaction potential between a He atom and a metal sur-
face. The results found in this paper show a good agree-
ment with the experimental evidence and other theoreti-
cal calculations based on a local-density formalism ap-
proach. We believe that these results allow us to con-
clude that the method presented in the paper can be ap-
plied with great advantage at least for surface problems.
Work along these lines for other chemisorbed species on
metal surfaces is in progress in our laboratory.
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