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Effective dielectric constant of dilute suspensions of spheres
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We study suspensions of metallic spheres randomly distributed in an insulating matrix. The
effective dielectric constant of such a system is given by a Bergman representation. The positive
spectral density in this representation is characteristic of the geometry and is directly related to the
optical-absorption spectrum. Wp study the spectral density on the basis of a recently derived ex-

pression for the effective dielectric constant.

I. INTRODUCTION

Composite systems consisting of spherical metal parti-
cles embedded in an insulating matrix show interesting
absorption spectra. They exhibit a strong maximum at
optical frequencies which is absent in the bulk metal. For
very dilute suspensions the absorption maximum can be
attributed to the dipolar plasma mode of individual
spheres. At higher concentrations plasma modes of
different spheres couple in a way dependent on the
geometrical distribution of the particles. The effects are
particularly dramatic when aggregates are formed. ' " In
this paper we concentrate on suspensions with well-
separated particles. In such suspensions one expects a
red shift of the spectrum with respect to the prediction of
the simple Maxwell Garnett theory. The experimen-
tal situation at present is confused. ' '" In this article we
study the spectrum from a theoretical point of view.

The effective dielectric constant of a two-phase com-
posite may, in general, be cast in an analytic form due to
Bergman. ' In this Bergman representation e,z is ex-
pressed in terms of a positive spectral density which is
characteristic of the geometry. We assume that the
spherical particles are randomly distributed with hard-
sphere statistics. We study the Bergman spectral density
on the basis of an expression for the effective dielectric
constant for a system of spheres derived recently by
Cichocki and Felderhof. ' We approximate the exact ex-
pression by limiting our analysis to two-body electrical
interactions. We expect that our results yield an accurate
representation of the true spectrum up to volume frac-
tions of about 3%.

In earlier work ' we have studied the same system on
the basis of a cluster expansion' of the effective dielectric
constant. We showed that a truncation of the cluster ex-
pansion at the two-sphere level leads to a violation of the
Bergman representation. We remedied the situation by
introducing cutoffs in such a way that Bergman's
theorem is satisfied. The new expression for e,z does not
have this difficulty and we find that on the two-sphere
level the Bergman representation is automatically

satisfied. Many of the results of our earlier work can be
used in the present analysis.

We find a spectral density with an extremely rich struc-
ture. Already in the dipole approximation the spectrum
has remarkable features. The corrections from higher-
order multipoles are difFicult to calculate, but lead to ad-
ditional structure.

II. EFFECTIVE DIELECTRIC CONSTANT

We consider a suspension of identical spherical in-
clusions of radius a embedded in a uniform background
medium with dielectric constant E'& ~ The inclusions are
also uniform and have dielectric constant e2. For a par-
ticular configuration the local dielectric constant is given
by

e(r) =ei[1—6(r)]+@26(r), (2.1)

where 6(r) is the characteristic function of the set of
spheres. We assume that the disordered geometry of the
system is described by a known probability distribution
and that on average the suspension is uniform and isotro-
pic.

We are interested in the effective dielectric constant e,z
of the suspension which is defined as follows. When a
particular configuration is subjected to an applied electric
field at frequency co, a field E(r) with a complicated spa-
tial dependence is set up. Both E'& E2 and the field depend
on frequency, but we do not indicate this dependence ex-
plicitly. The local dielectric displacement is

D(r)=e(r)E(r) . (2.2)

We introduce the induced polarization, relative to the
medium in the absence of inclusions, via the relation

D(r) =e,E(r)+4mP(r) . (2.3)

(D(r)) =&i(E(r))+4n(p(r)) . (2.4)

Averaging over the statistical ensemble of configurations
we obtain
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where e,z is the effective dielectric constant.
In writing (2.5) we have not only assumed the suspen-

sion to be statistically isotropic, but also that we need not
distinguish between longitudinal and transverse fields.
The latter assumption is justified only if retardation
effects may be neglected on the microscopic length scale.
This requires that the sphere diameter, the mean distance
between spheres, and the correlation length are aH much
smaller than the wavelength. We shall assume that these
conditions are satisfied. As a consequence the effective
dielectric constant e,~ may be evaluated from electrostat-
ics. The basic equations on the microscopic level may
therefore be simplified to

V D(r) =4rrpo(r), V XE(r) =0, (2.6)

where po(r) is the external charge density. Subject to va-

lidity of the above assumptions the effective dielectric
constant e,z may be used in the complete set of Maxwell's
equations for the average fields.

It has been shown by Bergman that, provided
Maxwell's equations of electrostatics hold, the effective
dielectric constant of the suspension has the representa-
tion

e„=e, 1 —J g du
i g(u) (2.7)

where the variable t is defined by

t =e, /(e, —e2), (2.8)

and where g (u) is a positive spectral density. The spec-
tral density is fully determined by the random geometry
of the two-phase medium. Quite generally, for a system
which on average is uniform the total weight of the spec-
tral density is

g Q dQ— (2.9)

where P is the volume fraction of phase 2. If in addition
the system on average is isotropic, then the first moment
of the spectral density is given by

f ug(u)du =
—,'P(1 —P) . (2.10)

If we approximate the spectral density by a 5 function
with weight and location such that the sum rules (2.9)
and (2.10) are satisfied, then (2.7) leads to the Clausius-
Mossotti (CM) or Maxwell Garnett formula. Explicitly,

In contrast to the fields in (2.3) the average fields in (2.4)
are slowly varying functions of position. At sufficiently
long wavelengths the average fields are related by the lo-
cal constitutive equation

(2.5)

In the thermodynamic limit of an infinite uniform sys-
tern of spheres the spectral density may in principle be
expressed in terms of the density and spatial correlation
functions of the spheres. If n is the number density, then
$=~4vrna, and (2.11) may be regarded as a first approxi-
mation to the spectrum. A detailed statistical theory for
the effective dielectric constant will lead to a more com-
plicated spectral density. In the following we shaH inves-
tigate g (u) and e,it on the basis of a recently derived ex-
act expression.

III. SPECTRAL DENSITY

4m
e,tt=Ei+4vrna 1 — ( I+A.+p)na

E1
(3.1)

where o. is the dipole polarizability of a single particle
and A, and p may be expressed as sums of cluster in-
tegrals. For a uniform sphere the dipole polarizability is
given by

E2 Ei E)Q
3

a=@i a =
E'2+ 2E') 1 3t

(3.2)

which is singular at t =
—,'. The coefficients I, and p in

(3.1) may be expressed as the sums

p=gp, ,
$=2 $=2

(3.3)

where k, and p, each are given by a cluster integral in-
volving the solution of the electrostatic equations (2.6) for
s spheres in a uniform applied electric field. Substituting
(3.2) in (3.1) and comparing with (2.12) we see that the
coefficients A, and p provide corrections to the Clausius-
Mossotti formula. In this paper we shall consider in par-
ticular the two-sphere contributions X2 and p2, and
neglect all higher-order terms in (3.3). This must be re-
garded as an approximation which is valid at low density,
but becomes less accurate for more concentrated systems.
The approximation might be improved by including the
three-sphere contributions A, 3 and p3, but we shaH not
consider these here.

Expression (3.1) may be cast in the form

e,z= @i+4~n o,",
with the effective polarizability

(3.4)

In this section we derive a general expression for the
spectral density g (u) occurring in the Bergman represen-
tation (2.7). It has been shown by Cichocki and Fel-
derhof' on the basis of an exact resummation of
multiple-scattering processes that for a disordered system
of spherical particles the effective dielectric constant is
given by

gcM(u) =$5(u —
—,'(1—P))

leads to

3
ecM ei 1+

(2.1 1)

(2.12)

a"=a 1 — (1+1+@)na,4~
36j

In analogy to (3.2) this may be expressed as

a"=e,a /[1' —P —3t —C( t)],

(3.5)

(3.6)
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where C(t) gives the correction to the Clausius-Mossotti
formula, as may be seen from (2.12). It is given by

tor a, which cancels the prefactor in (4.1). We write the
function Cz(t) given by (4.1) as a sum of three terms:

C(t) =P(A, +p), (3.7) C, (r ) =p[L (r)+M (r )+H (r )], (4.6)

and in the two-body approximation is approximated by

C2 ( t) =p( A.2+p2) .

From (3.4) and (3.6) we find

e,s(t) =@i 1+ 3d
1 —P —3t C(r—)

(3.8)

(3.9)

The spectral density in the Bergman representation
(2.7) may be obtained from

g (u) = Im[e,s(u +i 5 )/~e, ], (3.10)

where C'(u) and C"(u) are defined by

C(u+i5)=C'(u)+iC"(u) . (3.12)

We shall denote the spectral density g (u) evaluated with
C(u) approximated by the two-sphere approximation
(3.8) by g~ ( u ).

IV. TWO-SPHERE APPROXIMATION

where 5 is infinitesimally positive. From (3.9) we find

3P C"(u)
)

[1—P —3u —C'(u)] +[C"(u)]z
V. MPOLE APPROXIMATION AT LOW DENSITY

In this section we approximate the function C(t) by
PL (t). This implies the use of the dipole approximation
in (4.2). Moreover, we assume low density and approxi-
mate the pair distribution n(1,2) in (4.2) by n for R )2a.
The dipole approximation to (4.2) is obtained by truncat-
ing Eqs. (4.3) at 1 = 1, l'=1, which yields

ai() =(1—3t —2z )

a =(1—3t+z )
(5.1)

where we evaluate L (r) by approximating the pair distri-
bution n(1,2) in (4.2) by n and by using the dipole ap-
proximation in (4.3), and M(t) by again approximating
n(1,2) by n but calculating the corrections from higher-
order multipoles in (4.3). The remaining contribution
H(t) in (4.6) is proportional to the pair correlation func-
tion h(R) defined by n(1,2)=n [1+h(R}]. The latter
contribution involves an integral over near distances and
may be expected to be relatively small at low densities.
In the next section we consider the contribution L (t) in
(4.6) in more detail.

In this section we consider the function Cz(t) in more
detail. The explicit expression is

C~(t) =(1—3t) e,s(1,2)/(3$e, ),

where z =a /R. The resulting integral leads to

3—StL (t)=—'ln
2 —St

(5.2)

where the pair term e,@1,2) is given by'

&,$1,2)= f dR R n(1, )2
2Q

X[@,a a,o(R)

+2@&a ai&(R) —3a], (4.2)

where R is the distance between centers of the two
spheres, n(1,2) is the pair distribution function, and
a& (R) for m =0,1 are dimensionless pair polarizabili-
ties. These are obtained as solutions of the coupled mul-
tipole equations

It is of interest to write this in the form of a spectral rep-
resentation

L(r)= ', f-—
i/4 t —u

(5.3)

L'(u) =—'ln, L"(u)= 'ne(u ' —' —'—) (5 4)
3—Su

2 —Su
' ' '4''

which shows that the corresponding spectral density is
constant on the interval —,

' ~ u ~ —,'. For t =u +ifi with u

real and 5 infinitesimally positive, the real and imaginary
parts of L (t) are

g Mp(al =5Ii, 1=1,2, . . .
1' —1

with matrix elements

~ g21+1E' )Q a
R

1+1'+1

(4.3)
where e(u; —,', —,') equals unity on the interval —,

' ~u ~ —',

and vanishes elsewhere.
We denote the spectral density obtained by approxi-

mating the function C(t) by QL(t) as gzi,'(u), where the
subscript D denotes dipole approximation and the super-
script denotes low density. It is convenient to introduce
the functions

(4.4) XD(u) =1—P —3u —PL'(u), Yr (u) =PL "(u) . (5.5)

where the multipole polarizabilities a1 are given by

21+ 1l
' I —(21 +1}r (4.5)

It is easily seen that the integrand in (4.2) contains a fac-

It is easily seen graphically that the function XD(u) has a
zero u, D & —,

' and a zero u2D & —,'. These correspond to
zeros on the real axis of the denominator in (3.9). Hence,
in the present approximation the spectral density is given
by
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YD(u)
g2D(u)= QA, D5(u —u, d)+

XD(u)+ YD(u)

+p 3~D5(u —u 2D )

with amplitudes 3 )D and A 2D given by

2 D
= —3/(dXD/du)„, j=1,2 .

jD

From (5.5) we find explicitly

dXD /du = —3 ——", P[(2—8u )(3—8u)]

(5.6)

(5.7)

(5.8)

0,6

0.2—

In Fig. 1 we plot u» and u» as a function of the volume
fraction and in Fig. 2 we plot the amplitudes A&D and

A2D in the same range, 0 & P &0.2. Note that according
to the normalization (2.9) the amplitudes A, D and A2D
give the relative contributions of the isolated modes at
u, a and u2D to the spectral density. It is remarkable that
at the higher volume fractions these modes carry a sub-
stantial portion of the total weight.

It follows froin (5.4) and (5.5) that the continuous con-
tribution to gz'z(u) given by the second term in (5.6) is
maximum at a zero of Xii(u) and then takes the value
9/2ir =0.456 independent of the volume fraction. It is
easily shown that for 0&/&0. 091 the function XD(u)
has three zeros in the interval [—,', —', ]. Thus for small
volume fractions the function g2D(u) shows three sharp
peaks in the interval [—„',—,']. For /=0. 091 two zeros of
XD(u) coalesce so that for 0.091 & P &9/64 the graph of
g~zD'(u) shows two broad maxima, while for P) —,', only
one maximum remains near u =—', . In Fig. 3 we plot
g2D(u) on the interval [—„',—', ] for five volume fractions be-

tween 0.02 and 0.08. In Fig. 4 we plot the same for
volume fractions 0.11, —,'„and 0.2. Note that the total
weight carried by the continuous part of the spectrum is
bounded by 9/16m =0.057, since the function takes the
maximum value 9/2n. . The remainder of the total
weight P must be carried by the two delta functions in
(5.6).

In the present approximation we find that the spectral
density has striking features, namely two isolated modes

0.0
0.0 0.05 0.1 0.2

FIG. 2. Plot of the amplitudes A» and A».

VI. MULTIPOLE CONTRIBUTIONS
AT LOW DENSITY

In this section we study the function M(t) defined in
(4.6) in order to understand how its contribution affects
the spectral density g(u). The multipole contribution to
the integral in (4.2) is found from the coefficients b,
defined by

D
~]m $m fm

This yields

(6.1)

M(t) =(1 3t)'f,—[b»(t, z)+2b»(t, z)] . (6.2)z'
As shown previously, ' the coef5cients b, are given by

( )
i det(M )

det(M )
(6.3)

at u» & 4 and u2D )—,
' and a continuous spectrum in the

interval —,
' ~ u ~ —', . In the next two sections we investigate .

how the spectrum is modified by multipolar interactions.

U20
0.5

0.4

0.2— 0.3

0.1—
0.2

CJl

0.1

0.0
0.0 0.05 0.1

I

0.15 0.2
0.0

0.26
I

0.28 0,32 0.34 0.36

FIG. 1. Plot of the zero U» & 4 of XD(u) and of the zero

u2D ) 8.3
FIG. 3. Plot of the spectral density gzD(u) on the interval

[—', 3 j for vo1ume fractions 0.02, 0.03, 0.05, 0.07, and 0.08.
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0.5

0.4

multipoles will have the e8'ect of spreading out the spec-
tral density so that m(u) fills the interval [0,1]. To test
this we have numerically calculated m(u) in quadrupole
approximation.

The quadrupole approximation is de6ned by truncating
Eqs. (4.3) at l =2, I'=2, which yields

0.2

0.1

ago=[1 3t ——2z —9z (1 ', t ———6z ) ']

a &» = [1 3t +—z —3z (1 ,' t +4—z—) ']
(6.6)

0.0
0.26 0.28 0.3 0,32 0.34 0.36

We de6ne coeScients b~& =a~& —a& and it then fol-
lows from (5.1) and (6.6) that the b P can be written as

FICx. 4. Same plot as in Fig. 3 for volume fractions 0.11, 64,
and 0.2.

where the matrix M has elements

M ll' ( 1 ~l lai'1 )Mll'

bP (t z)

where

—2z'
5(2m + l)[t —h, (z)][t —hz (z)][t —h, (z)]

(6.7)

At distances R close to the sphere diameter 2a (z = —,
' ) a

large number of multipoles must be taken into account.
It turns out that by use of the formula (6.3) the integral in
(6.2) may be evaluated with good numerical accuracy, un-
less the point t in the complex t plane is very close to that
part of the real interval [0,1], where the spectral density
is located. Unfortunately this means that a direct study
of the contribution of M(t) to the spectral density g(u)
based on (6.2) and (6.3) is not possible.

An alternative approach can be based on the fact,
shown in Ref. 8, that M(t) itself has a spectral represen-
tation

11
d,o(z) = z 5

3
6z

dzo(z)= —,', (1—2z —6z +3z ),

hio(z)= —,'(1—2z ),
h i i (z)=—,

' (1+z ),
hzm(»=dim+[ im(z) —dam( }]'"

3m( )= im
—[ im( ) —2m( }]'"

with

(6.8}

(6.9)

M (t) = —
—,'(1—3t) f du,i rn(u)

o t —u
(6.5)

with a real function rn(u). We have seen in (5.4) that the
dipole contribution L (t) has a spectral density confined
to the narrow interval [—,', —,']. We expect that the higher

d„(z)= + +'z
30

d2i(z)= —,', (1+z +4z +z ) .

We can resolve b P (t, z) into partial fractions by the for-
mula

[(t —h, )(t —h, )(t —h, )] '= (h, —h, ) '(h, —h, ) '(t —h, )

+(h2~ —h3 ) '(h, —h, ) '(t —h, )

+(h3 —h, ) '(h3 —h2 ) '(t —h3 ) (6.10)

From (6.5) and (6.2) we have

f du = —3f [ ,b(to, z) 2+b(t, z)] . (6.11)
o t —u z'

Upon inserting the partial-fraction resolution of b i (t, z)
into (6.11), we obtain m ~(u}, the quadrupole contribu-
tion to the multipole spectral density, expressed parame-
trically in terms of z. For example, one of the six contri-
butions to (6.11) has the form

p 1/2 z' dZ
'"o [hz, (z)—h»(z)][h2, (z) —h3, (z)] t —h2, (z)

from which we deduce that on the interval
h2, (0) &u (h2, ( —,') [h2i(0)= —,', h~i( —,')=(33+&'19)/
80=0.467],

m ~(u)= 4z

5h 2i (z)[h 2i(z) —h i i (z)][h 2i(z) —
h 3i(z) ]

(6.12)

where h2, (z) =dh2, (z)/dz and z =hz, '(u).
There are six contributions like (6.12), some of which

overlap on the u axis. Moreover, there is a weak singu-
larity in m ~(u) at u =

—,
' which we have resolved by using
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computer algebra to invert the various functions con-
cerned,

The first two moments m, and m2 vanish identically.
The moment m 3 is given exactly by

2/3' 1/3

m ~(u)= 24(3u —1) '~ +120(3u —1) ~

—360(3u —1) ~ + . , u~ —,
'+

m3 =,0,
—

—,'41n3=0. 019039,

while the moment m4 was shown to be
(6.13)

(6.16)

2
m ~(u)= —9

1 —3u

405 1 —3u
2 2

90 1 3u
2

' 4/3

+ 0 ~ ~

m4=0. 019242 . (6.17)

We have extended the moment calculation by a method
presented in the Appendix to obtain two additional mo-
ments:

I — du= +mti m(u)
o t —u j=l

(6.14)

where the coeScients m are given by the moments of the
spectral density m (u),

1
m = f uj 'm(u)du .J o

40

-20—

0.2 0.3

I
I
I
I
I
I
I
i
I

0.4

FIG. 5. Plot of the spectral density m ~(u). On the dashed
curve the actual values have been reduced by a factor 10.

We display m ~(u) graphically in Fig. 5. The quadrupole
spectral density m ~(u ) extends from
u =(23—&39)/80=0. 209 to u =(33+&19)/80=0.467,
a significantly larger interval than [0.250, 0.375], on
which the dipole spectral density is concentrated. Note
also that in addition to the weak singularity mentioned
above, there are step discontinuities in m ( u ) at several
places.

The quadrupole contributions do not exhaust the
effects of higher multipoles. Although we are unable to
handle multipoles higher than l =2 in the same detail as
the quadrupole, we were able, by computer algebraic ma-
nipulation, to determine the width of the multipole spec-
tral density when Eqs. (4.3) are truncated at I =I'=3 and
at I =I'=4. Upon including octupoles the multipole
spectral density is nonvanishing on the interval
[0.179,0.527] and for l =4 multipoles this broadens fur-
ther to [0.155, 0.574].

Although we cannot include multipoles for I )2 in an
explicit way, it is possible to incorporate them approxi-
mately, for all 1 & 2, by a method of moments. In (6.5) we
can expand the integral as a series of inverse powers of t,

s =0 013 551 m6=0 008292 (6.18)

These moments contain the contributions of all mul-
tipoles for I ~2. We split off the quadrupole contribu-
tions explicitly by writing

m(u)=m ~(u)+m "(u), (6.19)

where m ( u ) contains the contributions for l & 2. By
computer algebra we expanded the b

&
in a series of in-

verse powers of t and then used (6.11) and (6.14) to evalu-
ate the quadrupole contribution to the moments m, . This
gave the following result for the contribution of m (u)
to the moments m3, . . . , m6,

m 3 =0.006540, m 4 =0.006585,

m s =0.004848, m 6 =0.003219 .
(6.20)

A finite number of moments do not uniquely specify
m (u), but they can be used to determine a coarse-
grained representation of it. We choose to represent
m (u) by an expansion in Jacobi polynomials, '

5

m (u)=w(p, q, u) g cJGJ(p, q, u),
J =2

where w (p, q, u ) is the weight function,

w(p, q, u)=u' '(1 —u Y

(6.21)

(6.22)

The Jacobi polynomials G„(p,q, u ) constitute the set of
orthogonal polynomials with respect to the weight func-
tion w(p, q, u) on the interval 0~ u ~ 1. Due to absence
in (6.21) of the terms Go and Gi the sum rules m f =0
and m 2

=0 are satisfied automatically. The coeScients
c~, . . . , c5 are fixed by requiring that m (u) have the
correct moments m 3, . . . , m 6. We center the weight
function at u =

—,
' by setting p =3q —2. Finally, to deter-

mine q we evaluate the integral (6.5) for a range of I
values off the u axis using numerical values of m ~(u ) and
the representation of m "(u) in (6.21). These values of
the integral are compared with values computed using
(6.2) and (6.3) and given in an earlier paper. The best fit
corresponds to q =13.5. We show the graph of m (u) in
Fig. 6. We observe that m (u) is negligibly small outside
the interval [0.1,0.65]. Our representation of the mul-
tipole spectral density, m(u) =m ~(u)+m (u), and
hence of M(t) itself, is now uniquely determined. We
have found that the spectral density m (u) is spread over
a much wider range than the dipole spectral function
L "(u), and the quadrupole contributions give much more
structure to m (u) than is evident in L"(u).
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10.0

0.0

—10.0
0,1 0.2 0.3 0.4 0.5 0.6

I

0.7

FIG. 6. Plot of the spectral density m "(u).

VII. SPECTRAL DENSITY INCLUDING
MULTIPOLK CONTRIBUTIONS

In this section we include the multipolar function M(t)
given by (6.5) and (6.19) in the calculation of the effective
dielectric constant and the spectral density. We approxi-
mate Cz(t) in (4.6) by P[L(t)+M(t)] and use (3.9) to
evaluate e,a(t). For values u+i5 with u real and 5
infinitesimally positive e,z is given by

3
(7.1)

with the function X ( u ) defined by

X(u) =1—P —3u —P[L'(u)+M'(u)]

and the function Y'(u) defined by

Y(u) =P[L "(u)+M"(u)] .

From (6.5) we find, for the multipolar contributions,

M'(u)= —
—,'(1 —3u) P J dU,

i m(U)
0 Q U

M"(u) =
—,'m(1 —3u) m(u),

(7.2)

(7.3)

(7.4)

where P indicates the principal-value integral.
Using (3.10) we find that the spectral density g(u) at

low concentration and in the two-sphere approximation
is given by

characterized by a weak singularity at u =
—,
' and by

several jump discontinuities. Because of the factor
(1—3u) in (7.4) the singularity has no observable eff'ect
on M(u +i5). More importantly, we observe that at all
points of discontinuity where m ~(u) is not vanishing, the
principal-value integral in M (u) diverges logarithmical-
ly. This phenomenon is already manifest in the dipole
term where the divergence in L'(u) at u =

—,', —,'refiects the
discontinuity in L"(u ) at these points. At such points
X(u) also diverges forcing g2 '(u) to vanish at these
points. One can easily see by a graphic argument that
near such a divergence there must also be a zero of X(u)
analogous to the vanishing denominator in (3.9) which
produced the isolated modes in g2D (u ). In the present in-
stance there can be no such sharp modes because of the
fact that m "(u) is, apart from isolated points, nonzero
throughout [0,1]. Nevertheless, depending on the value
of Y(u) near such zeros of X(u), there may be sharp
peaks in g 2

'( u ) associated with such zeros. A graph of
g2' '(u) for a volume fraction /=0. 03 is shown in Fig. 7.
The zeros of gi(u) associated with divergencies of X(u)
are indicated, including those at —„' and —', due to the di-

pole contribution L'(u). The spectral density is still
dominated by a single peak as in the dipole approxima-
tion and this peak corresponds to a zero of X(u) at about
0.327. There is a secondary peak in g2 '(u) at about
u =0.36 which is due to quadrupole interaction and
which refiects the structure in m ~(u) near 0.358 where it
has a strong discontinuity as shown in Fig. 5. At higher
volume fractions g~& '(u) shows even more structure with
the main peak shifting to lower u values and with addi-
tional secondary peaks appearing at higher values of u.
However, in these more dense systems it is likely that
three-body terms begin to contribute significantly so that
g2' '(u) gives only a rough idea of the actual spectral den-
sity.

The detailed structure of g2 '(u) as described above is
approximate owing to the smoothed representation of the
higher multipoles by m (u). Nonetheless, we see from
the form of L "(u) and m ~(u) that there is a competition
between the contributions of different multipoles which
alters as u varies. The zeros of gz' '(u) which are forced

0.5

gp Q(p)( )
3P Y(u)

X (u)+Y (u)
(7.5) 0.4—

It is clear from (7.3) and (7.4) that the function Y(u) now
no longer vanishes outside the interval [—,', —,']. Due to the
multipolar interactions we obtain a spectral density
which in principle is spread through the interval [0,1].
Our representation of m ( u ) =m ~( u ) +m ( u ) as an ex-
plicit quadrupole contribution plus a smooth representa-
tion of all higher multipoles should give a good coarse-
grained representation of the two-body interactions, but
also leads to specific features of g2 '(u) related to the sep-
aration of quadrupole contributions into an isolated term
m ~(u).

In the preceding section we found that m ~(u) was

0,3—

O
Ch

0.2—

0.0
0.1 0.2 0.3 0.4 0.5

0.209 0.250 0.358, 0.366, 0.375,0.400 0.467

FICs. 7. Plot of the spectral density g2 '(u) at volume fraction
P =0.03. The zeros of the spectral density are indicated.
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by the divergence of X(u) arising from specific contribu-
tions are probably a general feature of the exact g(u);
however, it is unlikely that such detailed features can be
resolved by experimental measurements at t values off the
real axis.

VIII. RELATION TG EXPERIMENT

Our investigation of the spectral function g (u) leads to
definite predictions for the effective dielectric constant of
suspensions of spheres. The systems most favorable for
experimental investigation are metallic spheres embedded
in a passive matrix such as glass or gelatin. ' '" For such
systems the complex variable t defined in (2.8) runs along
a path in the complex t plane starting at zero frequency
and passing close by the interval [0,1]. For example, the
Drude model for the dielectric constant e2(co) of metallic
spheres yields

1.4-

0.8—
lal

0.6-
4P

4J

0.4—

0.2-

0.0
0.0 1.2 1.6 2.0

FICx. 9. Cole-Cole plot of Ime, s(co)/E, vs Re@,s(co}/e, for
silver spheres in glass at volume fraction /=0. 03 (inner curve).
For comparison me also show the Clausius-Mossotti circle.

COp

E2(CO) e2m+1E2m
co 60+ $ 1'

(8.1)

with ez„=4 5p 'Ez'~ 0 16& cop 1 46+ 10 s
y=1.68X10' s ' for silver spheres of radius 100 A.
The imaginary part ez' represents the effect of interband
contributions which would arise in a quantum-
mechanical microscopic calculation of e2(co). With
e, =2.25 for glass this leads to t'=

—,
' and t"=0.023 at the

single-sphere resonance frequency co, =4.87X10' s
In Fig. 1 of Ref. 3 we have presented a plot of the path in
the complex t plane. For such a system one can expect to
see the details of the spectral density g(u). In Fig. 8 we
plot the real and imaginary parts of e,fr(co)/e, as a func-
tion of frequency for a system of silver spheres in glass at
volume fraction / =0.03. We have used the spectral den-
sity as calculated in (7.5) and the Drude model (8.1) with
parameters as given above. In Fig. 9 we present the cor-
responding Cole-Cole plot. There are marked deviations
from the Clausius-Mossotti circle, which is drawn in the
same figure for comparison.

IX. DISCUSSION

We have presented a detailed calculation of the spec-
tral density g (u), defined in (2.7), for a system of spheres
embedded in a matrix. We have made a two-particle ap-
proximation and therefore our results are limited to rela-
tively low volume fraction. We have neglected the effect
of correlations in the sphere positions, apart from the
nonoverlap condition. This effect is represented by the
function H (t) in (4.6) and could be calculated, but is ex-
pected to be small at the volume fractions under con-
sideration. We have found a spectral density with a re-
markably rich structure. We expect that for volume frac-
tions up to 0.03 our results are an accurate representation
of the true spectrum.
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APPENDIX

2.0 The moments m defined in (6.14) are obtained from
(6.11) written in the form

i m(u) in dz 3I du = —3I ~ a,c(t,z)+2a»(t, z)
o t —u o 1 —3t

1/2 dz D+3 ~

4 Q io t~zz'

0.0
0.0

I

0.1

I
I

/
/

I

0.2 0.3
4J /4lp

+2a „(t,z)— 3
(A 1)

1 —3t

We have shown in a previous paper how the coupled
equations (4.3) may be solved in a series of inverse powers
oft,

FIG. 8. Plot of the real and imaginary parts of E,s(co}/e, vs

co/co~ for silver spheres in glass at volume fraction / =0.03.
ai (t,z) = g ci „(z)t

n=1
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and the dipole coeScients al have a similar repre-
sentation with c,o„=—3 "(1—2z )" ', c»„= —3 "(1+z )" '. Upon inserting the series expansion
(A2) in (Al) and using (6.14), we obtain

dl, O,p, n +1
I

pl+ l dl, o,p, n

l (l+1)
2l+1 tot —2 —t n

l ~ (p —1 —q)!
2l + 1 o I!(p —1 —

q —l)!

where

1/2 d2I
~
= —3f 4 [c)oi(z)+2c„-(z)+3' J]Z'

(A3)

(A4)

dp —1 —I —
q, O, n

t
1, 1,p, n +1

p~ + ~
I, l,p, n I + ~

1, 1,p —2—I, n

l ~ ' (p —1 —q)!
2l +1 o (I +1)!(p—2 —

q
—1)!

(A6)

and similarly for I
~

with clan replaced by clan.
In our earlier paper we showed that ct „(z) can be

found in closed analytic form for n =3,4, giving the
values of m 3,m4. For n )4 no closed form can be found,
but instead we represent ct „(z)by a power series,

c, „(z)= g d, „zt'.
p=0

(A5)

Upon inserting (A2) and (A5) in the coupled equations
(4.3) and equating coeScients of corresponding powers of
t and z, we derive a set of recurrence relations for the
COeKCientS dl pn, When@ )0,

dt t i
= 35—ti5t o . (A7)

We solved these recursion relations out to p =50 and
then found the I

~
for j =5, 6 by integrating the resulting

series for the ct „(z) truncated at order z . This pro-
cedure gave the moments m5, m6 quoted in (6.18). For
higher j values the method would in principle still work,
but the series representation of ct „(z) converges more
and more slowly so that there is a progressive loss of ac-
curacy.

Xdp 1 I—q1qn ~

The input information to begin the recursive calculation
Of the dl~pn iS
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