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We present a formulation of photoelectron diffraction which generalizes that based on the plane-
wave approximation. Explicit expressions for K- and L-shell photoemission are given. Single-

scattering terms are treated exactly in terms of effective distance-dependent scattering amplitudes
f"(B,R ). Spherical-wave corrections in the theory can be approximated with use of asymptotic ex-

pansions for the one-particle propagators. This spherical-wave approximation (SWA) explains ob-
served corrections to the plane-wave approximation and is found to be in good agreement with the
full, single-scattering, spherical-wave treatment. The relation between photoelectron diffraction and
x-ray-absorption fine structure (XAFS) is discussed with use of a generalized optical theorem.

I. INTRODUCTION

In photoelectron diffraction (PD), the variation of the
differential photoemission cross section with either ener-
gy or direction can be used to investigate the local envi-
ronment of a particular atom. ' The energy-dependent
form is often termed angle-resolved photoemission ex-
tended fine structure (ARPEFS), and it bears a close rela-
tionship to x-ray-absorption fine structure (XAFS). In
the plane-wave approximation to PD, the differential
photoemission cross section do. /dQ for emission from a
core orbital 1l, into a direction k is proportional to
((gj, ~e r~P, )(; in the presence of a scatterer at a dis-
tance R from the absorbing atom this is readily evaluated
and for a K-shell core state gives

ikR (1—cos(9)

dn" '
R

cc e k+ e Rf(6)

i2kR 2

+ e.Rf (~)f, (vr ())—
where f (9) and f, (g) are the plane-wave scattering am-
plitudes of the scatterer and absorbing atom, respectively.
Here, we include second-order scattering events that are
necessary to ensure conservation of Aux, although these
are often omitted in analysis of PD data. ' However, the
plane-wave approximation is found to be inadequate even
at moderately high energies (100—200 eV), and it is thus
necessary to take into account the spherical-wave nature
of the photoelectron final state. ' This spherical-wave
generalization is carried out in detail here. In contrast to
the treatment of Barton and Shirley, who consider the
photoelectron wave function to be simply an outgoing
spherical wave of a given angular momentum, our for-
malism is based on an exact, time-reversed scattering

state for the photoelectron. Thus our treatment explicit-
ly takes into account possible interference between
difFerent angular momentum channels which will be irn-

portant in PD from any non-s subshell, while that of Ref.
3 does not consider this complication. Consequently, our
treatment allows us to determine the PD for a core state
of arbitrary angular momentum as well as the partial
differential cross section do/dA. When do jdQ is in-
tegrated over all possible directions one must obtain the
total absorption and consequently the correct XAFS for-
mula. We show that this reduction is the result of a gen-
eralized optical theorem for spherical waves.

In Sec. II we evaluate the differential cross section for a
single scatterer and discuss its plane-wave limit. Section
III contains explicit spherical-wave corrections to the
plane-wave approximation for K- and L, 2 3-shell absorp-
tion. The spherical-wave corrections can be approximat-
ed accurately by asymptotic expansions for the single-
particle propagator, the "spherical-wave approximation"
of Ref. 4. We show that the basic structure of Eq. (1) is
preserved provided one generalizes the plane-wave
scattering amplitude f(()) to a linear combination of
effective scattering amplitudes, f"(O,R), which depend
on the distance between absorbing atom and scatterer. In
this section, we also discuss other aspects of photoelec-
tron diffraction theory, e.g. , the inclusion of lattice vibra-
tions, inelastic losses, and the presence of a surface. In
Sec. IV we show numerical comparisons between PD cal-
culated with the plane-wave scattering amplitude f (0)
and with the spherical-wave theory. Finally, in Sec. V,
we show how solid-angle integration of the differential

photoemission cross section leads to the correct XAFS
formula.

II. PHOTOEMISSION CROSS SECTION
IN THE PLANK-WAVE LIMIT

The photoelectron final state in the photoabsorption
process can be viewed as a time-reversed scattering state.
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For an isolated atom, this state

lpga)

consists of incoming
spherical wa Ues centered at the origin ( r

l L,O )
=i'hi (kr)Yt (r), and an outgoing plane wave
(rlk) =e'"' in the observation direction k,

lgog&=(1+G t,')lk&=1k&+4~& Y,*(k)tf'IL, O&,
L

where t' denotes the dimensionless central-atom t matrix,
G is the incoming free-particle propagator [i.e.,
G =(k l2 —Ho iO+—) '], Yt denotes a spherical har-
monic of angular momentum L (—:Il, m I), and h& is a
spherical Bessel function. Throughout this paper we use
atomic units, e =A=I, =1. The photoelectron state in
the presence of a scatterer at site R is given, to linear or-
der in tz, by

(3)

where t~ is the t matrix of the scatterer at R with com-

ponents tr=e sin5I (site index suppressed) and G, is
the exact incoming propagator in the presence of the ab-
sorbing atom, (i.e. , G, =G+Gt, G)

Now consider the dipole matrix element between a
core state l g, ) and the final photoelectron state l fz ),
i.e., the fully relaxed final state which is calculated in the
presence of the core hole,

M,g=&y, le rlqg&=&y, le r(1+G, tat)look& .

Throughout this paper we shall use the phase convention

pt (r)=(rl11t ) =i'RI(kr)Yt (r) to denote eigenstates of
the Hamiltonian with angular momentum L, where the
radial wave function RI(kr) is regular at the origin and
normalized by the condition Ri(kRMr )=j,(kRMr )cos5i

ni(kRM—r )sin5i, where RMr denotes the muffin-tin ra-
dius. This condition and continuity of R&' at RMz defines
the phase shifts 5i. The outgoing part lPt+) is denoted
by the same formula with R& replaced by RI+, where

~ C

Ri+ ( kR Mr ) =e 'hi+ ( kR Mr ). Similarly, free particle
states of angular momentum L centered at r =R
are denoted by lL, R), where (rlL, R)
=i'jr(klr —Rl)Yt (Aa), and the outgoing part lL+, R) is
given by the same formula with jl replaced by hI+. Now
using the decomposition of the propagator,
G, =gt lgt+)(ft l

=(G, ), in Eq. (4) we obtain

M,*k= &ankle rig, &+&&Pkltalgt+. & &gt, le rig, & .

Using the alternative representation lpga) =4m gt Yt*(k)
.gC

Xe 'i/I ) to evaluate the first term in Eq. (5) and Eq.
(2) to evaluate the second, one obtains

M,'k=y 4~Y, (k)+y&kltalL, R&G~, ~ (R)
Lf

+4~ g Yt (k)tf. (L',OltalL, R)Gt t (R)
L, L' f

i6
X &1ijt. le.rig, &e

+where we have used (rift+) =e '(rlL+, 0), for r
outside the mufBn tin radius of the central atom,
and the identity ( L,R l

L '+, R' ) =Gt t ( R—R' ). Here
Gtt. (R—R')= (L,RlGlL', R') denotes the outgoing
free-particle propagator in an angular momentum repre-
sentation. The sum over LI goes over all final states al-
lowed by the dipole selection rules, e.g. , p states for E-
shell core states. Expanding the plane-wave state lk) in
terms of states lL, R) centered at the scatterer, we then
get

M,*q=g Yt. (k)+e '"' g Yt(k)tIGt t. (R)f L f
f

+ g Yt. (k)tf GI, t. ( R)tiGt —t. (R)
L', L f

i5
Xm* ef (7)

with mz", =4m (gt le rig, ). The terms in large
parentheses in this sum are interpreted as the direct,
single-scattering, and double-scattering terms, respective-
ly. With the approximation of linearity in ta in Eq. (3),
we ignore repeated scatterings by the atom at R, i.e.,
triple-scattering and higher-order terms.

In the plane-wave limit Gt t (R)=4m(e'" /kR)
X Yz*(R)Yt,(R). Substituting this in Eq. (7) leads for the
case of K-shell absorption to the plane-wave result of Eq.
(1), which was previously derived by Lee.

III. SPHERICAL-WAVE CORRECTIONS
IN PHOTOEMISSION

To recast Eq. (7) in a form similar to Eq. (1), we take as
a starting point the exact z-axis expansion for the propa-
gator of Rehr et aI.

Gt t (R)=g Gt"'t (R)

ikR
=4~ YI'o(z) Yio(z)g Dt"t gi /"(kR ),

kR

ikR

X Yt. (k)tiGt. , io(R) =
k

Yio(R)
L kR

X g(21+1)tiPI(k R)g', I'(kR ),
I

(9)

where gi'P' are dimensionless, z-axis propagators defined
in Ref. 4 and the quantity D~"t' =D„'*.(0,8~,~ Ps)—
XD„' (0,8z, m —Pz ), where D„' are the rotation ma-
trices corresponding to a rotation that takes the vector
R=(R, Hz, gz ) into the z axis and p runs over the values
—l to l, where l =min[i, l']. Below we shall consid-
er explicitly the cases of K- and L2 3-shell photoemission
and choose the z axis along the polarization direction e.
For K-shell emission we calculate the single-scattering
term of Eq. (7) using Eq. (8). The dominant contribution
[@=0 in Eq. (8)] is
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and similarly, the p=+1 corrections, which are smaller
than the @=0term by a factor 0 (1/kR), are

ikR

g YI (k)tiG& io
—(R)= g ti Yl. (k)D+i~ Y~o(z)

L kR

der I and degree m, O is the scattering angle, and P is the
dihedral angle between k and e through R. In terms of
the spherical correction factors c&(x) to the plane-
wave limit of the spherical Hankel functions h&+(x)
=i'(e' /x)c&(x), we have

XD+io Yio(z)g'i't'(kR) .

(10)
g ii'(kR) = [(I + 1)ci+ i(kR )+Ici i(kR)]/(2l + 1) (13a)

g I'i'(kR)=i&I( 1 +1) /2ci( kR) /kR . (13b)

where

f ' '(O, R ) =(1/k)g(2I + 1)tiPi(cosO)g ii'(kR ),
I

f '"(O,R) =(1/k)g(2I +1)t&Pi'(cosO)
1

X+2/I ( I + 1)g ', i'(kR ) .

(12a)

(12b)

Here PP (x) is the associated Legendre polynomial of or-

Summing both contributions and substituting explicit ex-
pressions for the spherical harmonics and rotation ma-
trices, the differential photoemission cross section,
correct to linear order in f, can be expressed as

ikR(1 —cosO)

[e Rf' '(O, R)

+sinOi, cosg f"'(O, R )]

Because of the factor 1/kR in (13b) the term propor-
tional to f"' in Eq. (11) is generally much smaller than
the term proportional to f' ', except near the nodes of
the latter or for polarization perpendicular to R. The
factor gI&' in f' ' corrects the plane-wave result for the
variation of the radial part of the photoelectron wave
function due to the centrifugal barrier in the scattering
region (i.e., the muffin-tin sphere centered at the scatter-
ing atom). Consequently, this term has the same polar-
ization dependence as the plane-wave result. The term
proportional to gI&' in f"' corrects the plane-wave result
for the variation of the angular part of the photoelectron
wave function in the scattering region, and is smaller by
a factor of order 1/kR.

We define y to be the normalized, oscillatory part of
the PD difFerential cross section, i.e., y = [d o. /d 0—(do /dQ)o]/(do. /dA)o, where (do. /dA)o is the atom-
ic photoemission differential cross section. From Eq.
(11), keeping only terms linear in f, we obtain the single-
scattering K-shell PD formula

T

E 'Rf ' '( O, R ) + sinOii cosf f"'( O, R )
y=2 Re ek (14)

This expression can be shown to be equivalent to the ex-
act single-scattering expression derived by Barton and
Shirley, who assumed the photoelectron wave function
to be simply an outgoing spherical wave of a given angu-
lar momentum. However, for general shell photoemis-
sion that assumption does not take into account interfer-
ence between different angular momentum channels, e.g. ,
that between s and d channels in L23-shell photoemis-
sion. The point is that the final state ~f ) is a linear com-
bination of s and d states of well-defined relative phases.

A similar expression can be worked out for PD from
the L2 3 shell. For this case one must average over initial
states of fixed total angular momentum, i.e., j =

—,
' for

L3-shell photoemission or j =—,
' for L2-shell photoemis-

sion. It is easy to show that the average over initial I
states is equivalent to an average over initial p states. In
this case we get for the single-scattering L2 3-shell PD
modulation,

ikR (1—cos8)
y=2 Re

R

Formulas for the A' s, f's, and B are given in Appendix
A. Equations (14) and (15) give exact single-scattering
contributions to y.

As an additional, though not essential approximation,
one can replace the coefficients c1 by the spherical-wave
approximation of Ref. 4, i.e., by the asymptotic expan-
sion

I (I + 1)
2(kR)

i1(1+1)/2kR (16)

This high-energy approximation remains valid to within
several eV of threshold and hence is highly accurate for
most photoemission experiments. " In the plane-wave
limit kR —+ co; in this limit, c&(kR)~1, and f"'(O, R),
f&"'(O, R), and f& '(O, R) vanish, while f ' '(O, R),
f, (O, R), and f& '(O, R) reduce to the plane-wave scatter-
ing amplitude f (O).

To estimate the double-scattering term we make the
additional approximation of a separable Green's func-
tion, a form which can be shown to be equivalent to the
point-scattering approximation of Lee and Pendry, i.e.,

ikR

GI 1.(R)=4vr Yt*(R)YI (R)c&(kR)c& (kR) . (17)
kR
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This leads to a double-scattering contribution of the form

g YL.(k)ti'Gt ~ L ( —R)ti GL„(o(+)
L', L

f(O, R )=(1/k)g(21 +1)tiPi(cosO)ci (kR)c, (kR), (18b)
I

i2kR= Yio(R) f (vr 8)f(vr)

f;(O,R) =( I/k)g(2l +1)ti'Pi(cosO)ci(kR),
I

(18a)

where f; denotes and s-wave effective scattering ampli-
tude for the central atom and f that for the scattering
atom. Hence we obtain

e ikR (1 —cosO)

dQ R

i2kR
[e.Rf' (O, R)+sinO&cosgf'"(O, R)]+ E.Rf;(rr O, R)f—(ir, R)

R

kR (1—o 8) ~ 'kR(1 —o 0) q R q /
e (20)

where R is the mean distance between the absorbing
atom and the scatterer, q=k —kR, and oit(q)
=([q (uz —uo)] ), is the correlated mean-square dis-

placement, with uo and uz being the local displacernent
vectors from equilibrium. Unlike the case of XAFS
Debye-Wailer factors the relative mean-square displace-
ment is projected along the momentum-transfer direction

q and not the bond direction R.' The contribution from
the spherical-wave corrections is, however, not necessari-
ly negligible. Taking account of the factor cl, using Eq.
(16), and assuming the harmonic approximation we ob-
tain

(eikR(1 —cose)& (kR ) ) ikR(l —coss)& (kR )e
qi oR(qii~

which reduces to Eq. (1) in the plane-wave limit.
The theory outlined above does not take into account,

for example, lattice vibrations or disorder, inelastic
scattering of the photoelectron, intrinsic many-electron
effects, or the presence of a surface, although such effects
have been considered in previous discussions of PD
theory. ' For the more accurate model we are using, lat-
tice vibrations can be taken into account by considering a
thermal average of Eq. (14) [or Eq. (15) for L2 3-shell ab-
sorption]. If one ignores the variation of coefficients ci
with fluctuations in R, one must compute the thermal
average of the term e' " "' '. In the harmonic approx-
imation for the interaction potential between atoms we
obtain'

t

into account crudely by the introduction of an ad hoc
mean free path (i.e., kR~kR+iR/A, ).' ' An alterna-
tive and more satisfactory approach, we feel, would be to
construct a complex-valued scattering potential and
hence complex phase shifts 5(~5(+iP( that explicitly
take into account inelastic processes, as is conventionally
done in EXAFS calculations. ' '"

Unlike XAFS, in photoelectron diffraction the photo-
electron can be detected within a narrow energy
range. ""' It is therefore argued that only the primary
channel contributes to the differential cross section,
which is reduced from the single-particle value by the
square of the overlap integral ( 4 0~40) between passive
electrons. ' However, this overlap factor is not important
for PD, since it cancels in the normalized definition of y.
Note too that the use of a correct core-hole potential is
not relevant for K-shell PD, since the central-atom phase
shift cancels out, but it may be important for L, 2 3-shell
PD.

The effect of a surface is normally approximated by
considering the refraction suffered by the photoelectron
by a planar barrier of constant height Vo. ' However, as
discussed by Barton et al. , one expects this potential to
depend on the photoelectron energy, and, moreover, the
case of a nonplanar geometry will not be correctly de-
scribed by this approximation. Alternatively, one might
incorporate non-muf5n-tin corrections arising from a
more accurate treatment of the potential in the surface
region.

(21)

where qi =k —R[k I ( I + 1)/2kR—], and o z(qi )

=([qi.(uz —uo)] ). Furthermore, we can make the ap-
proximation

qI +R ql /2 —
q t7 (q)/2 +(1—cosO)[l(1+ 1)/R ]o (q)/2

(22)

The correction term in Eq. (22) is thus l dependent and is
not negligible for I -l », where l „-kRMT is the max-
imum value of I for which scattering is appreciable. The
correction is opposite in sign and smaller in magnitude
than the exponent of the Debye-Wailer factor in Eq. (20)
by a factor (lRMT/I, „R ) .

Inelastic scattering of the photoelectron can be taken

IV. NUMERICAL RESULTS

Comparisons with experiment using the results in Sec.
III for K-shell and L3-shell PD have been presented sepa-
rately. ' ' Here we only show comparisons between the
single-scattering exact spherical-wave result [Eq. (14)]
and its asymptotic form obtained using Eq. (16) in Eqs.
(13), to illustrate the accuracy of this approximation. In
Figs. 1 and 2 we present a comparison between the exact
spherical-wave result, and expressions for y based on the
plane-wave scattering amplitude f (8), on the asymptotic
form of f' '(O, R) above, and on the most accurate
asymptotic form of [f' '(O, R)+sinOcosg'f"'(B, R)].
We have used phase shifts derived from a muftin-tin po-
tential for Ni, with the nearest-neighbor distance at
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2 —:

(
l

( I I I I I I I is important ingeometries in which the photoelectron is
backscattered (k= —R), in which case shadowing by the
absorbing atom occurs. In this case one should use Eq.
(19) instead of Eq. (11). Also, this contribution must be
retained in order to recover the XAFS result, as shown in
Sec. V.

V. GENERALIZED OPTICAL THEOREM AND XAFS

~ ~
~ ~

Pc P0 ~

—
I

0
I I & i I I I I ( ( ( ( I ( I I

90
scattering angle (deg)

l80

FIG. 1. PD y from model calculations of photoemission
from a Ni I( shell as a function of the scattering angle for a sin-

0

gle Ni scatterer at a distance R =2.492 A from the emitter. Po-
larization is parallel to the emission direction (Ok=0 ) and
F. =950 eV: exact spherical wave [Eq. (14)] (solid line),
(f ' '+ tan& cosP' f"') approximated using Eq. (16) (dashed line),
f' ' approximated using Eq. (16) (long dash) and plane wave
(dotted line). Note that solid and dashed curves are indistin-
guishable.

0
R =2.49 A. When we use Eq. (14), omitting the correc-
tion term proportional to f"' we find good agreement
with the exact treatment even at 100 eV, the lowest ener-
gy studied. The term proportional to f"' vanishes at
small angles but can be important when the energy is low,
at observation angles away from the forward and back-
ward directions (see Fig. 2). The double-scattering term

It is of interest to see how the XAFS formula is
recovered when do/dQ is integrated over all angles.
The previous reduction based on the plane-wave approxi-
mation and the optical theorem must be modified when
spherical-wave corrections are taken into account. Here
it is convenient to use an alternative, angular momentum
representation of the photoelectron final state in the pres-
ence of an absorbing atom at the origin [cf. Eq. (2)], i.e.,

lg(, & =4n g YL*(k)e
L

By Eq. (4) the dipole matrix element is given by
i5c

M, (, =g m,Lf YL (k)e
Lf

(23)

+ye' 'Y, (k)&q, lt„ll(, ) . (24)

For E-shell absorption the total photoabsorption cross-
section cr ~ f dklM, kl is thus

rro(1+2Re&g(pltR If(p&+ &&(pltRtR lg(p&), (25)

where o.
o is the atomic photoabsorption cross section.

With lit, p) (ll//(p) l'Ip(p) )/2i, and introducing a com-
plete set of angular momentum eigenstates lL, R), we
find

0.8 I ( I ( ( 1 (
l

( I ( I I I I I ~=~o 'I+1m y& y(plL, R&tr &L, Rly(p&
L

—Im y t, l &L, Rllt(+p) l'+y lt, l'l &L, Rl@(+p) l'

0.2

~y
~ ~
~ ~ (26)

0
0

~ ~ i

.6 I I I I I t i I I i I I ( ( I I

0
-O.

90 I80
scattering angle (deg)

FIG. 2. PD y from model calculations of photoemission
from a Ni K shell as a function of the scattering angle for a sin-

0
gle Ni scatterer at a distance R =2.492 A from the emitter. Po-
larization is parallel to the emission direction (0A =0 ) and
E = 100 eV: exact spherical wave [Eq. {14)] {solid line),
{f'o'+ tan& cosP' f"') approximated using Eq. (16) (dashed line),
f' ' approximated using Eq. (16) (long dash) and plane wave
(dotted line). Note that in the forward and backward directions
the solid and dashed curves are indistinguishable.

i 25 I
X Ime X Glo, L(R)t(Gr. , (o( R)

L
(27)

Finally, with the expansion for the propagator given in
Eq. (9) we obtain the I{.-shell polarized XAFS formula

i5(
Since t, =e 'sinful, Imt(=lt(l, and, hence, the last two
terms cancel identically. In the plane-wave limit

&L, Rll((p) =[Y,p(R)e ']YL*(k)e'" /kR, and this can-
cellation is just a statement of the optical theorem

I d&lf(8)l =Imf(0)/4~k. In the present case this
cancellation occurs l by l, though there does not appear
to be a simple relation between the total scattered intensi-
ty in Eq. (12) and f ' '(O, R ) (the term proportional to f"'
vanishes in the forward direction). Writing a =op(1+&)
(Where g refers to the XAFS g rather than the PD y)

i 5c]
and using the identify & rl hatt(p) =e '& rl 10+,0), valid out-
side the central-atom muffin-tin radius, we obtain
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i (2kR +25()
ey= —Im

kR
[(e R) f ' )(~,R)

+sin 8~f ")(~,R)], (28)

with f ' '(~,R)=(llk)gi(2l+1)( —I)'ti[g'l )(kR)] .
Although the form is slightly different, Eq. (28) is

equivalent to that obtained by Barton and Shirley. After
averaging Eq. (28) over all angles e, one obtains the exact
result for K-shell absorption in polycrystalline materials.
This result implies that to get the correct XAFS expres-
sion it suffices to use the outgoing part of the wave func-
tion [i.e., ~QL ) instead of ~QL ) in Eq. (23)]. However, to
determine the total absorption, the atomic dipole matrix
element m,L must be calculated with the correct atomic
wave function ~1(t ), which is regular at the origin, and
not just ~PL+ ). The above reduction was carried out for
the case of a single scatterer at R, and only including sin-
gle scatterings at site R. In Appendix B we show the
generalization of this cancellation theorem when multiple
scattering to all orders is considered.

mo i(6 —5
e

2m'

Ao =CPz(cos8a )+ ,'Pz(co—s8),)Pz(cos8li )cosp',

A )
=CPg(cos8li )cosp

——,'P~(cos8), )[cos(28li )cosp'cosp

+cos8li sing'sing],

(A5)

(A6)

(A7)

tribution Aofd '+ Af, has the same angular polarization
dependence as the plane-wave result. The contribution
2,fd" + A zf„' ' corrects the plane-wave result for the an-
gular variation of the photoelectron wave function in the
scattering region. In the plane-wave limit, f, and fd '

reduce to the plane-wave scattering amplitude f while
fd"' and fd ' vanish, as can be checked by substituting
cl = 1 in Eqs. (Al) —(A4).

The coefficients in Eq. (15), which depend only on
scattering angles and atomic quantities but not on the
absorbing-atom-scatterer distance, are given by
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APPENDIX A

Pz(cos8& )cos(2$)
Aq=C

P~(cos8), )+
4

[Pz(cos8li )cos(2$)cosg'

—3 sin 8li sin( 2$ )sing'],

B = ~C~ +—,'[Pz(cos8l, )]

(AS)

(A9)

f, =g tl(2l + 1)clPl(cos8), (Al)

(0), (l +2)(l + 1) 2l (l + 1)(2l + 1)
21 +3 '+ 3(21+3)(21—1)

I (I —1)+ cl ~ Pl(cos8),
2/ —1

(A2)

/+2 2/+1
21+3 + (21 +3)(2l —1)

(t —1)
cl —2 Pl(cos8)

2/ —1
(A3)

In this Appendix we give explicit formulas for the
coefficients for Lz 3-shell photoelectron diffraction, Eq.
(15), obtained following the same steps leading to Eq. (14)
for K-shell absorption. We assume equal occupation of
the core levels / =1, m =0, +1. The effective scattering
amplitudes are

mo —i($ —Q )
C =P~(cos8l, ) — e

2m'
(A 10)

Here B =(dcrldQ)o is the atomic partial differentia
.I —I

photoemission cross section, ml=i ' Jo dr r Rl(kr)
XR, (r) is the radial part of the atomic dipole matrix ele-
ment and 50 and 5z are the corresponding s- and d-atomic
phase shifts. The angle P is the dihedral angle between R
and k through e and p'=p„pl, . The ter—m C arises
from the contribution of the (l, m) =(2,0) and (0,0) chan-
nels, present in the emission from the (1,0) core level, and
shows explicitly the interference between the s and d
channels. The term proportional to Pz(cos8l, ) represents
emission from the (1,+1) core levels. Note that this term
does not exhibit interference with the s-channel contribu-
tion since it originates from a different core state. The ra-
tio mo/m z is typically —

—,
' and relatively energy indepen-

dent, ' thus terms that are quadratic in this ratio can be
neglected. Specifically, in the case of Ni 2p absorption
mo/mz = —0.222 at an energy of 1000 eV. '

(P) l 1+2
fd zX I

I

2(2l +1)
(2)t+3)(21 —1) APPENDIX B

+ Pl(cos8) .
2/ —1

(A4)

The terms f, and fd ' correct the plane-wave result for
the variation of the radial part of the photoelectron wave
function in the scattering region. Consequently, the con-

In this section we demonstrate the equivalence of the
Green's-function approach' and the wave-function ap-
proach to the calculation of the total photoemission cross
section in the multiple-scattering theory. This is the gen-
eralization of the cancellation theorem of Sec. V, carried
to all orders in the multiple-scattering expansion.

Defining the full scattering state P (r) as
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IQ+ &
= Ik& —i g h+Bj,

j,L
(81)

the multiple-scattering equations in T-matrix normaliza-
tion for a cluster of scatterers is

where the sum over L runs over Gnal states Lf. Noting
that R i =(—kpo) '(W[ji, Ri])z 'Ri is the solution of the

Schrodinger equation inside the sphere that matches
smoothly to jIcos5& —n&sin51 at the sphere boundary,

(cot5i i )—BI + g (1 5—
ij )Gl L,Bg, = —

JLL „.
j,L'

(82) cot5i= W[ni, Ri ]/W[ji Ri'] .

Hence we can write

(89)

The structure factors GLL are the free propagators in the
partial-wave representation,

GLL (R,j)=GL,I =4' X CLL hl+-(R";i)=NLL —iJijl ~,
L"

cr(E)= g (gl Ie rig, &B&(L")
L, L' L"

(810)

where Rg =i 'R/(r ) Yl (rj ), is the solution of the
Schrodinger equation in cell 0, which is regular at the
origin, and r =r —R . Imposing continuity conditions of
the wave function and its derivative at the sphere bound-
ary, as given in Eqs. (Bl) and (84), one generates the set
of Eqs. (82) together with the relations

Bj =kp. W[j„Ri] Cj (85)

by extensive use of the expansion theorem for Hankel
functions. Notice that for each exciting partial wave L"
there is a set of solutions of Eq. (82) for the coefficients
Bj, and in turn for Cj in Eq. (85), so that they can be la-

beled accordingly as Bf(L")and Cg(L"). The total pho-
toabsorption cross section from a deep core level local-
ized at site 0 is given by

(83)

where hI+(R;. )=i'hi+(kR; )YL (R;.)=jI —inI . The
quantities JLL and ALL are de6ned similarly by replacing
h I in (83) with jI or n I, respectively. Inside the
muffin-tin spheres 0, the wave function is taken to be

i'( r . ) =g Ci'Rj, (84) (M —ib, )B(L")= J(L")—, (811)

where MZL' cot51 5ij5LL +(1 5, »—LL, ' »d ~PL =JZc
are Hermitian matrices and B(L")=Bj(L"), J(L")
=JjL... Hence

BL(L")=g [(M i b, )
' j)L.J—) I» .

j,L'

Since JIL =pl JLI ~ JL I, we obtainV iO Oj

(812)

g Bl*(L")Bj(L")=—[(M —ih, )
' —(M+ib, ) ']t'L, .

L"

(813)

To obtain this result we used [(M —i b, ) ']t
=(M+ib, ) '. Equation (813) is a generalization of the
optical theorem. Substitution in Eq. (810) gives the total
photoabsorption cross section

where (rlgl &
=i'R i(ro) Yl (ro) and L and L' run over

final states Lf.
As stated in the beginning our aim is to show that this

expression is equivalent to the result using the Green's-
function approach. ' To this purpose we write Eq. (82)
as

L"
(86) o(E)=g pm, L(e)—.[(M —ib, )

' (M+ib, ) ']—jil
L L'

where gl: is a time-reversed scattering state given an in-

coming spherical wave of angular momentum L". Since
spin is neglected, QL ~ =(pl+. )*. At site 0

itil. "(ro)=g Cl. (L")RI
L

and using Eq. (85), we have

limni;„& =g (kp ) '(W[j i, R, ])
L

xB,'&R,'Y, l& Iq,„&,

Xm,i (e), (814)

o(E)=pm, l (e)—Im[(I+TH) 'T]L I m,*L (e),
2i f f f

f
(815)

which is the result derived using the Green's-function
formalism by Durham et al. '

m I (&)= & P, Ie rIP, &. Now noting that M i b, —
=(T )L5j5LL, +(1—5;, )HLL, , where (T ')L=e 'I
(sin5i ), we have
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