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Magnetic properties of the semi-infinite Ising model with a surface amorphization
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Magnetic properties of the semi-infinite spin- —' Ising ferromagnet with a surface amorphization
are investigated by the use of the eff'ective-field theory with correlations. We find a number of
characteristic behaviors for the surface magnetic properties, such as the possibility of surface reen-
trant phenomenon. The study of surfaces with amorphous layers may open a new field of surface
magnetism.

I. INTRODUCTION

During the last decade, surface magnetism has received
considerable interest both theoretically and experimental-
ly. Experimentally, surface magnetic order has been
studied mainly using crystalline systems such as Ni, Cr,
and Gd. ' Surface spin waves were also observed in an
amorphous ferromagnetic alloy. On theoretical
grounds, many problems on the magnetisrn have been
formulated by introducing simplified, yet not completely
unrealistic models in which the surface plays an impor-
tant role. Among them, the magnetic behavior of semi-
infinite simple-cubic spin- —, Ising ferromagnet with the
(100) free surface has received much attention and has
been studied by using a variety of approximations and
mathematical techniques, such as the mean-field approxi-
mation, various effective-field theories, series expan-
sion, Monte Carlo technique, and renormalization-
group method. The standard example of surface magne-
tism includes two exchange interactions, represented by
the bulk exchange parameter J and surface exchange pa-
rameter J, . The system exhibits two successive transi-
tions, namely, the surface and bulk phase transitions, as
the temperature is lowered, and different types of phase
transitions are associated with the surface. If the ratio
b,, =(J, /J) —1 is greater than a critical value b... the sys-
tem may order on the surface before it orders in the bulk.
If the ratio is less than 6„the system becomes ordered at
the bulk transition temperature.

Surface treatment techniques using lasers to cover a
wide surface with an amorphous layer has had growing
success in recent years. ' Laser glazing of a metallic al-
loy can be achieved by using a short laser pulse to melt a
thin layer on the surface. Heat conduction into the bulk
then gives a rapid quench rate and a thin amorphous sur-
face layer is formed. From the technological point of
view, the formation of an amorphous layer at a surface
may be effective in improving the mechanical, magnetic,
and corrosion resistance properties of a material with a
free crystalline surface. Therefore, it is of great interest
to investigate the magnetic properties of the semi-infinite

I

simple-cubic Ising model with an amorphous magnetic
layer. Even so, at this early stage, there is little in the
literature concerning the magnetic problem. '"' "

The purpose of this work is to study a semi-infinite
simple-cubic spin- —,

' Ising ferromagnet with a disordered
(100) surface (amorphized surface) by the use of eff'ective-
field theory with correlations. ' The outline of this work
is as follows: In Sec. II we present the basic points of the
theory. In Sec. III we examine the phase diagram, which
illustrates some interesting behaviors for the amorphizat-
ed surface, such as the possibility of a reentrant fer-
romagnetic surface phase. In Sec. IV the magnetization
curves of surface are investigated numerically. We find a
number of interesting phenomena for the thermal behav-
ior of surface magnetization.

II. THEORY

We consider a semi-infinite simple-cubic spin- —,
' Ising

model with an amorphous surface layer shown in Fig. 1.
The Hamiltonian of the system is given by

= —g J,,s,'s,',
where s,

' takes the values +1 and the summation is car-
ried out only over nearest-neighbor pairs of spins. J,- is
the exchange interaction, which has the value J,. on the
surface, the value J& if one site is on the surface and its
nearest-neighbor is at the next (first) layer. J,. and J, are
assumed to be randomly distributed according to the in-
dependent probability distribution functions P(J,. ) and
P(J, ).

The problem is now the evaluation of the mean value
(s,'). Starting from an exact spin-correlation identity
and using the differential-operator technique, we have
developed the effective-field theory with correlations ap-
plied to the surface dilution problem, ' which essentially
corresponds to the Zernike approximation in the bulk
problem. " The framework can be easily extended to the
present problem. Following the formulation, for the sur-
face magnetization o.„we obtain

cr, = ( ( s,'~,
~

) )„=[ ( cosh(D J, ) )„+o., ( sinh(D J, ) )„) [ ( cosh(DJ, ) ) „+t7, ( sinh(DJ, ) ) „]tanh(/3x )
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where P= 1/k~ T and D =0/Bx is a diff'erential operator. The symbol ( ), denotes the random bond average. For
the magnetization cr] of the first layer we have

cr=( (s,', » ) )„=[cosh(DJ)+o &sinh(DJ)] [(cosh(DJ, ))„+cr,(sinh(DJ& ))„]
X [cosh(DJ)+ o zsinh(DJ) ]tanh(Px)

~
(3)

In general, the magnetization o., of the nth layer is given by

o.„=[cosh(DJ)+cr„si nh( Dj)] [cosh(DJ)+a„, sinh(D J)][c os h(D J) +cr„+&sinh(DJ)]tanh(Px)~ o for n ~2, (4)

where o., +, and o.„,are the magnetizations in the
(n + 1)th and (n —1)th layers, respectively.

Now, in order to evaluate the random bond averages, it
is necessary to provide the appropriate forms of the prob-
ability distribution functions P (J, ) and P (J, ), describing
the structural disorder in a simple way. In a series of
work' for the bulk amorphization we have used the
probability distribution function P ( J," ) as

I

(cosh(DJ )),=cosh(DJ 5 )cosh(DJ ),
(sinh(DJ ))„=cosh(DJ 5 )sinh(DJ )

where we defined the parameter 6 as

AJ
for a=s or 1 .

(6)

for o. =s or 1,

P ( J;, ) = —,'[5(J;, —J —b J)+5(j;,—J +AJ)]

with

The result (6) can also be obtained by using the so-called
"lattice model" of amorphous magnets. '

III. PHASE DIAGRAMS

where 6 is a dimensionless parameter which measures the
amount of Auctuation of exchange interaction. The pa-
rameter 6 is often called as the structural Auctuation in
amorphous magnets. ' In this work, therefore, we take
P(J, ) and P(J, ) as

P(J, )= —,'[5(J, —J, —b j, )+5(J, —J, +b J, )]

and

P(J, ) = —, [5(J,—J, —b J, )+5(J, —J, +b J, )] .

The random bond averages in Eqs. (2) and (3) are then
given by

and

o, =4K, o., +K2g, ,

~, =4K,~, +K,~, +K,~, ,

In this section we investigate the phase diagrams (or
transition temperatures of surface and bulk) within the
present formalism.

We are now interested in studying the transition tem-
perature of the system. The usual argument that o.

, tends
toward zero as the temperature approaches a critical
temperature allows us to consider only terms linear in o,
Expanding the right-hand sides of (2), (3), and (4), we
have

o'„=K (o „~+4o„+o'„+, ) for n ~ 2

with

(&o)

IL

FIG. 1. Part of a two-dimensional cross section through the
semi-infinite simple-cubic Ising lattice with an amorphous sur-
face layer. Black points denote lattice points which are occu-
pied by spins s,'=+1. The straight lines indicate the bulk ex-
change interaction J, while wavy lines indicate exchange in-
teractions J, and Ji.

K, = (sinh(DJ, ))„[(cosh(DJ, ))„]3

X (cosh(DJ, ) )„tanh(Px)
~

K2 = ( sinh(DJ
&

) )„[( cosh(D j, ) )„]
Xtanh(Px)

~ o,
K3 = (cosh(DJ, ) )„sinh(DJ)cosh (DJ)

X tanh(Px)
~ o,

K4 = ( sinh(DJ& ) ),cosh (DJ)tanh(Px) ~„

K =sinh(DJ)cosh (DJ)tanh(Px)~„

where the coefficients (K, and K) can easily be calculated
by applying a mathematical relation e f (x) =f (x +a).

As discussed in Ref. 12, assuming that o., +, =ao.„ for
n ~ 1, Eqs. (8) and (9) yield the following secular equa-
tion:
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4K) —1

K4 (4+a )K3 —1 o, =0 . (12)

The parameter a is given by, upon using (10), 9.0

(1 —4K) —[(1—4K)2 —4K2]'~2

2K
(13)

8.0
Thus, the critical ferromagnetic frontiers can be derived
from the condition detM =0, namely,

(4K, —1)[(4+a )K3 —1]=K~K~ . (14)
7,0

From the formal solutions of (14) we choose those corre-
sponding to the highest possible transition T, which is
the temperature for surface ordering. In our present
treatment the bulk transition temperature T," can be
determined by setting o„=o„&=o„+&=os into (10),
namely, 6K =1, which is equivalent to the Zernike equa-
tion obtained using another method. ' The bulk transi-
tion temperature is then given by

k, Tb
=5.073 .J

6.0-

5.0
= 0.5068

0.5

8F

I.O 2.0

This is an improvement on the traditional mean-field
theory (MFT) (or ks T, " /J =6).

As noted in Ref. 17, it is important to remark here that
when the transcendental function tanhX appearing in the
coefficients of our formalism are all replaced by their ar-
gument X, the critical frontiers obtained from (14), in
general, reduce to those obtained within the framework
of the standard MFT. In the present case, one can easily
understand that the critical frontier becomes independent
of 6 (a=s or 1), when one applies the above argument to
the coefficients, or when one uses the MFT and performs
the random bond average in terms of (5). This is a
shortcoming which is often seen in the usual MFT of
amorphous ferromagnets when one uses the random dis-
tribution functions given by (5). As shown in the follow-
ing, in our formalism the transition temperature is clearly
dependent on surface structural fluctuations 6 .

By solving Eqs. (13) and (14) numerically, we present
some results on the phase diagram, introducing the fol-
lowing parameters:

J, =J(1+6,), J, =J(1+6,)), (15)

since the surface exchange interaction is often scaled with
that of bulk in the statistical mechanics of surface magne-
tism.

In Fig. 2 the results for 6, =0 are depicted in the
Mills's sense. In Fig. 2 the curve labeled a with J]=J
and 6, =0 expresses the surface-ordering critical line for
a free crystalline surface. The critical value 6; for the
surface ordering is given by b,;=0.3068 (6;=0.25 for
MFT ). As shown in Fig. 2 of previous work, '2 the re-
sults have been compared with those obtained from the
standard MFT and high-temperature series-expansion
methods. The critical value 5'=0.3068 is also in excel-
lent agreement with the renorrnalization-group result
(6;=0.307). ' On the other hand, the curve labeled a' is
obtained for the system with J] =0.1J and 5, =0. Com-

FIG. 2. The phase diagram in (T, A,. ) space for the simple-
cubic Ising model with a surface amorphization, when J, is tak-
en as J, =J(1+6,). Solid lines are obtained for J, =J and
dashed lines are for Jl =0.1J. Curves a and a' are for the
structural fluctuations (6, =5&=0.0). Curves b and b' are for

0.0 and 6,. =0.5.

paring with the two curves a and a', the behavior of T,'
near the critical values of 5, is clearly different: curve a
expresses a weak downward curvature of T,' whereas in
curve a' T,' changes linearly with 6, . The difference does
not change even when a weak surface amorphization
(6, =0.5) is included. The common eff'ect of surface
arnorphization is to increase the critical value of 6, . In
Fig. 2 we denote the paramagnetic, bulk-ferromagnetic,
and surface-ferromagnetic phases by P, BF, and SF, re-
spectively.

In Fig. 3 the surface ordering temperature T,' is plotted
for three selected values of a pair (5, and 5, ), when J,.

and J, are taken as J, =J and J& =J(1+6,). For curve a
with a pure surface (5, =5, =0), the critical value of 5& is

given by A]=0.550, compared to the mean-field value
6&=1.0. The effects of 6] and 6, on the SF phase are
very similar to those of Fig. 2.

Now, it is known in an amorphous bulk ferromagnet
that when the structural fluctuation 6 becomes larger
than the value of 6= 1.0, the reentrant phenomenon may
appear, due to a random distribution in the sign of the ex-
change interaction. ' Therefore, it is interesting to inves-
tigate whether the surface reentrant phenomenon is pos-
sible or not, when the surface structural fluctuation 6, in-
creases. In particular, the case of 6, =1.0 corresponds to
the surface dilution problem with a concentration
P =0.5. As is discussed in Refs. 12 and 19, the critical
concentration P, for the diluted system is given by
P, =0.4248 within the eff'ective-field theory (EFT), so
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5 =0.5 and 61=0.0, and (c) 6, =

S

ferromagnetic even if J =0. In Fig.that the surface is e g
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Th T' fo t o 1

h
S
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&

ag
p
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o. = 4Kio., +K2o. i~s
& s

2 )4+4L i ( o, ) +6L 2 a, ( cr, ) +L.
3 cr i o ( )

o, = 4K3o, +K4o., +K3a, +4L4( a )'+6L, (o. , ) cr,

(16)

+I. ( )4+L6(cr i) o, +6L7(cr i) a2+Ls(a, ) aq

3+4L5o'io2cr, +4L'6(cr i) o2cr, ,
' (17)
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and

+4cr cr o' +i]Lcr = (4o „+o„,+o „+i)K t o „+L4( ) +6o —(~ ) +6on+1(on ) + n n —i n+in —1 non

+[cr„,(o „) +cr„+,(o „) +4(o.„) o „ io „,]R (18)

where the coefficients L; ~~i =(' =1—8) L, and R are given in
the Appendix. On the other hand, as n ~ ~, o.

n shou

3cr =6K o ii +20L ( o.ii ) +6R ( o ~ )
5 (19)oB-

We are unaable to solve the above coupled equations
11 E if we use a numerical met-o, yanalytically. ven i w
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1.0 1,0

0.5 0.5

1.0 2.0 3.0
k TkB

5.0 1.0 2.0 3.0 4.0
kBT~J

5.0

FICx. 6. Magnetization of surface anand bulk for the system
=6 =0.0 and 6&=0, when the surface structural fluc-

n 6 is changed as follows: curve a,tuation, is
d 6 = 1.4; curve e, 6, = 1.6;5, =0.5; curve c, 5, =1.0; curve u, , = . ', cu

curve f, 6, = 1.8; and curve g, 6.=2.0.

FIG. 7. The temperature dependencece of o. for the system
h J =J J =0.1J, and 6, =0.0, when 6, gis chan ed as fol-W1 f, .s ~ 1

. =1.2; andrve a 5 =0.0; curve b, 5, =1.0; curve c,lows: curve a,
o. is also depict-curve d, 5, =1.6. The magnetization curve of o.

&

ed.
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netization (curve a) at first follows the two-dimensional
bulk magnetization [the bulk transition temperature for
z =4 is given by k~ T,"(z =4)IJ =3.090, where z is the
coordination number' ], takes small values above
T = T, (z =4), and reduces to zero at the bulk transition
temperature k~ T,"/J = 5.073.

In Fig. 7, we also observe characteristic behavior for
o.„when 6, becomes larger than 6, =1.0. In particular,
the curve labeled c with 6, =1.2 exhibits a minimum and
a maximum with increasing T, which corresponds to the
trace of the reentrant phenomenon observed in the two-
dimensional frustrated bulk ferromagnet. As mentioned
above, the surface state just corresponds to that of the
frustrated bulk system in a weakly applied field. In fact,
such behavior is observed in Ref. 22, when a weak mag-
netic field is applied to the bulk system showing the reen-
trant phenomenon.

As discussed in Sec. III, 6, =0.3068 just corresponds
to the multicritical point for the Mills model (namely,
J, =J, J, =J, and 5, =6, =0) with a free crystalline sur-
face (see Fig. 2). Both the surface magnetization as well
as the first layer should be then equivalent to that of bulk.

In Fig. 8 surface magnetization (solid curves) is investi-
gated for the system with J, = 1.3068J, J, =J, and 6, =0,
changing the value of 6, . On the other hand, the three
solid-dashed curves correspond to surface magnetization
for the system with J, = 1.3068J, J, =J, and 6, = l.4,
when the value of 6, is selected as 6, =0.5, 6, =1.4, and
6, =1.8. For 6, =6&=0, as expected, the curve of o., in
the Mills sense is equivalent to that of o.z as well as o. ,
within the numerical errors. The solid curves a and b
with 6, =0.5 and 6, =1.0 also express a rather large
depression from that of 6, =6&:0.0.

Characteristic behavior of o.„which could not be in-
ferred only from the phase diagrams of Sec. III, is also

observed when compared with the corresponding curves
of Fig. 8; the surface magnetization represented by curves
c and c' (or the curves d and d') have the same values for
J„6„and J, , except that 6& takes two different values
(5, =0 and 5&=1.4). The corresponding curves change
their shapes in the low-temperature region, where J

&

takes positive and negative values randomly, although
curves a and a ' do not.

When 6, becomes larger than the critical value 6,', the
SF phase may appear above the bulk transition tempera-
ture, as shown in Sec. III. Figure 9 shows the thermal
behavior of o., for the system with J, = 3J, J

~

=J, and
6, =0 when 6, is changed. As is understood from the
dashed curve b of Fig. 4, when 6, becomes larger than
6, =1.16, the SF phase disappears, so that the surface
magnetization labeled by curve e with 6, =1.2 in Fig. 9
reduces to zero at T= T,". For the value of 6, in the re-
gion 0~ 6, ~ 1.16, on the other hand, the surface magne-
tization has finite values even for T larger than T, , as
predicted in Sec. III.

In Fig. 5 we have found the possibility of surface reen-
trant phenomenon, when J, is taken as J, =8J (or J, =7J)
and J& is fixed at J, =0.1J. In Fig. 10, therefore, the
temperature dependence of o., is investigated for the sys-
tem with J, = 8J, 6, = 1. 1, and 6&

=0, selecting the two
values of J, (J, =0. 1J and J, =J). The surface reentrant
phenomenon is obtained for the case of J

&

=0. 1J in the
temperature region above T = T, , although it does not
appear for J&:J, which is consistent with the results of
Fig. 5.

In Fig. 10, the characteristic behavior of o., is also il-
lustrated. The first is the discontinuity of the derivative
of o. , at T = T, , obtained for the curve with J, =J. Such
a discontinuity has not been observed in the curves of
Fig. 9 ~ The second is the thermal behavior of 6, for

1.0

.0',

0.5

0.5

1.0 2.0 3.0 4.0
k BT.J

5.0

FIG. 8. Magnetization curves of surface for the system with

6, =0.3068 and 61=0.0. Solid lines are obtained by fixing the
value of 6l as 6, =0.0 and changing the value of 6,. as follows:
6, =0.0, curve a, 6,. =0.5; curve b, 6, = 1.0; curve c, 6, = 1.4;
and curve d, 6, =1.8. Solid-dashed lines are obtained by fixing
the value of 6, as 6, =1.4 and changing the value of 6, as fol-
lows: curve a', 6, =0.5; curve c', 6, = 1.4; and curve d',
6, =1 ~ 8 ~

2.0 4.0 8.0 10.0
k)T..-ij

FICr. 9. The temperature dependences of o. , for the system
with 6, =2.0, 5, =0.0, and 61=0.0, when 6, is changed as fol-
lows: curve a, 6, =0.0; curve b, 6, =0.5; curve c, 6, =0.8; curve
d, 6,. =1.0; and curve e, 6, =1.2. The dashed line expresses the
magnetization of o.&.
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1.0 1.0

h, a
= 7, 0

8, =0.0
0.2

0.5

0.5 0.1

2.0 4.0 6.0 8.0
kgT~J

10.0

FIG. 10. Magnetization of surface for the system with
6, =7.0, 6, =1.1, and 6, =0.1, when J, is selected as J& =J and
J& =0.1J. The dashed line expresses the bulk magnetization o.&. 2.0

our-Leyer Approx.

4.0 6.0 80
k T

100
8/J

1.0

0.5

ba = 0.0

Four-Layer A

1.0 2.0 3.0 4.0
kgT =

5.0

J& =0.1J in the temperature range below T=T, ; it has
finite values and furthermore shows a minimum and max-
imum in the region of T studied. Such a phenomenon
comes from the fact that frustrated spins on the surface
are coupled to the ferromagnetic layers and are apt to
align to the z direction in the temperature range, even if
the surface reentrant phenomenon is observed above
T =Tb.

C

In the above discussions, we have introduced the
three-layer approximation in order to obtain the numeri-
cal results for surface magnetizations. At this point it is
worth discussing whether or not the approximation may
give reasonable results. Therefore, for the two special
cases, the temperature dependences of surface and first-
layer magnetizations are examined in Figs. 11 and 12, by
introducing the four-layer approximation; we assume
that from the third layer the magnetization of each layer

FIG. 12. Magnetization of surface for the system with
6, =2.0, 61=0.0, and 6, =6& =0.0. The solid curve is obtained
by the four-layer approximation. The dashed line in the insert
corresponds to the three-layer approximation.

can be approximated by the bulk value, namely,
o 3 cT 4

o.„=o.z . Figure 1 1 shows the thermal
behavior of o.„o.&, and o.z for the system with J, =J,
J& =J, and 5, =5&=0 (Mills's model). In Fig. 11 solid
and dashed lines correspond to the four- and three-layer
approximations, respectively. The solid lines for o., and
o.

&
deviate a little from the corresponding dashed lines

near the bulk transition temperature. In particular, the
linear temperature dependence of o, is more emphasized
for the four-layer approximation than that for the three-
layer approximation.

On the other hand, Fig. 12 is obtained for the system
with J, =3J, J, =J, and 5, =6& =0, corresponding to
curve a in Fig. 9. Solid and dashed lines denote o. , for
four- and three-layer approximations, respectively. The
magnetization curve of o, for the three-layer approxirna-
tion is placed in the thickness of the solid line drawn. In
the scale it is diScult to distinguish them, so that the be-
haviors near T=T,' are given in the inset of the figure,
taking a larger scale. As is seen from the inset the T,'
value of the four-layer approximation is then given by
k& T,'/J =9.395, while for the three-layer approximation
it is given by k&T,'/J =9.390. Taking a better approxi-
mation, the transition temperature of surface ordering
approaches the value (kz T,'/J =9.40) obtained from the
formulation of Sec. III.

Thus, the three-layer approximation gives a rather
reasonable result for the thermal behavior of o., except in
the temperature region very near T = T, (or T,').

FIG. 11. Magnetization of surfaces, first layer, and bulk for
the system with 6, =61=0.0 and 5, =6& =0.0. Solid and
dashed lines are obtained in the four- and three-layer approxi-
mations, respectively.

V. CONCLUSIONS

In this work we have studied the phase diagrams and
the temperature dependence of surface magnetization for
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the semi-infinite simple-cubic spin- —,
' Ising ferromagnet

with a surface amorphization by the use of the effective-
field theory with correlations. Our results express a nurn-
ber of characteristic behaviors for the surface magnetism,
such as the possibility of the surface reentrant
phenomenon, large depressions of surface magnetization
from those of pure (6, =St =0.0) free crystalline surface,
and so on, as shown in Sec. III and IV. Experimentally,
however, it may not be so easy to observe the surface
reentrant phenomenon in the system, since the J,. must be
taken as a rather large value. Another way not to take
such a large value of J,. for finding the surface reentrant
phenomenon may be to apply the transverse field, as dis-
cussed in Ref. 11.

Finally, looking at the characteristic behavior of many
surface magnetic properties, the study of a surface with
an amorphous layer is extremely interesting and may
open a new field of surface rnagnetisrn. We hope that our
study will stimulate further experimental and theoretical
work on the system considered here. A comparison of
our work with experiment should be worthwhile.

and

L, = (s,. )'c, c, tanh(Px ) ~,

L, = ( c,. ) '( s,. ) s, tanh(/lx )

L, =(s, ) s, tanh(f3x)

L4 = (s ) '(c ) c, tanh(/3x )

L, = (s )'(c )~s, tanh(/3x)

L6=(s) c s, tanh(/3x) o,
L, = (s )'(c )'-C, tanh(Px) ~,

L, = (s )'c, tanh(Px )
~ „

I. = (s )'(c )'tanh(f3x) ~,

R =(s )'c tanh(/3x) ~„

where s, , c„c,, 5 &, s, and c are given by

s, = ( sinh(DJ, ) ) „, c, = (cosh(DJ, ) )„,
c, = ( cosh(DJ, ) ) „, s, = ( sinh(DJ, ) ), ,

(A 1)

(A2)

APPENDIX

The coefficients L, (i = 1 —8), L, and R are defined by

s =sinh(DJ), c =cosh(DJ) .

These coefficients can be easily calculated by using a
mathematical relation e f (x)=f (x +a).
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