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A general form is proposed for an empirical interatomic potential for multicomponent systems.
This form interpolates between potentials for the respective elements to treat heteronuclear bonds.
The approach is applied to C-Si and Si-Ge systems. In particular, the properties of SiC and its

defects are well described.

Intense interest has recently developed in modeling the
energetics of covalent systems with classical interatomic
potentials. While less accurate than ab initio methods,
such potentials are invaluable for the treatment of com-
plex systems or performance of extended simulations.

To date, most such work has focused on silicon, and at
least nine independent groups have proposed potentials for
silicon in the last 4 years.! A potential for carbon has also
been reported.2 However, pure elemental systems are
rare. Most problems involve more than one type of atom,
whether in compounds, impurities, alloys, or interfaces.
While a few potentials for specific mixed systems have
been presented,® no systematic approach to multicom-
ponent systems has yet been proposed.

Here, a previous approach for the modeling of elemen-
tal systems is extended to multicomponent systems. First,
potentials for C, Si, and Ge are independently determined
by our fitting a single parametrized potential to the
respective elemental data. The use of accurate potentials
for the respective elements is a central feature here.
Then, by the introduction of a single additional parameter
for each pair of elements, the potential is generalized to
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treat mixtures of these elements.

This new approach is tested by applications to SiC and
its defects, where results of quantum-mechanical calcula-
tions within the local-density approximation (LDA) for
correlation and exchange have recently become avail-
able.*> Carbon and silicon differ sufficiently in their prop-
erties to make this a rather stringent test. In view of the
fact that only a single parameter is included to character-
ize the heteronuclear interaction, the accuracy of the re-
sults is remarkable. Even greater accuracy is obtained for
Si-Ge systems, where the difference between the atoms is
much smaller.

The form proposed here to model the interatomic forces
is a direct generalization of that used earlier®’ for ele-
mental systems. The energy is modeled as a sum of pair-
like interactions, where, however, the coefficient of the at-
tractive term in the pairlike potential (which plays the
role of a bond order) depends on the local environment,
giving a many-body potential.

The energy E, as a function of the atomic coordinates,
is taken to be
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Here i, j, and k label the atoms of the system, r;; is the
length of the ij bond, and 6;j is the bond angle between
bonds ij and ik. Singly subscripted parameters, such as A;
and n;, depend only on the type of atom (C, Si, or Ge).
For a single component, Eq. (1) reduces to the potential
of Ref. 6; the physical motivation and interpretation of the
respective terms are discussed there. Note, however, that
some terms have been rewritten relative to Ref. 6 to sim-
plify the notation for the multicomponent case. Also, the
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parameters a and A3 of Ref. 6 have been set to zero, sim-
plifying the form of the potential.

The only new parameter used here is y, which
strengthens or weakens the heteropolar bonds, relative to
the value obtained by simple interpolation. Thus any
“chemistry” is included in this parameter, or in the choice
of the interpolation formula. Here x; =1, and x;; =xij, s0
there is one independent parameter per pair of atom types.
In addition, parameters w;; (where w;; =1) are available

5566 © 1989 The American Physical Society



39 MODELING SOLID-STATE CHEMISTRY: INTERATOMIC. ..

for possible future use, to permit greater flexibility when
dealing with more drastically different types of atoms.
However, here o is not used, i.e., all w;; =1.

Table I gives the suggested parameters for C, Si, and
Ge. These parameters for C and Si have been presented
and discussed in detail elsewhere.?’ Note that two sets of
parameters have been proposed for Si with this poten-
tial.®” The more recent’ is used here because, while it is
apparently inferior in treating surfaces, it is better at
describing strain, which is crucial for C-Si systems be-
cause of the very different atomic sizes. Note also that,
because of the short range of the potential, there is no
difference in energy between cubic and hexagonal poly-
types, which have identical first-neighbor arrangements.
Only cubic SiC is considered here.

The parameters for Ge are new, and are fitted to poly-
type energies® etc., much as for C and Si, although the
available data for Ge are more limited. As before,® the
parameters R and S in f, are not systematically opti-
mized, but are chosen rather arbitrarily. The abruptness
of the cutoff f, is awkward in molecular-dynamics simula-
tions, so substitution of a smoother cutoff may prove desir-
able.

Table I also gives the crucial new parameters, yc.s; and
xsi-ge Which are chosen to give correctly the heat of for-
mation of the zinc-blende-structure compound. For Si-
Ge, only a theoretical value is available for this hypotheti-
cal phase.® The necessary data for the determination of
xc-Ge do not appear to be available at present, although
this combination is not of particular interest in any case.
The resulting cohesive energies, in eV per atom, are 6.165
for SiC and 4.231 for SiGe to be compared with 7.37,
4.63, and 3.85 for C, Si, and Ge, respectively.

The success of the present approach relies on a relative-
ly good interpolation scheme as a starting point, with the
additional parameter y providing fine tuning. It is there-
fore interesting to note that, even if y is omitted, the po-
tential correctly predicts that compound formation is ex-
othermic for SiC but endothermic for SiGe. Moreover,
the final value of y is reassuringly close to unity in both
cases. .

Results for SiC are now presented, as a test of the accu-

TABLE I. Parameters for carbon, silicon, and germanium to
be used in Eq. (1). R and S were not systematically optimized.

C Si Ge
A (V) 1.3936x 103 1.8308x 103 1.769%x 103
B (eV) 3.467x% 10?2 4.7118x102 4.1923% 10?2
A (A7YH  3.4879 2.4799 2.4451
u (A7) 22119 1.7322 1.7047
B 1.5724x10~7  1.1000x10 ¢ 9.0166%10 7
n 7.2751x107"  7.8734x107! 7.5627x10 !
c 3.8049 x 10* 1.0039%x 10° 1.0643%x10°
d 4.384x10° 1.6217x 10" 1.5652% 10"
h —5.7058%10~"' —5.9825x10"! —4.3884x%10"!
R (A) 1.8 2.7 2.8
S (A) 2.1 3.0 3.1
2c-5i=0.9776 2si-Ge =1.00061
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racy of this new approach. These results are summarized
in Tables II and III. The parameters of Table I, fitted
only to the heat of formation and to the properties of the
respective elements, give a lattice constant for cubic SiC
of a=4.32 A, in excellent agreement with the experimen-
tal value of 4.36 A. Note that the lattice constant is given
with an accuracy of 1%, much better than the 3% accura-
cy of Vegard’s law (arithmetic mean of constituent
values), which would predict 4.50 A. The bulk modulus
and elastic constants for this model are given in Table II,
along with experimental values.!® (The origin and accu-
racy of the experimental elastic constants is, however, un-
clear.) Except for c44 being rather too large, the agree-
ment is quite good. Even c44 is much more accurate than
a simple average of C and Si values would be.

One of the most stringent tests for an empirical poten-
tial is its ability to predict energies of point defects. Al-
though the available data for SiC are much less extensive
than for Si, Bernholc et al.* have recently performed
LDA calculations of several point defects in SiC. Their
results for relaxed defect energies are compared with
those of the present model in Table III. Here V¢ denotes
a vacancy at a C site, Cs; denotes a carbon on a Si site,
Crsi denotes a carbon interstitial at the tetrahedral site
surrounded by four silicons, etc. Note that only combina-
tions of defects which preserve stoichiometry are given,
since other energies are not well defined unless the chemi-
cal potentials are fixed. For the four interstitials report-
ed,* there are three independent numbers characterizing
stoichiometric pairs, and all three are given in Table III.

The accuracy is quite impressive, especially given the
complex interplay of strain and rebonding in these defects.
In fact, only for the vacancies is the discrepancy
significant on the scale of the expected accuracy of the
LDA calculations. Even there, the discrepancy can be at-
tributed to the small vacancy formation energy for the ele-
mental carbon potential,2 and so does not reflect a
shortcoming of the scheme for the treatment of heteropo-
lar bonds here.

Some properties of SiC have also been calculated for
the rocksalt structure.’ Since, in this structure, the bond-
ing has considerable ionic character, the potential might
be expected to fail drastically. However, it actually does
reasonably well, although the accuracy is certainly less
than for more covalent bonding.

The rocksalt-structure lattice constant is 4.25 A here,
compared with an LDA result of 4.03 A by Chang and
Cohen,’ a discrepancy of 5%. The equilibrium energy of

TABLE II. Calculated lattice constant a (A) and elastic con-
stants (Mbar) of cubic SiC, compared with experiment (Ref.
10).

Theory Experiment
a 4.32 4.36
B 2.2 22
c 4.2 3.6
c12 1.2 1.5
Ca4 2.6 1.5
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TABLE III. Calculated energies of stoichiometric defect
combinations in cubic SiC, in eV, and results of previous LDA
calculations (Ref. 4).

Defect Theory LDA
Vsi+Vc 7.4 12.7
Csi+Sic 7.2 8.4

Sirc+ Crsi 22.6 23.3
Sirsi+Crc 23.2 26.0
Crc—Crsi 3.0 2.4

the rocksalt phase is 1.5 eV/atom higher than the zinc
blende here, compared with 0.7 for LDA. This represents
a 12% error in the cohesive energy. ,

Both the energy and lattice constant indicate an un-
derestimation of the binding for the rocksalt structure,
consistent with the omission of any explicit ionic behavior
in the present potential. Since such ionic configurations
do not generally occur without huge applied pressure, this
does not seem to be an important shortcoming.

Si-Ge systems are much easier to treat than C-Si, since
the two types of atoms are so similar. Because of the
current interest in semiconductor superlattices and alloys,
a general potential for these systems is highly desirable.

Such a potential has been constructed here just as for SiC.
For a hypothetical zinc-blende phase of SiGe, both the
lattice constant and bulk modulus are found to be very
close to an average of the respective elemental values, in
agreement with LDA calculations of Martins and
Zunger.® An alternative hexagonal phase with 4B-BA
stacking is found to have an energy 2 meV/atom lower
than zinc blende, again in good agreement with LDA.°
The enthalpy of mixing for a random 50-50 alloy at O K is
found to be 7 meV/atom, in reasonable agreement with
the value of 11 meV/atom obtained by Qteish and Resta!!
from LDA calculations. Because the present potential de-
scribes strain, heteronuclear bonding, and defects reason-
ably accurately, it should be particularly appropriate for
studies of the stability of strained-layer superlattices.

In conclusion, this generalization to multiple types of
atoms immensely increases the number and variety of sys-
tems which can be treated with accurate empirical poten-
tials. The approach has been successfully applied to SiC
and its defects, a stringent test because of the severe
mismatch of the two components. A potential for Si-Ge
systems has also been presented, and is expected to be
about as accurate as the elemental Si potential.
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