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Dynamical electron-electron and electron-phonon interaction corrections to the conduction- and
valence-band edges of photoexcited quasi-two-dimensional quantum wells are calculated for arbi-
trary quantum-well widths and electron-hole densities. Band-gap renormalization, when expressed
in Rydberg units, is shown to be an approximate universal function of the effective r; parameter

and the well width.

It has been known' for some time that electron-

electron-interaction-induced exchange-correlation energy
is quite insensitive to material parameters (e.g., details of
the band structure, explicit values of the effective mass,
and lattice dielectric constants, etc.) in three-dimensional
systems. In particular, explicit calculations' of ex-
change-correlation energy of electron-hole liquids for a
number of different bulk semiconductor systems show it to
be independent of the band characteristics and to be a
universal function of the electron-hole density when the
energy is expressed in excitonic Rydberg and the density
in the standard r; parameter (which is basically the inter-
particle separation measured in effective Bohr radius).
Very recently,? it has been claimed that similar results
hold also in semiconductor quantum wells where the
band-gap renormalization in the presence of optical exci-
tation is claimed to be universal when expressed in two-
dimensional (2D) Rydberg and the electron-hole density
in the 2D r; parameter.

For semiconductor quantum wells, most often made of
polar compound semiconductor materials, one has the ad-
ditional complication of the long-range dipolar Frohlich
interaction between the electrons and the LO-phonons
which also renormalizes the band gap. Even though very
extensive theoretical literature exists on the electron-LO-
phonon-interaction effects in semiconductor microstruc-
tures, the full many-body problem that includes dynami-
cal screening and treats electron-electron and electron-
phonon interactions on equal footing has not yet been
worked out. We provide results based on such a theory in
this paper. We emphasize that the theory is quite sophis-
ticated since a number of energy scales in the problem,
namely, the electron and hole Fermi energies, the dynami-
cal plasma frequencies, and the LO-phonon energy are all
comparable and simple approximations can only be
justified a posteriori after the full theory has been
developed. For very weakly polar materials (e.g., GaAs),
we provide such a justification for a specific simple ap-
proximation (namely, the so-called ¢, approximation)
which has been used in the literature to account for the
electron-phonon interaction in polar semiconductors.

In this Rapid Communication we consider the band-gap
renormalization in quasi-two-dimensional electron-hole
liquids using a detailed quantitative theory based on the
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random-phase approximation (RPA). We calculate the
self-energy corrections to the highest valence- and the
lowest conduction-subband edges in the presence of a cer-
tain density N, =N}, of the electrons (V) and the holes
(V) for quantum wells of various thicknesses and for a
number of different semiconductor systems. We find, as
one would expect, that the band-gap renormalization de-
pends rather strongly on both the electron-hole density
(i.e., the interparticle separation) and the quantum-well
width. Thus, the universality of the band-gap renormal-
ization in quasi two dimensions is, in fact, a two-
parameter universality with both the electron-hole-density
parameter r; and the quantum-well-width parameter
a/app (where a and ag,p are, respectively, the well
width and the 2D effective Bohr radius) being important.
Our theoretical results while being completely consistent
with recent experimental results? contradict claims of the
well-width-independent universality of 2D band-gap re-
normalization.

We find that this two-parameter universality of 2D
band-gap renormalization is approximately multiplicative
in nature implying that when the renormalization A is ex-
pressed in the units of quasi-2D Rydberg and the Bohr ra-
dius is taken for a quantum well of finite thickness, a sin-
gle universal curve gives the band-gap renormalization of
quasi-2D systems within the accuracy of 20% (which is
roughly the experimental accuracy within which A can be
measured) in these reduced units. This is consistent with
the earlier findings? of Schmitt-Rink, Chemla, and Miller
in a different context. Another theoretical finding report-
ed here is that the very successful and easy-to-use
plasmon-pole approximation* does not work well for the
calculation of the band-gap renormalization in quasi-2D
systems.

One new aspect of our work as mentioned earlier, is the
inclusion of the full dynamical Frohlich electron-LO-
phonon interaction in the calculation of the band-gap re-
normalization. Inclusion of dynamical electron-phonon
interaction in the theory is important since quantum wells
are made of polar materials (e.g., GaAs, InAs) where
Frohlich interaction produces quantitative many-body
corrections.” These electron-phonon renormalization
corrections have so far been studied® only in ad hoc
theoretical treatments where Coulomb interaction is ei-
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ther neglected or included in a crude fashion through a
screening term. To the best of our knowledge, this is the
first calculation of electronic many-body correction in
quasi-2D systems including full effects of both electron-
electron and electron-phonon interactions treated on an
equal footing. We find that the simple € approximation’
(where the high-frequency dielectric constant €. entering
the definition of the Coulomb interaction is replaced by
the low-frequency value) accounts for the effect of LO-
phonons surprisingly well and the net band-gap renormal-
ization is very close to the exchange-correction calculated
with the eg-modified Coulomb interaction and without
any LO-phonon correction. This, however, is only a
reflection of the fairly weak polar coupling in these ma-
terials and, for stronger polar coupling, the € approxima-
tion breaks down.

We assume infinite confining potential for both elec-
trons and holes in the quantum well. Only one kind of
electrons and holes with suitable effective masses, which
has isotropic, parabolic dispersion, is assumed to exist;
thus neglecting most of the band-structure complications
of the quantum-well valence bands. We consider the
T =0 situation with only the lowest conduction subband
(for the electrons) and the highest valence subband (for
the holes) occupied (i.e., we restrict ourselves to moderate
excitation densities)—we give results here only for the
photoexcited undoped quantum wells with N, =N, =N.
We treat the electron-LO-phonon interaction within the
Frohlich model of polar coupling. ®

We calculate the leading-order electron (and hole)
self-energy correction in the RPA-screened total interac-
tion (h =1):

2
s, E) =i [~ (49 G+ q,E +w) K22 |
Qr)2Y 2x é(q,w)

where Gy is the bare electron propagator, V =v¢+ v,
and é=1—VTl,. For a strictly 2D electron gas,
ve=2me?/€éxq and vpn=| M, | 2Do(w) are, respectively,
the bare Coulomb and the bare LO-phonon-mediated
electron-electron interactions. |M,|? and Dio(w) are
the Frohlich interaction and the unperturbed LO-phonon
propagator, respectively, whereas, I is the noninteracting
polarizability function. Since our system is a two-
component system (electron and holes), the polarizability
function is a sum of electron and hole polarizabilities
(ITp =T +ITps )—thus we include dynamical screening
by both electrons and holes. The corresponding expres-
sions for the quasi-2D electron gas are obtained®® by mul-
tiplication of v¢ and vp, with the subband form factor
f(q) whereas the corresponding 3D expressions are stan-
dard.’ Exchange-correlation  corrections  without
electron-phonon interaction are obtained by setting
vph =0, whereas the ¢, approximation consists’ of replac-
ing €w in vc by € (still without any vph) with the ra-
tionale that the main effect of the high-frequency optical
phonons is to screen out the Coulomb interaction. Finally,
the plasmon-pole approximation'® consists of our replac-
ing the full RPA dielectric function with suitable & func-
tions whose strengths and positions are determined by the
f-sum rule and the static Kramers-Kronig relation. Since
the many-body theory for an electron gas is described in
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the standard literature,® we do not provide any details ex-
cept to note that the band-gap renormalization A is given
by the diagonal self-energies X, ; for electrons and holes
separately at the band edges (k=0, E=0): A=ReZX,
+ReZX;.

In Fig. 1 we show our calculated exchange-correl-
ation-induced band-gap renormalization for 2D, quasi-
2D, and 3D systems in the € approximation as a function
of the free carrier density together with some of the exper-
imental points from Ref. 2. The renormalization A is ex-
pressed in terms of the effective 2D excitonic Rydberg'!
whereas the free carrier density V is expressed in terms of
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FIG. 1. (a) Band-gap renormalization calculated in RPA
with € approximation (dashed lines correspond to the experi-
mental well widths of Ref. 2); (b) band-gap renormalization
calculated in plasmon-pole and & approximation (for compar-
ison the 2D and 3D RPA results are given by the dashed lines).
A is measured relative to the effective 2D excitonic Rydberg
(Ref. 11). The density parameter r; and the well widths are ex-
pressed in terms of the 2D Bohr radius for the 2D and quasi-2D
cases. For the 3D case, r; is expressed in terms of the 3D Bohr
radius. The experimental points are taken from Ref. 2.
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the 2D 7, parameter'! (except for the 3D result where the
abscissa corresponds to the 3D r; parameter'!). We show
the band-gap renormalization for various quantum-well
widths (expressed in the effective 2D Bohr radius'!) in ad-
dition to the strictly 2D and 3D results. In Fig. 1(a) we
show the RPA calculation whereas_ in Fig. 1(b) we show
the plasmon-pole approximation. It is clear from a com-
parison with the RPA results the the plasmon-pole ap-
proximation is quantitatively not very accurate in 2D.
From Fig. 1(b) we see that the strictly 2D plasmon-pole
result gives good account of the experimental points.
However, when we take into account the quasi-2D charac-
ter of the confinement, this agreement is lost. On the oth-
er hand, the full RPA calculation approaches the experi-
mental results when we include the quasi-2D character of
the quantum-well wave functions. Another point to note
is that the quasi-2D result for a very wide quantum well is
not the same as the corresponding 3D result because of
our approximation of keeping only one subband in the cal-
culation. Thus our results are quantitatively inaccurate
for very wide wells or for very high carrier densities with
appreciable population of higher subbands.

We have carried out the calculation of A as a function
of carrier density for a number of different semiconductor
materials (GaAs, InAs, GaSb) and for a number of
different quantum-well widths. We find that, when ex-
pressed in suitable dimensionless units (namely, the
effective Rydberg and the effective Bohr radius) as shown
in Fig. 1, they all fall within 10% of the curves shown in
Fig. 1. It is obvious from Fig. 1 that the dimensionless
band-gap renormalization in a quasi-2D system is an ap-
proximate universal function of two parameters, namely
the effective r; parameter (i.e., the interparticle separa-
tion, or, equivalently the carrier density) and the effective
dimensionless well width. The well-width independence of
A as found in Ref. 2 is due to their use of a limited range
of well widths. It will be helpful to have more detailed ex-
perimental results particularly in wider (larger than 100
A for GaAs) wells to directly test our theoretical predic-
tions. This is particularly true in view of the good agree-
ment between our theory and the experimental results of
Ref. 2. The fortuitous agreement between? the experi-
ment and the strictly 2D plasmon-pole theory which was
found in Ref. 2 disappears when the finite extent of the
quantum-well confinement is included in the theory.

We find that the two-parameter universality of Fig. 1
can be reduced to an approximate one-parameter univer-
sality by suitable rescaling of the energy and length units
with quasi-2D Rydberg and quasi-2D Bohr radius, re-
spectively. This is consistent with the earlier finding of
Ref. 3. This universality is, however, quite approximate
(correct to only 20%) and probably not of great
significance since the accurate parameters for really
quasi-2D excitons '? are not known.

In order to check the accuracy of the € approximation,
we calculate the full dynamical band-gap renormalization
including both the electron-electron and the electron-
phonon interactions. For large values of the electron-
phonon coupling constant, the universality of the band-
gap renormalization is completely destroyed since A now
depends explicitly on the Frohlich coupling a of each ma-

terial in a significant way. For small a« (K1), however,
we find that the results obtained with the total interaction
(vc+vpn) are very close to the exchange-correlation
correction calculated with the €, approximation.” In Fig.
2 we show our results for the fotal interaction correction
to A as well as the ep-approximation results. We take the
Frohlich constant a =0.07 (corresponding to GaAs) for
these calculations. In Fig. 2(a) we show the total self-
energy corrections to the band gap of 2D, quasi-2D, and
quasi-3D systems whereas in Fig. 2(b) we subtract out '3
the purely polaronic corrections to A. Thus, Fig. 2(b) is
the more physical result since the purely polaronic renor-
malization of the band edges (obtained by our putting
vc =0 and by assuming only one carrier to be present in
the system so that the Fermi factors are all zero) is always
present and should be included'? in the definition of the
nominal band edges without any carrier renormalization
effect. From Fig. 2, we conclude that for weakly polar
materials (e.g., GaAs, InAs, GaSb, InSb, Ge, Si, AlAs,
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FIG. 2. (a) Total band-gap renormalization for 2D, quasi-
2D, and quasi-3D systems; (b) band-gap renormalization with
the polaronic correction subtracted. Dashed lines correspond to
the €p approximation. Full lines correspond to the full RPA cal-
culation. The units are the same as in Fig. 1.
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AISb) the band-gap renormalization is very well approxi-
mated in 2D and quasi-2D systems by the ¢p approxima-
tion and the approximate universality of Figs. 1 and 2
hold. We have verified, however, that for larger values of
the Frohlich coupling constant (a > 0.2) the € approxi-
mation fails, giving results which are wrong by about 25%
for a=0.2.

Before concluding, we point out that Kleinman had ear-
lier calculated'* exchange-correlation-induced band-gap
renormalization in GaAs quantum wells. Instead of cal-
culating the self-energy correction (as done in this paper),
he followed Ref. 1 and calculated the exchange-
correlation contribution to the total energy. Thus his cal-
culation assumes a rigid-band shift, whereas we make no
such assumption. In fact, our self-energy calculation
shows that A calculated at kr differs from that calculated
at the band edge by about 10% for N =2x10!' cm'2. He
also used a model potential rather than using the matrix
elements of the Coulomb interaction in the subband repre-
sentation. Results on the universality, comparison with
plasmon-pole approximation, and the inclusion of
Frohlich interaction are all completely new features of
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this work.

In conclusion, we obtain the band-gap renormalization
of quasi-2D systems including full dynamical effects of
both the electron-electron and electron-phonon interac-
tions (within the RPA). We show that the plasmon-pole
approximation is poor in 2D whereas the ¢p approximation
for the electron-phonon interaction works extremely well
for weakly polar materials. We find an approximate
universality in the band-gap renormalization of quasi-2D
systems, but the universality is more subtle than that
claimed in a recent publication.? Our results agree well
with the limited experimental results available to date;
however, we hope that our detailed predictions will
motivate more vigorous experimental work on this impor-
tant problem.
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