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Hall effect in quantum wires
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Calculations of the Hall resistance of quasi-one-dimensional electron systems on a GaAs/
Al Gal —„As heterointerface are performed. It is shown in a weak-link model of Hall probes that
the Hall resistance strongly depends on the way the total current is divided among subbands.

Recent experiments' on the Hall resistance of quan-
tum wires in the ballistic regime have revealed quite new
features of transports. Quantum wires have been fabri-
cated in modulation-doped GaAs/Al„Gai —,As hetero-
structures containing a two-dimensional (2D) electron
system. The width of wires is much smaller than the
mean free path of electrons and comparable to the Fermi
wavelength, giving only a few subbands occupied by elec-
trons. In this paper we perform calculations of the Hall
resistance of the laterally confined 2D electron gas, and
clarify some important aspects of the Hall effect in such
systems.

In the low-magnetic-field regime and at low tempera-
tures, the Hall resistance (R„y) exhibits several peculiar
behaviors which are absent in two- and three-dimensional
systems. Timp et al. ' and Simmons, Tsui, and Weimann
observed a plateau at a field where R y in 2D systems
shows the classical linear behavior on the magnetic field.
More surprisingly, Roukes et al. , followed by Timp et
al. and Ford et al. , discovered a quenching of the Hall
effect, i.e., Rzy of narrow wires is much lower than the
classical line below a certain threshold magnetic field.
The threshold field is higher for a narrower wire.

Several theoretical works have been done on R„y of the
laterally confined 2D electron gas. In relation to the
quantum Hall effect, edge states have been discussed,
which are localized within about a cyclotron radius of the
wire edges but extended along the wire direction. In the
presence of a confining potential, their energies rise up as
approaching the boundaries, giving a continuous energy
spectrum covering the gap regions between bulk Landau
levels. It has been noted that in the absence of scatterings
R„y is exactly quantized to h/2%e (N: the number of oc-
cupied subbands) at the Fermi level between neighboring
bulk Landau levels if the Hall voltage is regarded as the
chemical potential difference between the edge states in
opposite sides. Extrapolation of this formula to the low-
field limit leads to a wrong result: R y does not become
zero because N is finite. This indicates that the above
definition of the Hall voltage must be refined when the ex-
tent of the edge states becomes comparable to the width of
the wire W; Beenakker and van Houten' argued that the
quenching takes place when the extent of the edge state in
the lowest subband coincides with O'. Peeters' calculat-
ed R y by using Landauer's formula for the four-terminal
configuration' and a weak-link model of Hall probes.
Although finding no quenching of R y at nonzero fields,

he obtained a distinct downward deviation of R y from the
quantized values h/2' in the low-field range and the
vanishing of R y at zero field by considering the presence
of an electron transfer between the edge state and the
Hall probe in opposite sides.

When more than one subband is occupied by electrons,
it is necessary to specify the current distribution among
the subbands, which inevitably affects the Hall voltage or
Rzy ~ All the theoretical works mentioned above have been
done in the simplest distribution such that each subband
contributes an equal amount of current. In the present
paper, the formula of R y is derived for arbitrary current
distributions within the weak-link model of Hall probes,
and R y of quantum wires is calculated in two typical
models of the current distribution.

Consider a noninteracting 2D electron system confined
in the space with the width 8' in the xy plane by infinite
barriers. In the presence of a magnetic field H perpendic-
ular to the system, the Hamiltonian is

2

&= p+ —A +V(x),1 e (l)2' c

where m is the effective mass and A = (O, Hx). The
confining potential is given by V(x) =0, —8'/2 & x
& 8'/2, and V(x) =~, otherwise. We neglect the effects
of the impurities and phonons because we consider a re-
gion in the vicinity of Hall probes, whose size is much
smaller than the mean free path. Each eigenstate is
specified by the subband index n =0, 1,2, . . . and the wave
vector along the y direction ky.

Suppose the wire is connected at its ends to the current
source and sink, which are electron reservoirs with chemi-
cal potentials p, and pb, respectively (Fig. I). Here we
consider the case that p, —pb is positive infinitesimal and
the temperature is zero. The total current along the wire
is I=(2e/h)+„hp„ including spin degeneracy, ' ' where
hp„ is the chemical potential difference between electrons
in the nth subband coming from the current source
(ky & 0) and those from the current sink (ky &0). When
electrons suffer scatterings on the path from the current
source and to the current sink, hp„ is not necessarily equal
to p, —pb. Furthermore, each subband can have occu-
pied and unoccupied states coexisting in the energy range
between p, and pb. The chemical potential p of each
branch (kr & 0 or ky & 0) in each subband is defined in
such a way that the number of occupied states with energy
above p is equal to the number of unoccupied states with
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FIG. l. Quantum wire connected to four reservoirs: current
source (chemical potential p, ), current sink (pb), and Hall con-
tacts (p, and pd). Dotted areas are scattering regions. Lower
figure shows energy eigenvalues of a wire with W 0.1 pm in
magnetic field H 4 T as a function of X, the expectation value
of x. Two models of the current distribution (chemical poten-
tials of subbands) are shown: step model (dashed line) and
slope model (solid line). High barriers are placed between the
wire and the Hall contacts.

energy below p.
In four-terminal measurements of the Hall resistance,

the quantum wire is connected via Hall probes to electron
reservoirs (Hall contacts). Chemical potentials of the
Hall contacts are determined to give vanishing net cur-
rents between the wire and the contacts. In the small con-
ductors considered here, the Hall probes are parts of the
sample, possibly aA'ecting electronic states in the wire.
However, we restrict ourselves to the weak-link model
given by Peeters' for simplicity. In this model two
equivalent high barriers are symmetrically placed between
the wire and the Hall contacts (Fig. 1), although this sym-
metry is not essential to the conclusions obtained below.
The presence of the Hall contacts does not disturb elec-
tronic states in the wire, but introduces electron transfers
through the barriers with extremely low probability. By
considering infinite barriers, the transition probability of
an electron between the wire and one of the Hall contacts
is proportional to the square of the derivative of its wave
function at the wire edge.

In the case that only a single subband (n =0) is occu-
pied, we have two states at the Fermi level, one with posi-
tive ky and the other with negative ky. By denoting the
transition probability between the state with ky & 0 and
oneof the Hall contacts in x( —W/2by P& and that for
the state with k» &0 by P2(P~ & P2), we have the follow-
ing condition for the vanishing of the net current:
(~pp 'p")P~ =(~p p+hp")—P2, where ~p" is the chem-
ical potential diA'erence between the two Hall contacts.
Combining this equation with the current formula given

before, we obtain

h
2 p+p (2)

In the absence of a magnetic field, R„» vanishes because
the amplitude of the wave function becomes independent
of k», giving P~ =Pi In . the high-field limit, on the other
hand, the states at the Fermi level are well localized on
each edge and P~&&P2, leading to a quantized value of
R„». Generalization to multisubband cases gives

X(P.i -P.i»~.
(3)

2e g(P„~+P„i)ghp„
n n

where P„~ and P„2 are the transition probability for the
nth subband. Here we assume that the total number of
electrons in each subband is the same as in the absence of
current. Equation (3) can be obtained from Landauer's
conductance formula for the four-terminal configur-
ation. '

The next problem is to determine Ap„, i.e., how the to-
tal current is shared by subbands. This distribution may
be affected by scatterings of an electron by impurities,
phonons, and the other electrons during its travel along
the wire and also by the potential due to the polarization
along x proportional to Ap„. We consider two models for
the current distribution in this paper. In the first model,
the total current is divided into equal parts, i.e., d p„ is in-
dependent of n Since i. n this model the chemical potential
is a step function of X, the expectation value of x, at high
magnetic fields (Fig. 1), we call it step model. Note that
X and k» have opposite signs at high fields. Although this
distribution is used in many theoretical works as men-
tioned before, it is realized only when electrons suH'er no
scatterings. In the step model, the above formula of R,»
reduces to that obtained by Peeters:'

ZP. i
—ZP. 2

R»(step) (4)
2e N Pn) + P&2

n n

which is always smaller than the quantized values due to
the presence of P„2. In the second model, which we call
slope model, d p„ is proportional to X„,X of the state with
k»(0 at the Fermi level in the nth subband (Fig. 1).
This distribution is just the same as that produced when a
uniform electric field is applied adiabatically in the x
direction. In the step model the chemical potential is
singular at X=O, and becomes a complicated function at
low fields because for large n, states with k» &0 have
X& 0 in order to be orthogonal to states with smaller n
and the same k», which have A'&0. Such a distribution is
unrealistic in the present system. If we consider the field
due to the polarization, the slope model is closer to the
real systems.

Figure 2 presents the calculated Hall resistance of a
quantum wire with O'=O. l pm as a function of magnetic
field. The sheet density of electrons W, is 4.0X l0'' cm
corresponding to one of the samples of Roukes et al. , and
%=5 at H=O. There appear large diA'erences in R„y be-
tween the two models for the current distribution. Partic-
ularly, in the high-field regime such that P„i»pn2 Rxy
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FIG. 2. Hall resistance R» as a function of magnetic field 0
for a quantum wire with the width W=0. 1 pm and the sheet
density N, 4.0 x 10" cm . The results are shown for two
current distributions: step model (thick dashed curve) and slope
model (thick solid curve). Thick dotted curve shows R„» calcu-
lated with use of the Hall voltage defined by potential drop.
Two thin solid lines represent the quantized Hall resistance
1/2N(h/e ) with N the number of occupied subbands and the
classical Hall resistance H/N, ee, respectively.

(step) is well quantized, whereas R„~ (slope) is consider-
ably higher except in the high-field limit (N=l). This
difference is explained as follows. Under a constant
current (g„hp, =const), hp„ for the outermost edge
states (n 0) is larger in the slope model than that in the
step model (Fig. 1). For example, in the case that two
subbands (n 0, 1) are occupied, d po(slope) =2Xo/
(Xo+X~)hpo(step). The chemical potentials of the
outermost edge states mainly determine the Hall voltage
because of their higher transition probability to the Hall
contacts. Therefore, R„~(slope) is larger than R ~(step).
In the case of N =2, the deviation of R ~ (slope) from the
quantized values is approximately (Xo —X~)/W, which is
proportional to l/W, where I is the- cyclotron radius
defined by (cI't/eH)'/. At the low field where P„2 be-
comes comparable with P„~, both R„~(step) and
R„~(slope) start to curve downward and finally vanish at
zero field, although a quenching of R ~ at nonzero fields
does not occur in the present model. As a result of small
N at low fields, a hump appears above the classical line,
although a distinct plateau as observed in the experi-
ments' ' is not found.

Figures 3 and 4 show the calculated results for wider
wires with W=0.2 pm and 0.5 pm. Both R„~(step) and
R„~(slope) approach the quantized values as W becomes
larger. R„~(step) is almost quantized in the high-field re-
gion satisfying 8'&&l~ —~, and its downward deviation is
proportional to Q„P„2/g„P„~—exp[ —a(W/l~ —~) l,
where l„=lJ2n+I is the cyclotron radius for the nth
subband and a is a factor of the order of unity. On the
other hand, the deviation of R «(slope) is proportional to
I/W and remains large for wide wires. A hump appears

FIG. 3. Hall resistance R„y as a function of magnetic field for
a quantum wire with the width W=0.2 pm. For more explana-
tions, see the caption of Fig. 2.

above the classical line around the low field satisfying
8' =l~ —~. This condition reduces for large JV to
Beenakker's classical result for the critical field' 0„;t
~1/W. The field position of the hump coincides roughly
with that observed by Roukes et al. , although the height
of the hump is much larger than the observed one.

Ono and Ohtsuki' and Gudmundsson et al. ' calculat-
ed R„y by identifying the Hall voltage with a potential
drop which is an applied electric field across the wire mul-
tiplied by W. Figures 2, 3, and 4 also show the Hall resis-
tance obtained in this way [R„~ (potential)]. The current
distribution is identical to that in the slope model. R y
(potential) is always larger than R„~(slope) because the
potential drop and dp„are proportional to W and
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FIG. 4. Hall resistance R„~ as a function of magnetic field for
a quantum wire with the width W=0.5 pm. For more explana-
tions, see the caption of Fig. 2.
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2A'„( (W), respectively. In particular, as H 0,
R„»(potential) becomes infinite because the Hall voltage
is constant although the current is infinitesimal, propor-
tional to X„. This indicates that the potential drop is quite
different from the measured Hall voltage in the case of
quantum wires.

In actual Hall bars, the width of Hall probes is the
same as that of a wire, just like at a crossing. At high
fields electrons at the Fermi level in every subband move
along the edge and turn to the left at the crossing. Since
hp~ becomes a certain average of hp„with respect to n,
we expect that R„»(slope) approaches the quantized
values. In the case of narrow Hall probes, however, the
situation is expected to be close to that in the present
weak-link model. The magnitude of the deviations of R„»
in actual systems is much affected by such structures of
Hall probes; but the direction of the deviations is likely to
be upward because the slope model is more realistic than

the step model. Calculations of current distributions and

R„» of actual systems are now under way.
In conclusion, we have calculated the Hall resistance of

quantum wires in two models of the current distribution
among subbands; one is that of a ballistic current (step
model) and the other is that in a transverse electric field

(slope model). In the weak-link model of Hall probes,
R„»(step) is well quantized at plateaus with only small
downward deviations, whereas R„»(slope) deviates consid-

erably upward. In the low-field regime, R ~ deviates
downward from the quantized values, shows a hump, and

finally vanishes at zero field without quenching at nonzero
fields.
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