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Conductance oscillations in two-dimensional Sharvin point contacts
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The conductance of quantum-mechanical particles through two-dimensional point contacts, with

and without impurities, is calculated. It is shown that, even for a zero-length constriction, step-
like structures occur at integer multiples of 2e /h as a function of the constriction width. These
step precursors evolve rapidly into horizontal plateaus on increasing the length of the constriction.
It is also shown that the eAect of impurities is to modify the structures and to shift the value of
the conductance at the steps away from the quantized values.

Recently van Wees et al. published 'experiments on the
conduction of ultranarrow constrictions in a two-dimen-
sional electron gas (2D EG) based on a GaAs heterostruc-
ture. ' In their experimental setup a split gate defines a
short constriction connecting two larger areas of 2D EG.
The constriction width is varied by tuning the gate volt-
age, which results in a surprising feature: The conduc-
tance increases in a sequence of steps of height 2e /h.
Shortly afterwards, similar results were independently re-
ported by a second group. Immediately the question
came up as to what extent this type of conductance quant-
ization is a universal property, insensitive to the details of
sample geometry.

Imry, Buttiker, and Landauer already anticipated
quantized conductance between a reservoir and a quasi-
one-dimensional lead, based on the quantization of trans-
verse momentum in the lead. In the Letter by van Wees
et al. an explanation was given based on similar considera-
tions, which require a constriction that is much longer
than it is wide. Assuming ballistic transport through the
narrow region, it was shown that the conductance can
indeed be quantized: On increasing the constriction width
the Fermi level crosses a sequence of spin-degenerate
one-dimensional subbands, each of which contributes pre-
cisely 2e /h to the conductance.

An obvious limitation of the above explanation is the
assumption of virtually infinite length of the constriction,
and the important question remains open as to whether
quantized steps can also occur in the case of a constriction
of finite or even zero length. The latter case corresponds
to a two-dimensional Sharvin point contact and the cor-
responding geometry is pictured in Fig. 1(a). In this pa-

, per we show that even in the zero-length limit conduc-
tance steps occur at integer multiples of 2e /h. The steps
are not very pronounced and decay rapidly on increasing
the constriction width. Our theoretical method can also
be used to predict the behavior of other geometries, in par-
ticular, constrictions with finite length and impurities in
addition to a constriction.

We will now give a general outline of the formalism. A
detailed description is given elsewhere. Suppose that
we can create a quasiequilibrium situation where the elec-
trochemical potential p on the left-hand side of the con-
striction region is given a small energy diAerence eV rela-
tive to p on the right-hand side by applying an external
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FIG. 1. Geometry for a constriction of (a) zero length and for
a constriction of (b) finite length L. Impurities can be incor-
porated in the constriction on positions such as those indicated
by the circles.

voltage. In this way we create an imbalance between elec-
trons moving from left to right and vice versa, which re-
sults in a net particle current. At zero temperature the
number of ballistic electrons passing the constriction per
unit of time equals the product of two terms: (1) the
number of particles per unit area in the energy interval eV
at the Fermi level and in the angular interval da around
the angle of incidence a: (8

n/&Esca)eVda;

(2) the Ilux
@(EF,a), which is the rate at which a unit area of these
particles crosses the constriction region. The conductance
G at zero temperature is now obtained by multiplying the
angle-integrated particle current with the elementary
charge and dividing by V, which results in

t n/2 8 n
G =e' +(EF,a) da (I)

& -x/2

The problem of quantum transport of electrons through
a Sharvin constriction can be mapped on an almost arche-
typal topic of wave mechanics: The diffraction of scalar
waves by a slit in a perfectly soft screen (p =0 on the
screen). In spite of the apparent simplicity of this prob-
lem, no solutions in closed form have been found. There

~9 5484 1989 The American Physical Society



CONDUCTANCE OSCILLATIONS IN TWO-DIMENSIONAL. . . 5485

exists, however, a vast literature on these and related is-
sues. Various approximations and series expansions have
been derived. ' The main difhculty is that the boundary
conditions at the screen are of mixed von Neu-
mann-Dirichlet character. The resulting integral equa-
tion contains singularities that are related to the ultravio-
let divergencies of quantum electrodynamics.

In order to avoid these difficulties, we decided to treat
the problem using a tight-binding scheme which, in the
way we implemented it, has several advantages over the
methods based on the above-mentioned integral equation:
(1) The bulk of the numerical calculation involves the in-
version of a complex valued matrix. The rank of this ma-
trix equals the number of lattice points inside the aper-
ture, which in our case could be kept below one hundred.
Therefore, computational cost can be kept low. (2) No
ultraviolet divergencies occur in the theory due to the
high-energy cutoff that is automatically provided by
tight-binding theory. Tight-binding schemes have been
applied before to topics in weak electron localization, "
which are intimately related to the present problem. In
these approaches the transmission matrix is related to the
conductance in a similar way as in Landauer's one-
dimensional transport theory. '" We will see that the T
matrix is a useful tool in this particular problem. The
Hamiltonian is

orders of V

&O, n ( g ) O, n'& —V 'b„„—2t V ~r„„,
&l, n lg IO n & V [I „„—(E/2r —2)p„„

I „,, —=x '„[cos(n —n')p] [(E/2t —2+cosy) —I] ' dy.

From the T-matrix Dyson equation T H~+TgH~, we
immediately find that 8„, which we define as
(2t/V )&O, n

~
T

~ O, m&, is the inverse matrix of I, where n
and m are in the interval [I,w/a]. All other matrix ele-
ments of T are zero. The inversion of I forms the core of
our numerical procedure. Inversions of large matrices are
easily accomplished on most computers nowadays, so that
the calculation for an aperture containing a hundred lat-
tice points takes only a few seconds on a main frame. We
now insert Eq. (4) in Eq. (3). After some algebra we ob-
tain

Va
„ I X &~..lo,.».,.&o,

2hr nm

H =Kp(r, V) +Hg (V),
Hp(t, v) 4t 1 —

4 g )m, n&&m+' I,n~ 1
~

m, n

e(y) = Im g &y~ m, n&&m+ I,n
~

yr&.
n

(3)

As the total flux is conserved in an eigenstate, the coor-
dinate m can be taken at any position. In our case a con-
venient choice is rn =0 as the summation over n will now
be constrained to the interval [1,w/a]. Using ( y&= (1+gT) ~ p&, we can express the eigenstates

~ y& of the
total Hamiltonian in terms of their parent states

~ pE, &,

which are the solutions of Ho with kinetic energy E and
angle of incidence a. ' In Refs. 7 and 8 we solve the
Green's function g for Hp. We give the result in leading

+ V g ~o, n&&, o,n [,
~/a

H„(v) - —v g i on&&on i .
n=l

Here ( m, n& refers to a site with x coordinate ma and y
coordinate na, where a is the lattice parameter on a square
lattice. Note that the aperture potential H~ is proportion-
al to V, which we will take in the limit V~ . This
means that Hz cannot be treated with Rayleigh-
Schrodinger or Brillouin-Wigner perturbation theory. We
will expand our expressions in a Taylor series of 1/V and
take V ~ in the final expressions.

Employing the time-dependent Schrodinger equation,
one can easily derive that for a tight-binding Hamiltonian
with only nearest-neighbor hopping the flux from left to
right carried by an eigenstate ( y& is given by

g (lme„)(imr„, ),
n, m

(6)

which is exact for all values of EF including the long-
wavelength limit. In the latter case, to which we will re-
strict our discussion, we have EF ta kF, where kF is the
Fermi wave vector. A straightforward extension of Eq.
(6) allows the study of more complicated structures, in

particular, of finite-length constrictions. The resulting ex-
pressions are slightly more complicated and are treated in

a forthcoming article.
In Fig. 2 we present a graph of the conductance versus

constriction width calculated with Eq. (6). This result is
practically independent of kFa for kFa &0.2. We con-
clude from Fig. 2 that even for an ideal Sharvin point con-
tact steplike structures are present. Also indicated in this
figure are the conductance traces for finite-length con-
strictions of the type depicted in Fig. 1(b) with L 0.48K,F
and L =0.99XF. We observe that the steps become more
pronounced on increasing L and that there is an oscillato-
ry structure on the plateaus for the longest constriction.
To analyze these graphs in more detail, we present in Fig.

where &p, , ~ O, n& 2itV sin(k„a) exp(ik~an) is an
eigenstate of Hp projected on a site in the aperture. If we
insert this in Eq. (5), we obtain a finite value for @ in the
limit V

The only other ingredient that we need in Eq. (1) is the
expression 8 n/8E Ba k /4xt (x sinx+y siny), where
x k„a and y k~a for the density of states. Here we
take into account the noncircular shape of the Fermi sur-
face of our tight-binding band. After carrying out the an-
gular integration in Eq. (1) we arrive at the simple expres-
sion
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FIG. 2. Conductance vs constriction width. (a) L 0. Solid
and dashed curve: constriction without and with impurity. (b)
L 0.48K,F. Upper solid curve: channel without impurity; lower
solid curve: impurity inside the constriction (x -0.32AF,

y 0.32&F); dashed curve: impurity outside the constriction
(x 0.57XF, y 0.32XF). (c) L 0.99) F.

3 plots of ndG/d(kFW) vs G for several values of L. Here
the positions of the minima along the horizontal axis rep-
resent the value of the conductance at a plateaus. A hor-
izontal section is characterized by a minimum that
touches the G axis. Clearly the positions of the minima
are at integer multiples of 2e /h. We observe that on in-
creasing the channel length the minima become deeper
and narrower, whereas the maxima are larger. The mini-
ma touch the G axis for a critical value of L, which de-
pends on the plateaus index n Thi. s critical length is ap-
proximately given by L, = 0.32Jnl, F. Beyond this value
oscillations show up due to resonances between the front
and back end of the constriction.

We next turn to the effect of impurities on the conduc-
tance. Delta function impurities can be incorporated ei-
ther by excluding one or more points from the aperture
Hamiltonian Hz or by adding extra terms
V)m, n)(m, n ~. In Fig. 2 we present the case of an im-
purity at a distance y 0.32XF from one of the edges of
the aperture of a zero-length constriction. For a constric-
tion of length L 0.48K,F we give the result corresponding
to a delta function impurity inside and just outside the
narrow region, respectively. Clearly the conductance be-
comes smaller due to the presence of the impurity, and the
oscillations are significantly suppressed and moved away
from the quantized values. This is an important observa-
tion, as it shows that the details of the constriction envi-
ronment inAuence both the quality of the steps and the
value of the conductance at the steps. We checked many
other configurations involving constrictions of various
lengths and one or more impurities. The deterioration of
the plateaus due to disorder turns out to be a very general
phenomenon, regardless of the length of the narrow re-
gion.

We conclude that a numerically exact calculation of the
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FIG. 3. First derivative of the conductance with respect to k8 /x vs G for a number of channel lengths. Solid curve: L (); dashed
curve: L 0.13K,F, dash-dotted curve: L 0.25XF, dotted curve: L 0.35XF.
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quantum ballistic transport through an ideal two-
dimensional Sharvin point contact shows that steplike
structures in the conductance occur as a function of the
width of the constriction, related to the steps observed by
van Wees et al. The steps become more pronounced as the
constriction acquires a finite length, which is also more
representative of usual experimental conditions. Finally

the presence of impurities in the constriction region
modifies the value of the conductance at the plateaus.
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