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Quantum bound states in a classically unbound system of crossed wires
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We have computed the energy and the wave function for an electron caught at the intersection
of two narrow channels. There are two bound energies for the case with fourfold rotational sym-
metry. For impenetrable walls the energies are E1=0.66E; and E;=3.72F,, where the threshold
for propagation of electrons in one channel is E; =A27*/2m*w? and w is the width of the chan-
nel. The state at £, is bound only because it has odd parity and thus cannot decay into the
even-parity propagating wave at the same energy. (The odd-parity propagation threshold is at
4E,.) We have also computed the transmission and reflection probabilities in the propagating
case for a range of energies up to slightly above the odd-parity threshold.

With the advance of fine-line lithography, devices can
now be made which conduct along two-dimensional sur-
faces shaped into channels the width of which can be as
narrow as 75 nm. Configured in four terminal junctions,
such quantum wires are used to investigate quantum in-
terference effects.! ~* In this paper we report calculations
designed to determine whether quantum effects can cause
the trapping of an electron at the intersection of such
wires. The presence of such trapped electrons could modi-
fy considerably the operation of devices made of these
wires.

Since for the configurations we consider there is no
trapping classically, the presence of a localized quantum-
mechanical state is not an obvious phenomenon. It shows
the quantum binding of a classically unbound system, and
thus complements the phenomenon of the decay of a clas-
sically bound state by quantum tunneling. The problem is
distinct from open geometries explored previously, such as
that where the conducting region is contained by hyperbo-
las x2y?=const.> Because of the “pinched-off” arms of
that shape, there are an infinity of classical periodic orbits,
so that the presence there of quantum bound states is not
surprising. We return to this point later.

We believe that the detailed shape of the potential
which confines the electron to the channel is not important
in determining the qualitative fact of the presence of a
bound state at the intersection. We take a potential which
is zero inside the channels and infinite outside, so that the
Hamiltonian is just H =p?/2m inside the well, with the
boundary condition that the electron’s wave function goes
to zero on the sides of the channel (see Fig. 1). We have
used two methods to calculate the bound-state energy and
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wave function and describe them in the following para-
graphs. One of these methods is also suitable for exten-
sion to the propagating case, and we show results from
such calculations. We conclude with some remarks on
other configurations, and on the two-electron case.

Our first model is a mesh point method in which we re-
place the Schrodinger equation H¥ =FE¥ by a difference
equation for the wave function evaluated on a rectangular
mesh of points in the x-y plane with discrete evolution in a
“pseudotime” variable, 2. This equation is the discretized
version of the differential equation §¥/5t =A¥ where A is
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FIG. 1. Schematic diagram of the potential formed by the
crossed wires. The hatched area, together with symmetry state-
ments, is sufficient to display information about the bound-state
wave functions and is the area shown in Fig. 2. The regions I
through V are used in our function expansion method. The ori-
gin of the x and y axes is taken to be located at the lower left
corner of region V.
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the Laplacian operator. Solutions of this equation should be of the general form

v=X a,exp(—k2)¥,,
n

where ¥, is an eigenfunction of A with eigenvalue (—k?2). As pseudotime increases, the terms with larger values of k.
die away, leaving the ¥, with the lowest value of k,2. The explicit difference equation at time step ¢ =n(8t) is

Vi jn+1 =‘I',',j~n+(6l)[(‘1’,'+1_j‘n+‘l’,~—1'j_,, ~2\P1,,~,,,)/(6x)2+ (‘If,',j+|,,, +‘l’,',j—1,,, ‘_2‘1',',1',,, )/(5)))2] .

(To keep ¥ from becoming too small as pseudotime in-
creases one renormalizes ¥ at each pseudotime step by
multiplying ¥ by a constant to bring it up to a reasonable
size.) We then iterate this difference equation until ¥ be-
comes an eigenfunction of the discretized A operator.

When the initial wave function is taken to be symmetric
about the center lines in the x and y directions (referred to
as an even-parity state) and about the diagonal line x =y
(the symmetry expected for the nodeless ground-state
wave function), we find the eigenvalue to be kw =0.812x.
This is below the propagation threshold at kw =z. The
corresponding energy is E;=h2k?%/(2m*)=0.66E,,
where the threshold energy is at E; =h2(z/w)?%/(2m*).
For an effective mass, m*, of 0.067 times the free-electron
mass, and a channel width of 75 nm, this bound-state en-
ergy is 0.66 meV, compared with the propagation thresh-
old energy of 1.00 meV. The wave function is shown in
contour plots in Fig. 2(a).

Some physical remarks concerning the shape of the
wave function may give insight into the reason for its ex-
istence. Analysis of the wave function near the corners of
the intersection (analysis similar to the conformal map-
ping argument for solutions of Laplace’s equation near a
corner) show that the wave function goes to zero as r %3,
where r is the distance form the corner. Thus it has a very

Y /

FIG. 2. Contour plots of the bound-state wave functions, cov-
ering the hatched region shown in Fig. 1. (a) The lowest-energy
state. (b) The lowest odd-parity state. In each case the com-
plete wave function consists of eight versions of the pattern
shown, repeated in the other octants with appropriate
reflections.
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steep slope near the corner. In a channel, well away from
the intersection, the wave function is convex upwards
across the channel and concave along it. The wave num-
ber across the channel is 7/w, and the exponential decay
wave number along the channel, «, is related to the eigen-
value k by k2=(z/w)?— k2 Thus k?is less than (z/w)2.
Near the center of the intersection, however, the wave
function is convex upwards in all directions. Along the di-
agonals between the corners, which are 2w apart, the
steepening of the wave functions near the corners, men-
tioned earlier, results in a flattening near the center. Thus
the effective diagonal wave number near the center, kg,
must have the property kg < z/~2w, so that k2=2k}
< z%/w?. Thus the physically necessary behavior of the
wave function there is consistent with that in the arms,
and characteristic of a bound state. Figuratively speak-
ing, the bound state is held in place by the corners.

For an initial wave function which is odd about the x
and y center lines and even about the x =y line, the eigen-
value is given by kw=1.93x, and the energy is E>
=372E,. For states of this parity, the propagation
threshold is at kw =2x. Contour plots of the wave func-
tion are shown in Fig. 2(b). No bound states are found
which are odd about the x=y line. Unfortunately, this
mesh-point method gives only the lowest state of each
symmetry class. Possible higher-energy bound states
would be inaccessible. For these we report our second
method.

Our second method uses an expansion in a complete set
of solutions of the differential equation A¥ = — k >¥ (for a
trial value of k2) in each of the five large rectangular re-
gions shown in Fig. 1, with the labels LII,...,V. The
coefficients in this expansion should then be chosen to
match ¥ and its derivatives at the boundaries between the
five regions. This leads to a set of coupled linear equations
for these expansion coefficients which can be treated as a
single matrix equation. Specifically, in region I the expan-
sion is

¥ =23 a,sin(nry/w)exp(—K,x)
n

with (nn/w)?—K2?=2mE/h?>=k> In region II the co-
efficients a, are replaced by b,, and the variables x and y
are interchanged:

¥y =2, b,sin(nzx/w)exp(—K,y) .

Regions III and IV are similar using coefficients ¢, and
d,. Inregion V, the expansion is

vy =2, {sin(nzy/w)le,exp(— K,x) + f, exp(K,x)]

+sin(nzx/w) g, exp(—Kny) +hy, exp(K.y)1}.
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When each sum is truncated at NV terms, we have a vec-
tor, V;, made up of the N sets of eight coefficients
(an,ba, . ..,8n,hs). There are eight boundary conditions
(i.e., we must match the function ¥ and its normal deriva-
tive on each of the four boundaries where regions meet).
The orthogonality of the sine functions on these bound-
aries, together with these eight conditions, gives us an
8 N x8N matrix, M;;, and 8N coupled equations relating
the 8N coefficients. (The coupling between coefficients
having different n values comes from the boundary condi-
tions involving derivatives of the wave function.) Since
there is no inhomogeneous term in this matrix equation,
M;;V;=0, the only nontrivial solutions will occur when
the determinant of the matrix is zero. We find that the
only zeros of the determinant occur at the energies found
with our first method. There are no other bound states.

This second method has the further advantage that it
can be extended to energies above the propagation thresh-
old, where one or more of the K,’s becomes imaginary,
and the decaying potential exp(— K,x) becomes the out-
going wave exp(i | K, |x). The inverse of the matrix M;;
becomes the scattering matrix describing reflection, direct
transmission, and side transmission. (Outgoing wave am-
plitudes are obtained by applying M ~! to a column vector
of incoming wave amplitudes.) In Fig. 3 we show the
various scattering probabilities in the energy range up
past the opening of the n=2 channel. We note the ap-
pearance of the expected cusps at the energy correspond-
ing to the opening of the new channel.

We turn now to a comparison with previous work. As
extended by Simon,> Rellich’s criterion (see the note add-
ed in proof to Simon?) refers to the lowest band edge (.e.,
lowest transverse energy) at an infinite distance along the
channels. In the case examined in Ref. 5, where the
effective width of the channel tends to zero as one moves
out to infinity along the channel, the lowest band edge also
tends to infinity. By Rellich’s criterion, that Hamiltonian
has therefore only a discrete spectrum. In our case, how-
ever, the lowest band edge is the finite quantity E, in this
limit, so that there can be a continuous spectrum, a not
surprising result. That there are also bound states, our re-
sult, is a question not addressed by that criterion.

Finally we turn to some remarks about the generality of
these results and observations on other phenomena which
are related to this problem.

(1) The odd-parity bound state lies in the continuum of
the even-parity channel, so if parity symmetry were not
exact, as would be true of most physical devices, the odd-
parity bound state should show up as a resonance in the
scattering just below the opening of the n=2 channel, i.e.,
as a long-lived intermediate state of the scattering process.
Such a resonance should be observable.

(2) The odd-parity case is equivalent to the case of a
single wire, with half the width, bent at a right angle to
look like an “L.” We find, therefore, a bound state at
such a bend, with wave number kw =0.967. We expect
bound states to occur in other geometries as well. The
“T” is one obvious candidate which arises in practical sit-
uations; for all three arms open and of equal width, it has
just one bound state, at kw =0.90z. Our second method
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FIG. 3. Properties of the crossed-wire system, as a function of
kw, with w being the width of the wire and energy given by
E=h%?/2m*. The bound states are shown as vertical lines.
The functions are R, the reflection probability in the incident
wire; T, the straight-through transmission probability; S, the
probability of sideways transmission into the side wires; and S,
the probability of sideways scattering into the second transverse
band, n=2.

is easily extended to any geometry composed of rectan-
gles, open or closed, with equal or different widths.”

(3) If one electron can be bound, can a second electron
of opposite spin also be captured at the intersection? We
have estimated the binding energy of the second electron
using a product wave function with the results of our one-
electron calculation as described above for each electron.
The estimated energy of the two-electron system is

Ey =2E+2.56e%/(ew),

where ¢/¢g is the dielectric constant. Stability of the two-
electron bound state depends on the sign of the energy
difference E,. — (E|+E,). We find that with w=75 nm,
dielectric constant €/eg=13, and effective mass m*
=0.067mo, the Coulomb repulsion energy is about 10
times the one-particle binding energy, so that two elec-
trons are not likely to be bound in that case.

(4) Other multielectron effects can be investigated,
such as the influence of the bound electron on the
transmission of other electrons past the crossing.

(5) We have not yet investigated the effect a magnetic
field would have on the bound state or on the scattering
process, and thus on the Hall effect, but intend to do so.
Our method may be used to investigate the importance of
the sharp corners in forming the bound state, and the
amount of bend required to form a bound state of the bent
wire.
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