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In this paper we propose a new method to study tunneling problems in the presence of phonons at
zero temperature. We have found that, by taking account of the nonadiabatic effect induced by cou-
pling with a tunneling particle, the ground states of phonons can be described by displaced squeezed
states, instead of by the displaced oscillator states given in the adiabatic approximation. On one
hand, in these new ground states the suppression effect of the phonon overlapping integral on the re-
normalized tunneling parameter is more alleviated than that in displaced oscillator states. On the
other hand, the condition for the localization-dislocalization transition of the tunneling particle is
modified in the displaced squeezed states compared with the previous studies.

I. INTRODUCTION

Quantum-tunneling effects are studied in many various
branches of solid-state physics. Recently, the influence of
a phonon bath on the quantum-tunneling system has re-
ceived considerable attention in the literature.! The
Hamiltonian of a tunneling particle coupling linearly
with a phonon bath takes the form

2
H=L—4v(Q)+ 3 fioeblby+ T gilby+b[), (1)
k k

where m is the mass of the particle, V' (Q) the symmetric
double-well potential with minima +1Q,, b; and b, the
phonon operators, and g, the coupling coefficient. For a
system described by Hamiltonian (1), a problem of gen-
eral concern is how to evaluate the renormalized tunnel-
ing parameter at 0 K. The conventional procedure works
on the truncation approximation,® taking the wave func-
tion of the whole system as a simple product of those of
the phonon bath and the particle. If the double-well po-
tential is sufficiently steep as to split the motion of the
particle into two minimum states ¥, and ¢ _, the renor-
malized tunneling parameter at O K can be expressed as

A=Y, b, [H Y ¢ )=080(8:]0-) , (2)

where H, is the Hamiltonian for the particle with the
bare tunneling parameter A,. Hence, A can be calculated
once we know the phonon ground states ¢, and ¢ _.

For a particle with small tunneling probability, the sys-
tem may be regarded as a two-level system. In terms of
pseudospin formalism, the Hamiltonian (1) can be rewrit-
ten as

H=—0g0,+ 3 #iogblb,+ 3 g (b +b)o, ,  (3)
k k

where o’s are Pauli matrices. The above expression can
be set into quadrature as
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According to the adiabatic approximation, the phonon
variables always instantaneously follow the motion of the
particle; therefore when the particle is located at =1Q,
(0,==1), the phonon operator b, will be displaced to
b, tg, /fw,, the corresponding phonon ground states are
are

¢i: Hexp[?(gk/ﬁa)k)(blj—bk)](tvac ’ (5)
k

where ¢,,. is the usual vacuum state. The tunneling pa-
rameter (2) now becomes

(g /Fiwy b —(gy /iy Wb,

—b,) —b,)
* ¢vac|e . ¢vac>

A=Ay (e
k
= Aoe -w (6)
with the Franck-Condon (or Debye-Waller) factor
W= [2g}/(Fiw; )] . (7)
k

The energy of the whole system in this displaced-
oscillator state is

E:%<¢+¢+ +¢~¢,|H|1//+¢++¢Ld>4)

=—Age "= 3 (g} /fiwy) . (8)
k

Equation (6) shows that the tunneling parameter A en-
dures serious suppression by the phonon overlapping in-
tegral. However, the application of the above results to
the atomic tunneling process in solids induces substantial
difficulty.?
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We believe the adiabatic approximation turns out to be
inadequate physically when applied to the atomic-
tunneling phenomena in solids. It is generally accepted
that the atomic-tunneling state is in some extent related
to the softening of local structures, for example, the
atomic-tunneling states in glasses.3™> The softening of
local structures leads to strong coupling between the tun-
neling particle and the environmental lattice vibration as
well as provides the phonon spectrum with an accentuat-
ed low-frequency regime. Both effects are unfavorable
for application of the adiabatic approximation. To over-
come this difficulty, Sethna®® attempted to apply the in-
stanton approximation to the path integral in his studies
on the influence of the phonon bath on the atomic-
tunneling states. His results show, due to the coupling
with the phonon bath, the tunneling particle not only
moves in an adiabatic potential, but is also influenced by
a retarded potential, which originates from the fact that
the phonons are not always in equilibrium with the parti-
cle. The motion of the particle at time ¢ disturbs the pho-
non state, which in turn acts on the motion of the particle
at later time ¢, and the process then turns out to be non-
markovian. In other words, the adiabatic approximation
breaks down, and the displaced-oscillator state does not
properly represent the real phonon ground state. Besides
the microscopic atomic tunneling in solids, the low-
frequency phonon also plays an important role in dissipa-
tive macroscopic quantum-tunneling systems such as
SQID. It is the infrared divergence induced by the low-
frequency phonon that leads to the localization-
dislocalization transition in the system.!

The question arises: How is the ground state of pho-
non, especially the low-frequency phonon, represented
under the coupling with a tunneling particle? Unfor-
tunately, this point has not been fully discussed in the
literature. Recently in Refs. 7 and 8, the displaced
squeezed-phonon state was proposed as the variational
function to obtain a more stable approximate ground
state in bipolaron systems. This new phonon ground
state has also been applied to the valence-transition
theory in heavy Fermi systems’ as well as to the theory of
high-T, superconductivity.!® In this paper we will intro-
duce this displaced squeezed state to the dissipative tun-
neling systems as a new candidate of the phonon ground
state to demonstrate the nonadiabatic aspect of the prob-
lem. We will also calculate the effect of the new ground
state on the renormalized tunneling parameter. The ar-
rangement of the paper is as follows. In the next section,
we will investigate the influence of the tunneling particle
to the phonon state and give a heuristic derivation to see
under which conditions one can get a displaced squeezed
state as the phonon ground state. In Sec. III we will use
the displaced squeezed state as the variational trial func-
tion of phonon to treat the whole Hamiltonian of the sys-
tem. Some concluding remarks will given in Sec. IV.

II. DISPLACED SQUEEZED STATE AS THE PHONON
GROUND STATE

In this section, we want to study the problem of the
tunneling particle coupling with one phonon mode. Cou-

pling with many phonon modes will be investigated in the
next section. For phonon mode k, the Hamiltonian (3)
reduces to

H,=—Ay0, +#w,blb, +g,(b, +b])o, . 9)
We apply as usual the unitary transformation
S, =explo,(g; /Hiw, (b —b;)] (10)

to absorb the interaction term. Then
H,=S,H.SS;!
=#iw, b b, —(g} /#iw,)
— Ao{cosh[(2g, /#iw, (b —b )]},
— Aoli sinh[(2g, /#iw, )b —b, )]}, . (1

When A,=0 (or at the strong-coupling limit) the Hamil-
tonian (11) is already diagonal. We will expand it with
respect to (g /#iw, )(b,f—bk) in a weak-coupling meaning,
however this is done to the renormalized coupling
coefficient due to the rescaling of b,:r—bk in a special
ground state, as will be shown below. From Hamiltonian
(11), one can see there are two kinds of influence on the
phonon system due to the coupling with the tunneling
particle. The first is the term containing o, giving the
influence of the tunneling particle in its ground state
(o,=+1) or in its excited state (c,= —1). The second
is the term containing o, representing the influence of
the transition of the tunneling particle between its ground
and excited states. Such transition needs the participa-
tion of phonons, then it will be important only for tem-
perature T > A/kg. In the following we will neglect the
term containing o, since in this paper we are only in-
terested in the case of zero temperature. When the tun-
neling particle in its ground state, Hamiltonian (11) be-
comes

Flk,g: —AOCOSh[(ng /ﬁa)k )(b/:_bk )]
+io, bl b, —gt /o, (12)

It represents a phonon system with nonlinear interaction.
Such nonlinear interaction is the result of the nonadiabat-
ic effect due to the coupling with the tunneling particle:
The coupling not only leads to the rigid displacement,
but also to the deformation of a phonon wave function.

To zeroth order of g;, the ground state of Hamiltonian
(12) is the vacuum state ¢,,., which gives the displaced
oscillator state of the adiabatic approximation as the
ground state of phonon in original base. Up to g?, Ham-
iltonian (12) can be approximated as

Hy g ~— Do+ iy [ bb, —[280g2(b] — by )2 /(Fiwy )*])
—gi /. (13)
The term in the curly brackets is familiar in quantum op-

tics; it can be expressed as the linear combination of three
generators of SU(1,1) group, namely 1b% 1b 2 and
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%(b+b +4). The ground state is the squeezed (or two-
photon coherent) state.'""!? Direct inspection verifies
that the following unitary transformation:

R, =exp[yi(bf —biH)] (14)
diagonalizes flk,g in (13) to

ReH, R '=e"" %0, blb, +E, (15)
with the ground-state energy

By =~ Ao+ Moy (e —1)—g? /hio, (16)
and

Vi =+In[1+8A.g} /(#iw, )] . (17)

In arriving to the above results, the following identities
are useful:

7Bt =70 =6 — b coshdy +b Tsinh2y | (18a)
eIt Myt b b pYeoshoy b sinh2y ,  (18b)
eV b (T pye b b =yt gy E2y (18c)

Therefore the ground wave function of Hamiltonian (12),
up to g2, takes the standard form of the squeezed state

_ _ —y, (b2—b/2)
¢k:Rk 1¢vac:e o g ¢vac . (19)

The fluctuations in ground state are readily evaluated as
(B (b, +b)E, Y =e"T" | (20a)
()b —b])/ij2 b Y= Th. (20b)

We see one of the quadrature is squeezed at the expense
of the other, at the same time, the Heisenberg uncertainty
J

H <¢kS,—|¢kS,+>:<¢vac
k

=, ..lexp[ —(2g /fiw, e ‘zyk(b,j—b,\. Nldeac) =exp | — 3 [282 /(Fiwy ) e

2 t2 t 2 T2
vulbr—b,%) —2g, (b, —b, V/fiw, —y,(b—b ")
le K2k TPk k'Ok TPk ko k' %k TPk |

remains at minimum. According to Eq. (18c), the
squeezed b,:r—bk now acquires a factor exp(—2y,), or in
(12) the coupling coefficient g, reduces to g exp(—2y,),
which accounts for the expansion leading to (13).

Return to our original base with ¢, in (19), S, in (10),
and ¥g=2"'"% ¢, +¢_), the ground wave function of
the whole system now becomes

(D:Skvlll’s&k:2-1/2(¢+¢ks,++1/’4d’ks,~) > 21

where the displaced phonon squeezed states are defined
as

8k

T
o, (BA 00

T

is,+= |€xp

xexp[_‘}/k(blf—blrz)] ‘bvac . (22)

The two unitary transformations in (22) represent two
different effects of the tunneling particle to the phonon
state: displacement and deformation. Return to coordi-
nate g, representation, the two-phonon unitary transfor-
mation of (14) has the form as

Ro=exp |y, |1+2q, -+ (23)
dgy
For any function f (g, ), we have
R flg=e T flg) (24)

with ’qkze‘zy"qk. This means that, under the
squeezed-state approach, the deformative effect of the
tunneling particle to the phonon state is to rescale the
phonon coordinate q,. The phonon overlapping integrals
in the displaced squeezed states is

Buac)

L (25)

k

Compared with the phonon overlapping integrals in (6) under the adiabatic approximation, we find that the contribu-
tion to the Franck-Condon factor W from each mode k is reduced by a factor exp( —4y,), hence the suppression of the
tunneling parameter will be lifted very much provided 4y, >> 1.

III. VARIATIONAL APPROACH

Now we consider the problem of the tunneling particle coupling with many phonon modes described by Hamiltonian

(3). Applying the unitary transformation

S=TISc=exp [0, 3 (gx /fiw, (b —by) ] (26)
k k
to Hamiltonian (3), we get
H=SHS !
=S fiwgblb,— 3 (g2 /fiw; ) — A, [cosh [2 (284 /iy )b, —by) ] ]ox
k k k
27)

—A, [isinh [2(2gk /i, b —b,) ] ]ay .
k
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This shows that the linear coupling with the tunneling particle induces the nonlinear interaction between phonons not
only in the same mode, but also in different modes. Although the Hamiltonian (27) cannot be solved exactly, we may
attack it approximately by variational approach. Stimulated by the heuristic derivation in the last section, we adopt the
trial function as a simple product of a spin state and squeezed-photon states. As it is easy to see that the matrix element
of sinh[ 3, (2g, /fiw, )(b;—bk )] between any pair of squeezed states always vanishes, the last term in (27) containing o,
has no contribution to the energy for this special trial wave function. Consequently the trial function for the ground

state becomes

D =ysexp [— S vilbE—b? ]qs -
k

With the aid of the identities (18), straightforward calculation leads to

E=(D|H|®)

= —Agjexp
k

— 3 [2g7 /(Fiwy ) le L ]+ S (sinh2y,
k

Now we change y,’s to minimize E, then y,’s must satisfy the following conditions:

e TF=1+8Ag2K /Fiwy ),

where

K=exp |~ 3 [2g2 /i, le "¢ ]
k

=exp

is just the phonon overlapping integrals in the displaced
squeezed states [see (25)]. It is to be solved from (31).

Compared with (8), we remark that the energy E in (29)
with y, in (30) is by contruction lower than that of the
adiabatic approximation, which simply corresponds to
the case of y,=0. This means that the displaced
squeezed state is more stable than the displaced oscillator
state or as the ground state of a phonon.

In displaced squeezed state, the renormalized tunneling
parameter is A=A(K, then (31) gives

InA=Indg— 287 /(fiw,, )?
na=in -
O« [1+8AgE/(Fiw, )12

(32)

The tunneling parameter is very sensitive to the frequen-
cy dependence of the coupling coefficient g,. In general
it can be written as

g =to (o /o )"* T, (33)

where o, is the highest frequency of the phonons coupled
with the tunneling particle. For three-dimension phonon
bath, we have

ng=2afa)"da) s (34)
k

where a is a constant independent of frequency. Substi-
tuting (33) and (34) into (32) leads to
4a % J(w)

1nA=lnA0~? o 0)2

do (35)

with
J(@)=w"/[1+(8A /fiw" o™ 512 . (36)

— 3 [287 /(#iw 211+ 8Ag 2K /(Fiw; )} ] /?
k

(28)
Vo, — 3 (gL /fiw,) . (29)
k
(30)
(31)
I
If n <5 the asymptotic behavior of J (w) as o—0 is
J(w)~o" 372 37

J(w) decreases more quickly than o as w—0 provided
n > —3, then the integral in (35) is convergent and it
gives a nonzero value of A. However, recent study of the
adiabatic approximation has shown!' A=0 for n <1;
As£0 for n > 1. When n =1 (Ohmic dissipation), A de-
pends on a with A=0 for a>#2/4 and A0 for
a <# /4. This phenomenon, also found by renormaliza-
tion group method,'*! is called localization-
dislocalization transition. Our above result indicates that
the condition for such transition is modified in the dis-
placed squeezed state.

Another interesting case is n =3, corresponding to
atomic tunneling in solids.>® In this case we have

S 22 /(#iw, )2=[1—2fwd(o (38)
k

with
t=(m*c3/Vo )'?, (39)

where ¢ is the velocity of phonon, V is the volume. In-
serting (38) into (32) gives

@ 2
_ e —2 [P x"dx
InA=InAy— Wa fo Taet)

=lnA,— Wia, '(1+a2)?
—&2In[a,+(1+a2)' ]}, (40)

where W is Franck-Condon factor for n =3, @, is the di-
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mensionless frequency

B, =w, /wy 1)
with
wo= (8w, A/#)? . (42)

For @, << 1, (40) leads to

—a, w

A~Age =N7ge 7. (43)

This shows that the suppression of phonon overlapping
integral to the tunneling parameter is reduced very much
in displaced squeezed state due to the smaller effective
Franck-Condon factor W=a&,W << W compared with
that of the adiabatic approximation. For @, >>1, (40)
gives

A~Ape W, (44)
which has the same form as that of the adiabatic approxi-
mation.

IV. CONCLUDING REMARKS

The main feature of the present theory is that there are
two effects of coupling with a tunneling particle on a pho-

non state: one is displacement and the other is deforma-
tion. The conventional adiabatic approximation only
considers the former and neglects the latter. By taking
account of the nonadiabatic effect, we find in this paper
that the ground state of the phonon can be described by a
displaced squeezed state approximately. In this new
ground state, the coordinate of the phonon is rescaled, on
the one hand. On the other hand, the suppression of the
phonon overlapping integral to renormalized tunneling
parameter is much alleviated than that in a displaced-
oscillator state of the adiabatic approximation. More-
over the condition for localization-dislocalization transi-
tion is modified in a displaced squeezed state compared
with the result of previous studies. We expect that the
present theory may be useful for both macroscopic and
microscopic tunneling systems coupled with a low-
frequency phonon bath.

ACKNOWLEDGMENT

The authors are grateful to H. Zheng for a critical
reading of the manuscript, and would like to thank M. L.
Zhou for stimulating discussions. This research was sup-
ported by the Chinese Science Foundation for Young
Scientists through Grant No. 0187703 and the Chinese
Science Foundation through Grant No. 1870744.

1A, J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher,
A. Gary, and W. Zwerger, Rev. Mod. Phys. 50, 1 (1987).

2J. P. Sethna, Phys. Rev. B 24, 698 (1981).

3M. H. Cohen and G. S. Grest, Phys. Rev. Lett. 45, 1271 (1980).

4M. I. Klinger, V. G. Karpov, and F. N. Ignative, Solid State
Commun. 44, 333 (1982).

SH. Chen, X. Wu, and J. X. Fang, J. Phys. C 20, 4891 (1987).

6J. P. Scthna, Phys. Rev. B 25, 5050 (1982).

"H. Zheng, Phys. Rev. B 36, 8736 (1987).

8H. Zheng, Solid State Commun. 65, 731 (1988).

9H. Zheng, J. Phys. C (to be published).

10B, K. Chakraverty, D. Feinberg, H. Zheng, and M. Arignon,
Solid State Commun. 64, 1147 (1987).

11D, F. Walls, Nature 306, 141 (1983).

12K, Wodkiewicz and J. H. Eberly, J. Opt. Soc. Am. B 2, 458
(1985).

138, Chakravarty, Phys. Rev. Lett. 49, 681 (1982).

144 J. Bray and M. A. Moore, Phys. Rev. Lett. 49, 1546 (1982).



