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We explore hydrogen-bond melting in B-DNA for the copolymers poly(dGC)-poly(dGC),
poly(dAC)-poly(dGT), poly(dAG)-poly(dCT), and poly(dAT)-poly(dAT). Here dGC refers to a re-
peating sequence of a guanine base followed by a cytosine base on one strand. The melting is ex-
plored through a mean-field self-consistent phonon theory based on the Green’s-function method.
By our calculations, the melting temperatures are 385, 366, 357, and 325 K for the four helices, re-
spectively. The onset of melting, in helices with both A-T and G-C base pairs, is either in the A-T
pair or in the G-C pair, depending on the effective near-neighbor interaction.

INTRODUCTION

A copolymer of DNA is a one-dimensional infinite lat-
tice which has for a unit cell two base pairs of DNA. As
is well known, the base pairs could be either adenine-
thymine (A-T) or guanine-cytosine (G-C). We have four
possible copolymers since the unit cell of two base pairs
could be composed of a G-C and a C-G pair, an A-T and
a C-G pair, an A-T and a G-C pair, or an A-T and a T-A
pair. We shall hereafter refer to these helices as GCGC,
ACGT, AGCT, and ATAT, respectively. The bases are
held together by hydrogen bonds. We explore melting of
these hydrogen bonds using a mean-field self-consistent
phonon approach (MSPA). Kim et al."? have applied
MSPA to the hydrogen-bond melting of a DNA homopo-
lymer having the base pairs G-C for a unit cell. The pro-
cedure is in five essential steps. )

(1) We find eigenvectors and eigenfrequencies of the
lattice with all force constants in the harmonic approxi-
mation. (2) From the eigenvectors and frequencies, we
find the mean-square stretch amplitudes of the hydrogen
bonds. (3) Each hydrogen bond is encased in a Morse po-
tential well, and an effective force constant averaged over
the stretches is calculated. (4) The altered hydrogen-
bond force constants change the lattice dynamics. New
eigenfrequencies are found by the Green’s-function
method. From perturbation approximations we find the
new eigenvectors. (5) We iterate through steps 2-4 at
each temperature until the reduction in the hydrogen-
bond force constants converges. The melting tempera-
ture is taken as that at which the change in hydrogen-
bond force constants diverges after a few iterations. We
now explain each step briefly.

Step 1: finding the dispersion
relations for a dna lattice

We model the copolymer as a one-dimensional infinite
lattice where a unit cell is of two base pairs. On account
of helical symmetry the eigenvalues and eigenvectors are
obtained from the secular equation®

|4 —o?I|=0, (1)
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A(0)=B*(6)F(6)B(0) , (2)

where B is the transformation matrix between mass-
weighted Cartesian coordinates (MWC) and internal
coordinates. F is the matrix of force constants of internal
coordinates, and 0 is degrees of phase shift from one unit
cell of two base pairs to the next. 6 extends over the first
Brillouin zone. The dimensionality of the secular equa-
tion is equal to the number of degrees of freedom in a
unit cell. For a unit cell of two base pairs it is 246.

F=F,+(Fy+Fy)+Fy , 3)

where F, is the matrix of valence force constants within
a unit cell, F, is the matrix of nonbonded interaction
force constants between the bases of a unit cell, and Fy is
the matrix of long-range interaction force constants be-
tween a unit cell and ten neighbors to either side. Fy is
the diagonal matrix of hydrogen-bond force constants
which are listed in Table I. The valence force constants
are refined by us based on spectral data® above 400 cm .
The nonbonded interaction between nearest-neighbor
base atoms has an electrostatic term and a Van der Waals
term.* The interaction is of the form

2nee; 424
fi= = (4)
Fij rij
where 7;; is in A and e; is the net charge in units of elec-

tron charge on atom i. When f}; is in 'mdyn/;\, 7 is 2.31.
A is 1.85. The atomic positions are from Arnott et al.’

TABLE I. Hydrogen-bond lengths and force constants at 293

K.
Bond Length (A) k —rE—dAﬂ

G-C N(1)—H—N(3) 2.8491 0.210
G-C O(6)—H—N(4) 2.8328 0.185
G-C N(2)—H—0(2) 2.8457 0.167
A-T N(1)—H—N(3) 2.8807 0.142
A-T N(6)—H—0O(4) 2.9506 0.053
5436 ©1989 The American Physical Society
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The charges are based on calculations by Miller® but re-
duced by 2.3 based on comparison of these to a few
charges determined experimentally by fitting to x-ray
scattering data.* The nonbonded interactions between
adjacent unit cells are taken as force constants
27e;e;
foi=—m—L (5)
i ‘/?’ ‘/ ejrii'

Two dielectric constants are needed as some atoms see
each other through DNA while others see each other
through water of hydration. Both dielectric parameters

are set to 1.0 within a unit cell and fixed at the long-range °

value beyond 10 A. The long-range value for DNA was
set at 6.0 and for water at 9.0.”

The choice of 9.0 for water was guided by several facts.
Lee et al.” indicate that the water dipole orientation time
near DNA varies between values corresponding to fre-
quencies of 4-80 GHz. The dielectric constant is thus
frequency dependent and only approaches its static value
for frequencies well below 4 GHz. We find 9.0 appropri-
ate to calculations in the sub-THz range. This is essential
to fit the compressional acoustic mode in the dispersion
relations to that obtained in inelastic neutron scattering
data on DNA.3

The force constants for the hydrogen bonds were found
from the Lippincott-Schroeder potential.” All these
terms are included in the F matrix of Eq. (1) and diago-
nalized for various values of 6. The above calculation is
for ACGT, and it fits experimentally observed neutron
scattering data.'®® ACGT has the same base content as
native DNA with alternating purine-pyrimidine bases on
a single strand. The same parameters are used for all
four copolymers.

For AGCT, having all purines on one strand and all
pyrimidines on another, the Van der Waals term is not
included. This was also found necessary in the homopo-
lymer poly(dG)-poly(dC) by Kim et al.! The inclusion
of the Van der Waals term causes an anomalous melting
temperature discussed in three paragraphs prior to the
concluding paragraph of this paper.

MSPA

We now employ the mean-field self-consistent phonon
approach (MSPA), which requires iteration through steps
2, 3, and 4. The procedures in each iteration are as fol-
lows.

Step 2: calculation of mean-square stretching
amplitude of the hydrogen bond

The mean-square stretching amplitude for the hydro-
gen bonds D; is given by

D;=(s;s;) ,

where s; are the internal stretch coordinates of the hydro-
gen bonds. The calculation proceeds as follows. The
mean energy of a simple harmonic oscillator is

(E,)=((n+ o) . (6)
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The mean-square amplitude of the oscillator, at a given
temperature 7, can be shown to be

w_ # fiw

(al) " coth kT (7
Our calculations yield eigenvectors whose components
give the relative amplitudes of motion. We convert the
relative amplitudes to the actual amplitudes. Let
[ A*(6)] be an eigenvector whose components are the ac-
tual amplitudes of the mass-weighted Cartesian coordi-
nates in a unit cell. There are 3N coordinates, and we
have to consider waves travelin% in both directions. For
a mode at 6 and in band A, if £*(6) is the relative eigen-

vector which is normalized,

' N N #iw, (6)
[A™*(6)][ A™M6)] 3N2 0:(0) co KT
X[EM(0)][EM )] . @)

The stretch internal coordinates can be obtained from
the transformation matrix B,

5;i= 2 6By - 9)
k
Using B on both sides of Eq. (8)
" N O #iw,(0)
[s{*(6)s/(0)], 3N2 T coth kT
X[s}*(0)sM0)1, . (10)

The subscripts 4 and R are for absolute and relative,
respectively. Averaging over all the bands at a given 6
and over all values of 6 for a given band we obtain

_1 - #
= % fo d02wk(9) coth[#w,(0)/2kT]

Xs}O)s]*(0) . (11)

Here, the 13 lowest frequency bands are treated exactly
and the other bands are treated in the Einstein approxi-
mation, i.e., assumed dispersionless. We have verified
that treating more than 13 bands exactly does not in any
way alter the results.

Step 3: force constant calculation for the
hydrogen-bond stretching

While all force constants in the lattice are assumed to
remain confined to the symmetric regions of their poten-
tial wells and hence have an unchanging harmonic force
constant until melting temperature, we selectively intro-
duce anharmonicity in the force constants of the hydro-
gen bonds. The hydrogen bonds are encased in asym-
metric Morse potentials (Fig. 1) where they are allowed
to increase in length with temperature. An effective force
constant averaged over all stretches in the Morse well is
calculated. At 293 K this effective force constant is
equated to the harmonic force constant of the hydrogen
bond found from the Lippincott-Schroeder® calculations
and used in step 1. It is this effective force constant that
breaks down at the melting temperature. To calculate
the effective force constant consider the true Hamiltonian
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FIG. 1. The Morse potential well. The parameter a is in-
versely proportional to the square root of the “width.”

Hy=E, +V(r,...,r,), - (12)

where E; is the kinetic energy part and V(r,...,r,) is
the true many-body potential. This potential has har-
monic and anharmonic contributions. Since the final
solution is phononlike, one can write an effective Hamil-
tonian

Hp=E;+i¢u’, (13)
where ¢ is an effective force constant. ¢ is determined by
d
—(F
d¢ (
where Fy and Fy are the true and effective free energies,
respectively. The free energy F is given by the expression

T—FE)=O, (14)

F=—kTInTr[exp(—H/kT)], (15)
fdu e—uZ/ZDdZV
. du?
¢— fdu e—uz/ZD (16)

d?V /du? is the local force constant for various amounts
of displacement. The effective force constant is the
weighted average of the force constant, weighted over the
statistical range of displacements for a given temperature.
At the commencement of the iterations this is set equal to
the harmonic force constant of the hydrogen bond at 293
K. In MSPA we set

VIid(T)+u(T)]1=V[d(T)—u(1)], (17)

d;(T) is the mean equilibrium bond length of the ith hy-
drogen bond. u(T) is the amplitude of oscillation of the
thermal phonons. Here u(7) is set equal to the full width

2
. —u2/2D,
at half maximum of e i

the ith hydrogen bond,

o —u2p2p, A*VI[d{(T)+u]
Jo due T —
— Rm du

2
© —u“/2D;
f due i
Rm

The lower limit of the integral R,, is the point where
the hard core is struck raising the energy to that at
infinity (Fig. 1). The integration can be done in a closed
form,?

, which is 21/1n4D;. For

é; (18)

A—B
=2q? 19
¢ a VO C ’ ( )
A=2{exp[2a’D —2a(R;—R,)]}
2aD—R;+R,,
Xerfc | ———=——" |, (20)
el‘CI ‘/21)
2
B=exp £-2£—a(RT-—R0)
werfe | 2 Rr TRy 1)
eric \/ED s
and
__RT
C=erfc |—=— |, (22)
eric \/ZD

where erfc stands for the complementary error function
R,,=R,—(1/a)In2 , (23)

where R, is determined in the succeeding paragraph.

We approximate the potential for the hydrogen bond
as a Morse potential.? This is depicted in Fig. 1. The
Morse potential has the form!!°

—a(R—R,)

V(R)=Vy(1—e 2=V, . (24)

The Morse constants ¥V, a, R, are determined as fol-
lows.!? Using the initial solution of the vibrational modes
at 293 K, we can calculate the mean-square stretching
amplitude for each hydrogen bond using Eq. (11). From
x-ray data we know the length of each hydrogen bond at
293 K. R, is obtained using Eq. (24) in Eq. (17). If d; is
the equilibrium bond length

1 . 2sinh(ap,g;)

d,(293)=Ro——1In sinh(2api,9;)

w(T)=2(21n2)/2D172 | (26)

(25)

Here ¥V, is determined from the dissociation energy of
the hydrogen bond.'>® Now a remains to be calculated.
In step 1 the force constants for the hydrogen bonds were
chosen by the use of the Lippincott-Schroeder potential.
These are listed in Table I. Using ¥, and R, in Eq. (18)
we determine a’s that reproduce the force constant.

The parameters V, a, R thus calculated at room tem-
perature are kept the same throughout the calculation.
The Morse constants are listed in Table II.
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TABLE II. Morse potential constants for hydrogen bonds.

Bond VO Elg‘y'r}‘ % R 0 ( A )
A A
GCGC 0.025 44 2210 2.804
ACGT N(1)—H-—N(3) 0.01136 4860 2.741
AGCT G—C 0.028 13 2.184 2.783
GCGC 0.03177 1.975 2.746
ACGT O(6)—H-—N(4) 0.026 45 2480 2.717
AGCT G—C 0.033 44 1.963 2.734
GCGC 0.028 17 1.950 2.771
ACGT N(@2)—H—O0(2) 0.021 86 2.468 2.736
AGCT G—C 0.03096 1.922  2.750
ACGT 0.01258 3.720 2.745
AGCT N(1)—H—N(3) 0.019 14 2.520 2.758
ATAT A—T 0.01115 3.275  2.788
ACGT 0.01638 1.580 2.792
AGCT  N(6)—H—O0O(4) 0.023 70 1.240  2.800
ATAT A—T 0.01708 1.465  2.817

Step 4: calculation of new frequencies and
eigenfunctions based on the Green’s function

Using the given force constants and initial solution,
new force constants for the hydrogen bond are calculated
through steps 2 and 3. Let the force constant change be
C, where C is an n Xn diagonal matrix. Here n is the
number of hydrogen bonds per unit cell; n is 4 for ATAT,
5 for ACGT and AGCT, and 6 for GCGC. The diagonal
element of Cis

Ci=¢,—¢;(i=1,n), 27

where ¢, is the calculated force constant, and ¢; is the in-
itially given force constant for the ith hydrogen bond.
The perturbation C, in the force constant matrix 4 of Eq.
(1), which does not break the helical symmetry, modifies
the secular equation to

[4(8)—w*+ClE(8)=0 . (28)

Instead of solving this equation we use the Green’s
function method.!>»'* If we define the Green’s function
g(w?,0) as

g(w?,0)=[w’— 4(6)]7", (29)
then Eq. (28) is equivalent to

[1—g(?0)CIE6)=0 . (30)
The new eigenfrequencies satisfy

det[1—g(@2,0)C]1=0, (31)

where det stands for determinant and @, is the new eigen-
frequency of band A at 6. In internal coordinates Eq. (30)
is reduced to the determinant of an n X n matrix, where

, s0)sF*(6)
g2 0)=3 L —

32
< w'—wi(0) (32

Here o, is the given eigenfrequency of band « at 6, and
5{(0) is the eigenfrequency of the ith hydrogen-bond

stretch. The numerical process of finding the new fre-
quencies is as follows.

As the temperature increases the force constants de-
crease. The decrease in the force constants ensures that
the new frequencies are lower than the corresponding
older frequencies. That the new frequencies are indeed
lower has been meticulously checked at each iteration.
The new frequencies @,’s are then determined by the fol-
lowing method. First, we divide the interval between mf,
and o?_, into subintervals. w,>w,_,. We calculate the
determinant of Eq. (30) at the boundary of each subinter-
val. We then multiply the values of the determinant at
successive boundaries and pick out the subinterval across
which the product is negative. A negative product indi-
cates that the determinant has changed sign within the
given subinterval. Then by linear interpolation of the
determinant at the subinterval, we find the new frequency
By

The new eigenfunctions 5(@)’s are calculated by the
perturbation method. In the MWC coordinate, the new
eigenfunction €} is in the perturbation approximation

A% a
_ C
Ee=git 3 z——g’z ”‘i" £ (33)
Msta) Lk @Dg— @)

In internal coordinates, this can be shown to be

A% a

sH*C s

sa— %
si=sf+ 3 3Lt 34)

Mza) j @g O

where 5 ¥ is the new eigenfunction.

Step S: iteration

We define a divergence § and continue iteration of
steps 2, 3, and 4 at each temperature until

n
7 C

5=abs <(0.1)", (35)

n
T P
i=1

where C; is from Eq. (27), ¢; is the force constant for the
ith hydrogen bond from the previous iteration, and » is
the number of hydrogen bonds per unit cell. We watch
for 6/8,> 1, where §, is from the previous step and &
from the current step. At 7' =293 K, the first calculation
is carried out to check the self-consistency of the given
solution. At each temperature after 293 K, iterations
through steps 2, 3, and 4 were performed until self-
consistency was established. At the temperatures indicat-
ed in Table III, no self-consistent solutions were found.

RESULTS

The results of this calculation are displayed in Figs.
2-7. We have drawn plots of the mean-square stretching
amplitude of the hydrogen bonds as a function of temper-
ature for GCGC and ACGT (Figs. 2 and 3). These are
followed by plots of force constants of the hydrogen
bonds as a function of temperature (Figs. 4 and 5). The
plots of ATAT and AGCT are similar to those of GCGC
and ACGT, respectively, and are found in Ref. 12. It
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TABLE III. Calculated and observed melting temperatures
in K.

Mol. Calc. Expt.
GCGC 385 372
ACGT 366 350
AGCT 370 344

3572
ATAT 325 318
Z-GCGC 425 m

2The melting temperature of 357 K is without the inclusion of
the Van der Waals term and all data in tables and figures of
AGCT refer to this case. When included, the melting tempera-
ture is 370 K.

must be noted that in each plot the two halves are over
the same range of temperature. In each figure we use, a
solid line for the—N(1)—H—N(3) bond in G-C, a solid
line for the—N(1)——H—N(3) bond in A-T, a long dashed
line for the—O(6)-—H—N(4) bond in G-C, a long dashed
line for the—N(6)—H—O(4) bond in A-T, a short dashed
line for the—N(2)—H—O(2) bond in G-C.

The behavior of the hydrogen bonds of the two base

MEAN-SQUARE STRETCH AMPLITUDE (B-GCGC)
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FIG. 2. The mean-square stretch amplitudes of the hydrogen
“bonds in GCGC as a function of temperature. The three bonds
to the left are of the base pair G-C, while the three bonds to the
right are of the base pair C-G succeeding G-C in GCGC. The
solid line is for the central bond N(1)—H-—N(3). The long-
dashed line is the O(6)—H—N(4) bond adjacent to the major
groove. The short-dashed line is the N(2)—H—O(2) bond adja-
cent to the minor groove. The first and second half of the tem-
perature axis denote the same range of temperature.
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pairs of a unit cell is depicted in the first and second half
of each plot. Thus, the first half of each plot in ACGT
depicts the behavior of the hydrogen bonds A-T and the
second half of C-G. The first half of each plot in GCGC
depicts the hydrogen bond behavior in G-C and the
second half, of the C-G pair. The plots of different copo-
lymers are drawn to the same scale to facilitate compar-
ison. In Figs. 2 and 3 we see that the displacement is
small for all temperatures below the melting temperature.
This indicates that the bond behaves as a restorable
spring, undergoing gradual elongation until the melting
temperature. At that temperature it ceases to be a
reasonable bond. The loss of the Hookian response is in-
dicated by the sudden increase in the values of the mean-
square stretch amplitudes and the sudden drop in the
values of the force constants.

As the temperature increases, the vibrational mean dis-
placement increases. In the asymmetric potential, the
point of return is pushed to regions of weaker restoring
forces. The effective force constant is the weighted aver-
age over force constants over the entire potential well.
As the turn around point is pushed further out, the feeble
contributions to the force constant reduce the effective
force constant. The mean-thermal displacement in-

MEAN-SQUARE STRETCH AMPLITUDE (B-ACGT )
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FIG. 3. The mean-square stretching amplitudes for the five
hydrogen bonds in ACGT as a function of temperature. The
two bonds to the left are of the base pair A-T, while the three
bonds to the right are of the base pair C-G succeeding A-T in
ACGT. The solid line is the N(1)—H-—N(3) bond on both
sides. The long-dashed line is the N(6)—H-—O(4) bond on the
A-T side and O(6)—H—N(4) on the C-G side. The short-
dashed line on the C-G side is the N(2)—H—O(2) bond. The
first and second half of the temperature axis denote the same
range of temperature.
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FIG. 4. The effective force constants for the six hydrogen
bonds in GCGC as a function of the temperature. The lines
refer to the same bonds as in Fig. 1.
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FIG. 5. The effective force constants for the five hydrogen
bonds in ACGT as a function of the temperature. The lines
refer to the same bonds as in Fig. 2.
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FIG. 6. In ACGT(1) the melting commences in the bonds of
the A-T region and spreads to the C-G region. The right half of
the figure belongs to the A-T pair and the left half to the C-G
pair. The first box at the top shows the first bond to melt. The
instability then spreads through the bonds of the lower boxes.
Both halves of the iteration axis are over the same range.

creases even further. The return force is very weak and
the vibration is anharmonic. This coupled behavior and
the resulting feedback causes the instability at high
enough temperature.

The breakdown of self-consistency indicates the onset
of melting. This reflects itself in the shift from conver-

CONVERGENCE FACTOR B - ACGT(2)
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FIG. 7. In ACGT(2) the melting commences in the bonds of

" the C-G region and spreads to the A-T region. The left half of

the figure depicts the C-G pair and the right half, the A-T pair.
The box at the top shows the first bonds to melt. The instability
then spreads through the bonds of the lower boxes. Both halves
of the iteration axis are over the same range.
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gence to divergence of & in Eq. (35). To explore patterns
in the melting of hydrogen bonds and examine the actual
bond at which the instability sets in, we plot a conver-
gence factor for each bond. It is the difference in the
values of the force constant across an iteration amplified
by 10° at the melting temperature. The melting com-
mences at the bond(s) whose convergence factor first
diverges after a few iterations. Within 1 K the instability
rips through all the bonds. After thé onset of instability,
D the mean-square stretch amplitude becomes large, the
force constant drops, and all approximations involved in
the formalism become suspect. The calculations are indi-
cators of the onset of melting only.

In GCGC the melting commences in the bonds adja-
cent to the major groove.!? In ATAT both bonds in each
base pair melt simultaneously. The actual bond where
the melting commences in ACGT and AGCT depends on
the form of the near-neighbor interactions in Eq. (4).'

The convergence factors of ACGT as a function of
iteration at the melting temperature are shown in Figs. 6
and 7. The left half of the plot is the A-T pair and the
right half, the C-G pair. The two halves of the axis are
over the same range of iteration. The uppermost box
shows the bonds that melt first. The melting then spreads
through the bonds in the lower boxes.

When the dielectric parameters between nearest neigh-
bors are set equal to the long-range values of Eq. (5), the
melting commences in the A-T pairs and spreads to the
C-G pair. ACGT, with this inherent interaction, is
denoted as ACGT(1) and depicted in Fig. 6. For a
distance-dependent dielectric constant in the Coulombic
interaction, which is 1.0 within a unit cell and increases
to the long-range values as in Eq. (5), melting commences
in the C-G regions and spreads to the A-T regions. This
is ACGT(2) described in Fig. 7. The diagrams for AGCT
are similar and are included in Ref. 12.

When both electrostatic and Van der Waals nonbonded
interactions are included we calculate for AGCT an
anomalous melting temperature of 370 K. This is much
higher compared to its experimentally observed melting
temperature, than is the case for the other three copoly-
mers. In fact this temperature is higher than that of
ACGT whereas the observed melting temperature of
AGCT is lower than that of ACGT. Of the four copoly-
mers studied here AGCT is the only one that has all
purine bases on one strand and all pyrimidine bases on
the other. The purines are larger than the pyrimidines.
But when all purines are on the same strand there is no
interleaving across the hydrogen bonds of stacked bases.
There is very strong base overlap in a given strand. We
believe that the high melting temperature is due to too
large a stacking energy which in our formulation occurs
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via the nonbonded force constants between neighboring
bases. To explore this idea we reduced these nonbonded
interactions in the calculationally simplest manner by el-
iminating the Van der Waals interaction but retaining the
stronger, more effective, electrostatic interactions as de-
scribed by Egs. (4) and (5). In this modified calculation
the melting temperature was found to be 357 K which
would put it in line with the other calculated melting
temperatures as shown in Table III. Clearly our models
of nonbonded interactions are still somewhat crude and
in need of further refining.

The difference in melting temperature caused by alter-
ing the Van der Waals interaction illustrates a point that
could be easily misunderstood. Because of our emphasis
on hydrogen-bond behavior one may overlook the fact
that stacking energy via nonbonded interaction plays a
substantial role in the workings of this theoretical ap-
proach. The importance of stacking energies has been
recognized by workers in DNA for a long time. There is
hope for better refinement of the nonbonded interactions
as they also affect the frequency of vibrational modes
which can be observed independently of melting tempera-
ture observations.

Table III lists the calculated and observed melting tem-
peratures. We note that the melting temperatures from
the MSPA are about 15 K higher than that reported!® at
19.5-mM Na™t concentration. The force constants we
have used at 293 K represent a low salt concentration.
At high concentrations of sodium ions (1-6 mol), the
melting temperature decreases'® with increase in salt con-
centration. The melting temperatures derived from a
mean-field theory are expected to be higher than the ex-
perimentally observed temperatures. In our calculation,
we assume the DNA is infinitely long, but the terminus
and local defects of a real sample cause fluctuations that
induce transient base pair openings. These effects make
the melting temperature lower than the mean-field melt-
ing temperature we have calculated. Calculations by
Kim et al.'’ indicate that the temperatures calculated
from defect mediated melting calculations are lower than
the mean-field calculations. Then, they favorably com-
pare with the experimental results. We find MSPA as a
successful approach to hydrogen-bond melting in the
DNA copolymers.
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