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Starting from a general Hamiltonian describing the dynamics of vibrons coupled to acoustic pho-
nons, equations of motion for the dynamical variables are obtained by eliminating the phonon de-

grees of freedom. Specific results are obtained for the form of this Hamiltonian proposed by Tak-
eno. Vibron number is not conserved in general, which distinguishes our study from others based
on the Frohlich Hamiltonian in which the analogous bosons are conserved. Solitary-wave solutions
are found for approximate continuum wave equations obtained employing a coherent-state ansatz
under a rotating-wave approximation. Regimes of validity are determined, and within these regimes
physically meaningful quantities are computed, including energy —wave-vector relations,
frequency —wave-vector relations, binding energies, and eft'ective masses. The role of these in spec-
troscopy is discussed. Several instabilities are encountered and their origins traced. Certain of
these are argued to be generic and intrinsic to the physics of the problem, while others can be shown
to be artifacts of the particular model chosen for specific calculations. The modification of our re-
sults caused by discreteness corrections is considered, and the role of thermal fluctuations is dis-
cussed.

I. INTRQDUCTB3N

Making progress in understanding the role of soliton
dynamics in physical systems is hampered by the enor-
mous difficulty in treating any nonlinear evolution other
than one of the few well-known integrable families such
as the nonlinear Schrodinger family. The great potential
for soliton dynamics is that despite the complex and mul-
tifarious textures presented to us by nature, the universal-
ity of the nonlinear Schrodinger and other soliton familes
causes them to be implicit under the surface of many
physical transport problems. This great potential is
simultaneously a great problem, since universal qualities
tell us little about the properties of particular systems or
situations, and belief in universality can lead us to imbue
physical systems with properties they may not have. It is
in this light that we approach a problem of widespread
current interest from a perspective somewhat separated
from the conventional point of view.

Envelope solitons in one-dimensional molecular sys-
tems have been studied intensively since first proposed by
Davydov and Kislukha. ' One can fairly say that there is
not one theory of molecular solitons, but many.
Davydov's original theory, ' which first recognized the
possibility of nondispersive propagation, continued the
development contributed to by numerous workers
from Landau to Holstein. More recent generalizations
can be distinguished by the manner and extent to which
the quantum character of the bare particle is taken into
account. Most deal with one of two ansatz states pro-

posed by Davydov ' and apply Hamilton's equa-
tions, " ' semiclassical quantization procedures, ' '

Heisenberg equations, ' Schrodinger equations,
Liouville —von Neumann equations, or derive alterna-
tive equations of motion by variational methods. '

Davydov's original theory was developed for applica-
tion to systems at zero temperature. More recently, great
interest in the possible role of solitons in biological set-
tings has raised important questions about the stability of
solitons at elevated (e.g. , physiological) temperatures.
Little progress on the finite-temperature problem has
been made by analytic theory. Numerical simulations of
an uhelix model by Lomdahl and Kerr' and by
Lawrence et al. ' suggest that solitons are unstable in
that system at room temperature. Other simulations
based on a difFerent model have been interpreted as indi-
cating room-temperature stability. '

On the other hand, Takeno has observed that as a
model of the amide-I vibration in the a helix, Davydov s
approach fails to include some of the basic properties
which distinguish vibrons from conserved particles. Tak-
eno proposed an improved model and showed that while
many similarities exist between its consequences and
those which follow from the Davydov model, significant
differences could be found, including larger binding ener-
gies suggestive of greater stability. Takeno's improved
model has been applied to the a helix in numerical simu-
lations by Lomdahl and Kerr, with results indicating
stability greater than that of the corresponding Davydov
model. The relationshp between the Davydov model and
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Takeno's improved model can be understood as follows.
We start with a general system Hamiltonian having the

following form:

8=8,„,+8,„+N,„, , (l. la)

where 8,„, is the Hamiltonian of the system of interest,
expressed as a function of a set of position and momen-
tum operators [q,P j. (We find it convenient to use the
position-momentum representation for the system vari-
ables rather than the second-quantized formalism. )

is the phonon and/or bath Hamiltonian which may gen-
erally contain any type phonon modes and any number of
branches; however, we take 8 h to be strictly harmonic.
8;„, is an interaction Hamiltonian which is linear in the
position coordinates of the molecules comprising the lat-
tice.

(g„)=—,
' m co„q „+ . , g (q„)=Q „+ (1.4)

A useful special case of the general Takeno model retains
only the leading orders in the above series. We call this
specialized Hamiltonian the quadratic Takeno Ham E'Itoni-

an, since both v(q„) and g (q„) are quadratic functions of
qn.

Also contained in the general Hamiltonian (1.1) is the
Frohlich Harniltonian, a special case of which is the
basis of the Davydov model

molecular unit which has mass M, and w is the longitudi-
nal sti6'ness coefficient. The interaction between the local
modes and acoustic phonons is given by the interaction
Hamiltonian 8„;bph. In general, both the potentials
v(q„) and the forces g (q„) may be arbitrary functions of
Q„; however, we consider the leading order in q„ to be
quadratic, such that

B, , =H,„,Iq,p j,
&ph=HphIQ Pj

&;., =&Q g tqPj .

(1.1b) ~Davydov ~ex +~ph +~ex-ph

(l.1c) where

(1.1cl)
8,„=QEata„—g J „ata„,

(1.5a)

(1.5b)

g Iq, P j is the force experienced by the molecule m at its
equilibrium position R due to the presence and dynarn-
ics of the system excitations. The only formal constraint
on g Iq,P j is that it be Hermitian; however, in specific
calculations below we will be concerned with models for
which the relevant phonons are of the longitudinal acous-
tic modes, and the inhuence of a localized excitation on
neighboring molecules is symmetric and extends only to
nearest neighbors; that is,

g Iq P j =g(q —1) g(q +1) .

We then arrive at the Hamiltonian proposed by Takeno
for the description of vibron transport

m, n

2M+ 2 'Q"
n

- h yx(Q +1 Q —1)a

(1.5c)

(1.5d)

I

PD,„ydo„can be viewed as a number-conserving trunca-
tion of the quadratic Takeno Harniltonian; indeed, the
expectation values of BT,k,„, (quadratic) and BD,„yd,„ in
any state containing a definite number of a-bosons are
identical provided the a-bosons are those associated with
the decoupled local oscillators:

1/2

~Takeno ~vib +~ph +@vib-ph

where

(1.3a)

Pn l

marco

2

(a„+a„),
' 1/2

(a„—a„),

(1.6a)

(1.6b)

+ U ( q„) —g L „q q„,
n m, n

T

2

2m+ 2'Q"

@ ib- h X (Q. +1—Q. -1)g (q. )

(1.3b)

(1.3c)

(1.3cl)

AL „gg
mm

mcus

(1.6c)

and one makes the proper identi6cations of the various
Harniltonian parameters

8„;b is the Hamiltonian of a set of oscillators having local
potentials v(g„). L „ is the transfer coefficient arising
from the coupling of the mth and nth intracell oscilla-
tions. Such coupling may arise from electronic dipoles,
as is apparently the case in acetanilide' and a-helix pro-
teins, or may be purely mechanical in origin, as is ap-
parently the case in L-alanine. We assume L „=L„
q„ is the displacement operator of the oscillator in the
nth molecular unit, p„ is the conjugate mornenturn opera-
tor, and m is the appropriate reduced mass. Q„and P„
are the displacement and momentum operators of the nth

[The reader is reminded that the relations (1.6a) and
(1.6b) are defining relations for a„and a„,not Q„and P„.]
Since the potential v(q„) may be anharmonic, the
creation and annihilation operators a„and a„de6ned by
the harmonic oscillator relations (1.6a) and (1.6b) do not
diagonalize intraeell oscillations in the general case.

It is straightforward to show that in both the Davydov
and Takeno models the dynamics of free excite, tions can
be characterized in part by maximum speeds v,„, and
v „, respectively; however in the continuum limit one
finds that
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D T
Vmax & Vmax Vf =

1/2
2Ll2

(1.7a)

AkE (k)~E (0)+
2mB '

co(k)~[co (0)+k vf ]'~2,

mD=, m"=fi A'co(0)

2JI2 vf

(1.7b)

(1.7c)

Take no

---- Davydov

(See Fig. 1.) A wave vector ko can be defined through the
relation Ako=m vf which sets the scale for structure in
k space. No corresponding quantity exists in the contin-
uum limit of the Davydov model.

In the continuum limit, the linear-wave equation impli-
cit in the Davydov model is the Schrodinmger equation,
while that underlying the Takeno model is the Klein-
Gordon equation. One consequence of this fact is that
continuum treatments of the Davydov model implicitly
presume material properties consistent with the speed of
sound v, being small relative to the maximum group ve-

locity attainable by a free excitation, v,„. On the other
hand, (1.7a) shows that while the Takeno model sub-
sumes such cases, it also allows one to consider materials
for which vf & v, . The relation vf & v, is typical of
"narrow-band" systems, while vf & v, is typical of
"wide-band" systems. We will consider both types of sys-
tems below.

In this paper we present an analysis of the Takeno
model using the methods of Brown et al. and Wang
et a/. ' This analysis parallels that given for the

II. DYNAMICS IN THE HEISENBERG PICTURE

We now obtain exact Heisenberg equations of motion
for the vibron subsystem by eliminating acoustic phonon
variables. For this purpose it is convenient to represent
the lattice degrees of freedom using the second-quantized
operators b and b defined by the relations

' 1/2

2NMco

t 1/2

q

(2.1a)

(2.1b)

where co is the phonon dispersion relation, which for
longitudinal acoustic phonons is

Davydov model in Ref. 18. As in Ref. 18, effects appear
which are not found in previous analyses of the model.
In Sec. II we present the exact dynamics of the quadratic
Takeno model in the Heisenberg representation. In Sec.
III we discuss the use of coherent states and obtain the
approximate equations of motion upon which further
analysis is based. In Sec. IV we obtain approximate
solitary-wave solutions in the continuum limit. The total
energy, binding energy, carrier wave frequency, effective
mass, and the length scale of the carrier wave modulation
(width of the solitary wave) are determined. Regimes of
validity are mapped out and the role of the acoustic
sound speed is examined. In Sec. V the various instabili-
ties we encounter are laid out and the significance of each
is assessed. In Sec. VI we reexamine the equations of
motion of Sec. III with the aim of assessing the impact of
the discreteness of real lattices on the character of
solitary-wave states. In Sec. VII we indicate how our ap-
proximation may be applied to obtain corresponding re-
sults for the general Takeno model. In Sec. VIII we dis-
cuss thermal effects by comparing the character of
thermal fluctuations in the Davydov and Takeno models.
A qualitative description of thermalization is given in
which a unique minimum-energy envelope plays the cen-
tral role. Our conclusions are summarized in Sec. IX.

co~ =co~sin( ~ql~ /2) . (2.2)

Continuum Discrete Lattice

For simplicity, we limit our present discussion to the
quadratic Takeno model [cf. (1.4)] for which the Heisen-
berg equations of motion for the elementary vibron and
phonon operators are

Pn

m
(2.3a)

P„=—mco,q„+2+L „q —2+g~Acu (b~+b )q„,
m q

FIG. 1. Linear dispersion relations for the Takeno model
( ) and the Davydov model ( ———). The right-hand
panel shows dispersion relations for a discrete lattice having a
lattice constant a, while the left-hand panel shows correspond-
ing dispersion relations for a continuous medium. Note that un-

der this mapping the band edges and effective masses of the
linear excitations are different in the two models and that the
distinction is preserved in the continuum limit.

bq
= ice b i g g—~ c—o q

q, m

where

g [ 2i sin(ql)] —~eR-
(2&MA'co )'~

(2.3b)

(2.3c)

(2.4)
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Integrating the equation for the phonon variables (2.3c),
we obtain the exact relation

where J (z) is the Bessel function of the first kind of or-
der v.

bq(t) =e ' bq(0)

—i I 'd~e
0

ggqco q (r) . (2.5)

Pn(t)„(t)=
Vl

(2.6a)

P„(t)= —Ico q„(t)+2 g L „q (t) —ZF„(t)g„(t)

—Zg I drK„)(t q)q i(r)q„—(t) .
1

The integral kernels are given by

K „(t)—:2 g g q g„qficoqcos(coq t),
q

(2.6b)

(2.7)

and the fluctuation operators F„(t) are proportional to
those appearing in Refs. 18, 21, and 30

P„(t)= ggq %co [e ' bt(0)+e ' b (0)];
q

(2.8)

their correlation function gives the quantum fluctuation-
dissipation relation for the system

(P (t)P„(r))= ggq g„Vi co I2cos[co (t —q)]
q

x((n, )+-,')

i sin[co —(t —q.)]I,
(2.9)

The first term propagates according to the free evolution
of the phonon system, and the second accounts for the
disturbance of the free-phonon evolution by the vibron
system.

Although bq(t) and q„(t') commute at equal times
(t =t'), they do not commute at difFerent times (t+t').
One consequence of this is that the terms on the rhs of
(2.5) do not commute with each other, nor do they com-
mute with other operators appearing in the equations of
motion. When substituting (2.5) into (2.3b), therefore, we
are free to make the ordering of our choice as long as the
same ordering is chosen for both contributions to (2.5).
For the (quadratic} Takeno Hamiltonian (1.3) we find the
operator equations

III. COHERENT STATES

Most analyses of the Davydov model invoke in one
way or another the Davydov ansatz for the state vector
of the exciton-phonon system. The ansatz state is a ten-
sor product of a one-exciton state and a product of pho-
non coherent states. To make progress in our analysis,
we generalize the Davydov ansatz in a natural way:

lg. (t) & =—l~(t) &e Ip(t) &,

where

(3.1a)

la(t) ) =exp —g [q„(t)p„p„(—t)q„] IO),
n

(3.1b)

IP(t)) =exp —g [Q„(t)P„P„(t)Q—„] IO) .
n

(3.lc)

This differs from the Davydov ansatz in that the vibron
state la(t)) is defined here to be a coherent state rather
than a definite number state as in the Davydov model.
Although the mean number of vibron quanta may be
essentially constant (slowly varying} in a time-dependent
state (as we anticipate for states reasonably identified
with solitons), vibron number is not conserved by the
Takeno Hamiltonian, and thus the use of number-
indefinite states greatly facilitates analysis. The factored
form of the ansatz implies that our ansatz is not an exact
solution of the Schrodinger equation of the system, i.e.,

lq. (t)&we ' ""lq.(0)& . (3.2)

y(0) y(0) „(q,(t)l&(0)ly, (t)) .
dt dt

(3.3b)

It is because of this approximation that it is desirable to
integrate the exact Heisenberg equations as far as possi-
ble [as in (2.6)] before applying coherent-state methods.
However, doing so requires that one analyze two-time
correlation functions

This approximation impacts our analysis of the Heisen-
berg equations obtained in the previous section when we
make replacements

& g(0) lo(t) lg(0) & ~ & g. (t) lo(o) lg. (t) &, (3.3a)

where the ( ) indicates the trace with the equilibrium
density operator of the free-phonon (g=0) bath at tem-
perature T, ( n ) is the Bose distribution
[exp(ficoqlki)T) 1], and ki) is the Bo—ltzmann con-
stant. Using the coupling functions (2.4), the kernels take
the form

2

K~„(t)= [Jz(~ „ i)(Zmiit)+ZJ2(~ „)( miit)

& y(0) I
A (t, )&(t, ) I y(0) &

=(@(t,)la(0)e '"'" """(o)lq(t, )&

(3 4)

which are generally intractable even in the basis of
coherent states. On the other hand, the factored approxi-
mation

+J2(m „+i)(Zcoi)t)],
2

K „(0)= (5 „+,+25 „+5 „,), (2.10)

&q(0)l~(t, )(t, )lq(0) &=(y.(t, )l~(0)ly. (t, ) &

x & y. (t, ) IS(0)lg. (t, ) &

(3.5)
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results in wieldable equations of motion; however, all the
benefits of explicit operator integration are lost and (2.6)
is rendered entirely equivalent to the unintegrated system
(2.3). In this paper we forfeit the quantum corrections
made available by the integrated form of the Heisenberg
equations (2.6) and base our coherent-state analyses on
the unintegrated system (2.3). It is our unproven view
that this use of coherent states is less serious an approxi-
mation than corresponding coherent-state analysis of the
Davydov model, since the lack of number conservation in
the Takeno model assures finite-amplitude contributions
from multiple-quantum states which become increasingly
classical vvith increasing quantum number.

The remaining difhculty in applying coherent-state
methods concerns the evaluation of expectation values.
Elementary properties of coherent states give us the re-
sults40 4'

(3.10a)

(3.10b)

p„(t)
q„(t)= I (3.11a)

Bv~[q„(t)]
p„(t)= — +2 g L„q

Bq„ t

Applying (3.3), (3.6), and (3.10) to the (general) Takeno
Hamiltonian (1.3) the Heisenberg vibron equations can be
translated into equations of motion for coherent state arn-

plitudes, or equivalently, displacernent and momentum
expectation values:

& y, (t) Iq„ ly. (t) ) =q„(t), (3.6a)

(3.6b)

(3.6c) X f dr+ (t r)gx[q (r)]
0

&a(t}lfQ,P }la(t) &
= &a(t)lf~(q, P)la(t) )

=tv I q (t»p (t) } (3.7)

where f~ is the normal-ordered function associated with

f and not f itself. ' From this follow the relations

af„Iq(t),p(t) }
&a(t)1[0. fIOP}]l«t)&=

iA

~f„Iq (t),p (t) }
.g

&a(t)l[P. f Iq P}]la(t»=—

(3.8b)

which are analogous to Hamilton's equations. The dis-
tinction between f and fz is a quantum eff'ect. One can
show that

f~Iq( ),pt(t)} =f Iq(t),p(t)}(1+OI& '}), (3.9)

(3.6d)

However, for more general operator-valued functions
f Ig,p} Taylor expandable in the operators Iq,p },it fol-
lows that

Bg~[q„(t)]
X

Bq„(t)
(3.11b)

[The scaling of terins in (3.11) by inverse powers of the
coupling constant g is a notational convenience only. ]
The fluctuating coefficient f„(t) appears when lattice
variables are eliminated by integrating (2.3c) and is con-
structed from the initial-value contributions arising from
(2.3c) or (2.5) after applying coherent states.

Equations of the same form would be obtained from a
classical derivation, with the exception that the normal-
ordered functions vz and gz would be the "classical"
functions v and g. In the quadratic Takeno model, v&vz
and g&g~; however, in each case the diff'erence is only an
additive constant. In the case of v and v&, the constant
acts only to shift the total energy and hence is irrelevant.
In the case of g and g&, the constant introduces a term
which is generally sensitive to volume dilation; however,
this term vanishes in our case due to the assumed transla-
tional invariance.

In order to obtain solitary-wave solutions appropriate
for the description of long-wavelength excitations, we re-
quire the transcription of (3.11) into continuum form.
We carry out the continuum limit by reparametrizing the
discrete equations in terms of bulk parameters which
remain finite as l ~0 and using normal-mode relations to
define the continuum-field variables. Thus we define the
continuum parameters and auxiliary functions as follows:

where X is the average number of quanta in the relevant
mode. Thus, f and f~ coincide in the correspondence
limit N woo, and Eqs. (3.8) bec—ome Hamilton's equa-
tions. One consequence of this is that a large-N system
prepared in a coherent state will persist in that state with
high accuracy for long times. However, the distinction,
and hence the error, can be significant when f is anhar-
monic and only small numbers of quanta are involved.
Thus, in the present context we have

g= tel, u, =Kg/i)

co(k)=[co (0)+k uf]'~
1/2

co(0)= 41

(3.12a)

(3.12b)

(3.12c)
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a2L„=L(5„+i+5„ i)~2L +Ll
BX

(3.12d) f (t)~f (x, t)=g
ag (y, o) P(y, 0)

Qy qv y =x+v t

a2
0=—VI

2

BX

82

at2 ' (3.12e)
+ &Q(y0)+g P (y, 0)

X/Vg y=x —v t

K „(t)~K(x,y, t)= [5(x —y+v, t)2g

+5(x —y —v, t)], (3.12f)

(3.12g)

Then, in the continuum limit, Eqs. (3.11) can be rewritten
as

Bv~[q (x, t) ]
Clq (x, t)=-

@ Bq (x, t)
41

q(x, t)

a) ~gN[q (x t)1+,f dy f drK(x, y, t ~)giv—[q(y, r)] + f(x, t)
pg —oo 0 Qq xt pg Bq xt (3.13)

IV. APPROXIMATE SOLUTiONS

The results of the foregoing sections establish a frame-
work within which one may address diverse questions. In
this section we focus on ending approximate solutions.
Since no useful solution of the dynamical equations ap-
pears accessible in the presence of thermal noise, we limit
our discussion to temperatures suSciently low that the
role of thermal fluctuations may be neglected. It is im-
portant to note that in general the "fluctuation" f (x, t)
appearing in (3.13) contains both systematic and random
contributions. If a coherent structure such as a soliton
exists in the system at the initial time, the initial coordi-

nates of the medium reAect the superposition of a
coherent deformation and thermal noise

f (x, t) =f"'(x, t)+f'"(x, t) . (4.1)

At sufficiently low temperatures, the thermal noise
f'"(x, t) may be neglected and f (x, t) contains only the
coherent deformation f"'(x, t)

For the sake of simplicity, let us Grst consider the
quadratic Takeno model in which both the local oscilla-
tor potential v(q) and the coupling function g(q) are
quadratic functions of q. For the quadratic Takeno mod-
el, Eq. (3.15) can be simplified

Clq(x, t)=co (0)q(x, t)+ f"(x, t)q(x, t)+ —f dr q (y, r)2 „i G(0)
p p o Bt y =x+v (t —~)

q(x, t)

+ f dr —
q (y, r)G(0)

p 0 Bt x v (t T)
q (x, t), (4.2)

wherein co(0) is the lowest frequency of the vibron band.
For later convenience, we also define

2 4g'
2 2in'(1—v /v, )

(4.3)

1

(1—v'gv' )'"f
Rather than attempting the general solution of (4.2),

q (x, t) =/[a(x —vt)]cos[kx co(k)t], —(4.4)

in which /[i~(x vt)] is a re—al envelope function whose
width is given by ~ '. The carrier wave frequency co(k)
appropriate to a given k will differ, in general, from the
corresponding frequency co(k) of the linear system.

On manipulation of the integrals in (4.1), one finds that
the character of the integrands is controlled by the di-

we look for traveling-wave solutions. Let us consider a
modulated carrier wave of the form
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mensionless parameters

kv, +co(k)

a(v, +u) (4.5)

The condition R ))1 includes limits which are easily
visualized. [We assume that v ((v, and co(k)&ku, . ]
First we consider the limit in which the phase velocity is

[Hereafter we drop the subscript (+) for convenience. ]
When R ))1, there are many carrier wave oscillations
modulating the envelope function so that one may accu-
rately approximate the integrals using the rotating-wave
approximation (RWA)

q '(y, r ) =P'[~(y —vr ) ]cos'[ky —co( k )r]

(4.6)

greater than the sound speed, so that our wave packets
are constructed from frequencies near the center of the
Brillouin zone. In this limit, the condition (R ))1) is the
same as the condition co(k)))~v„which requires that
many carrier wave oscillations elapse during the time re-
quired for a sound wave to propagate across the en-
velope. The averaging effected by the RWA is then pri-
marily of a temporal character. The second limit is that
in which the phase velocity is less than the sound speed,
so that our wave packets are constructed from frequen-
cies in the outer part of the Brillouin zone. In this limit,
the condition (R ))1) is the same as the condition k ))~,
which requires that the envelope span many wavelengths
of the carrier. The averaging effected by the RWA is
then primarily of a spatial character. Thus the integral
terms in (4.2) can be evaluated, and (4.2) can be rewritten
as

pq (x, r) =~ (0)q (x, t) — p [v(x —ut)]q (x, t)+ f"'(—x, t)q(x, t)
p P

+ G(0)
2p

P [~(x u, t)]+ —P [a(x+v, t)] q(x, t) .
Vg V v, +v

(4.7)

E3q(x, t)=co (0)q(x, t) P[~(x v—t)]q(x, t), —G(v)
p

(4.8)

which has solutions of the form

q(x, t) =Posech[a(x vt)]cos[kx——co(k)t], (4.9a)

accompanied by deformations

Q(x, t) = —y, Potanh[~(x vt)] . — (4.9b)

The five parameters Po, sc, v, k, and co(k) are constrained
by three relations (see Appendix A). First, the usual rela-
tion between group and phase velocities continues to hold

co(k) z
V —Vf (4.10a)

second, the width of the envelope is constrained by

co (k) —ro (k)
2 2v vf

(4.10b)

third, Po is constrained by the boundary conditions [cf.
(7.7)] that select the solitary-wave form (4.9a) over the

For preformed solitons the coherent fiuctuation f"'(x, t)
has the form required to cancel the traveling potentials
proportional to

(u, +v) '$2[~(xkv, t)],
so we obtain the equation

2@[co (k) —co (k)]
G(v)

(4.10c)

If one proceeds in this way, one may find for every pair
($0, k) (for example) a value for the total energy

(4.11)

For a number of purposes, this is a satisfactory state in
which to leave these results since $0 and k determine a
unique solution and its energy. For a number of pur-
poses, however, the amplitude $0 is too derived a quanti-
ty to provide the quality of answer desired. For example,
it is important to understand how the solitary-wave ener-

gy splits away from the linear-wave energy as vibron-
phonon coupling is turned on. Equation (4.11) provides
an answer; however, the answer is incomplete because it
depends on Po which should itself vary with changes in
coupling strength in a manner as yet undetermined.
What is needed is a quantifiable property of both linear
and solitary waves which is invariant under variations in
coupling strength and which has a sensible quantum in-
terpretation. (In the theory of Davydov, this implicit
need is filled by the number-conserving property of the
Frohlich Harniltonian; not only is exciton number con-
served in time, it is independent of coupling strength as
well. )

The adiabatic invariance of the action in classical
mechanics is manifested in quantum mechanics in the
property of quantum systems that energy eigenstates and

numerous nonlinear wave trains which may be found for
(4.8),

' 1/2
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eigenvalues repond to slow variations of Hamiltonian pa-
rameters in conceI"t, such that the distribution of quanta
over energy levels does not change. That is, occupation
numbers of energy eigenstates inherit the adiabatic in-
variance of the actions from which they are derived. Our
solitary-wave solutions are not connected with pure
eigenstates in the linear limit, but with vibron coherent
states having a certain mean number n of vibron quanta
distributed over the number states of a particular normal
mode. As vibron-phonon coupling is turned on slowly,
the energy level spacings and the character of the number
states should change while n and its associated distribu-
tion remain fixed. We wish to exploit this invariance to
eliminate Po and express all results in terms of n and k.

To do this precisely, of course, would be to completely
solve the problem. Instead, we observe that the ampli-
tude $0 of a vibron coherent state in the normal mode k
having a mean number of quanta n is given by

I ' 1/2

[co (k) —co (k)][co (k) —k v~2]= —,'y, cT co (0) . (4.14)

co+(k)=[co+(0)+k v~]'

co+(0)=co(0)cos( —,
' sin 'o ),

co (0)=co(0)sin( —,
' sin 'cr ),

(4.15a)

(4.15b)

(4.15c)

cop(k)

k
2=Vf (4.15d)

The properties of the solutions (4.9a) are most clearly ap-
parent in the limit of a large velocity of sound. We
momentarily limit our discussion to systems for which
vf & v, so that we may safely assume v « v„and hence
y =1. For such systems the k dependence of the various
quantities of interest is particularly simple. Equation
(4.14) yields two branches of solutions, which we distin-
guish with subscripts (+ ),

0 (4.12a)

We assume that in the presence of vibron-phonon cou-
pling the amplitude is given by

I /2

co+(k)
~+ = [tan( —' sin 'o )]*',

Vf 2

E= n AS+( k) [ 1+—,
'

f tan( —,
' sin 'cT ) ]+2I,

(4.15e)

(4.15f)

0 pS(k)
(4.12b)

nAG (0)
p vIco (0)

(4.13)

in terms of which we express the relation which deter-
mines the k dependence of co(k)

where n is the mean number of quanta in the mode which
is assumed to be invariant under variations in coupling
strength. K ' is proportional to the width of the soliton
envelope; however, le~OIL 'I in the weak-coupling
limit, where L is the size of the system, thus maintaining
formal continuity with the normal modes of the linear
system. In the absence of coupling co(k) is the linear fre-
quency co(k); however, increasing coupling causes co(k) to
redshift away from co(k) and split into a band due to the
implicit dependence of co(k) on the mean number of
quanta n. What is being split is not an energy degeneracy
in the usual sense, rather it is the degeneracy of the ener-

gy per quantum with respect to the number of quanta;
that is, unlike the normal modes of a linear system, the
energy required to increase the number of quanta in one
of our nonlinear modes depends on the number of quanta
already in the mode. The present situation is similar in
this respect to the quantization of bound, anharmonic os-
cillations for which the softening of potentials with in-
creasing amplitude results in energy level spacings which
decrease with increasing quantum number. This same
similarity alerts us to the nonequivalence of nirico(k) and
the energy except in the linear limit. Beyond maintaining
formal continuity with the linear limit, (4.12b) is the sim-
plest assumption we have found which allows a sensible
interpretation of the virial theorem (see Appendix A).

For convenience we now define a dimensionless cou-
pling constant incorporating the mean number of quanta

where (4.15fl is computed according to (4.11) (cf. Appen-
dix A and Table I). The general behaviors of these quan-
tities are indicated in Figs. 2 and 3. Beyond the "criti-
cal" coupling o =1 the carrier wave frequencies become
complex. At critical coupling we find

co, (k) —=co+(k) i

co, (k)
Kc —K+ o —]

Vf

(4.16a)

(4.16b)

and

E, =E~,=—', niri—co, (k) . (4.16c)

We note that while the above quantities converge to the
same values at critical coupling, strong differences appear
as the weak-coupling limit is approached; namely the to-
tal energy of any lower-branch ( —) solution diverges
while upper-branch (+) energies approach the proper
linear energies, and the width of any lower-branch solu-
tion tends to zero while upper-branch solutions broaden
toward plane waves.

While the various solutions corresponding to these pa-
rameters appear on an equal footing as solutions of the
approximate equation (4.8), they do not all approximate
the solutions of (4.2) with equal accuracy. The overriding
condition for the validity of (4.8) and the approximate
solutions (4.9a) is the rotating-wave condition R )&l.
We now render this condition more specific by consider-
ing outer-zone [co(k) (k v, ] solutions and inner-zone
[S(k))kv, ] solutions separately.

In the outer zone, the condition R &) 1 reduces to the
condition k)&~. Using (4.15d) and (4.15e), we find that
the validity of the RWA depends on the validity of the
inequality
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Vf » [tan( —,
' sin 'cr )]

Vg
(4.18)

C)

3

)3

~ ~

~ ~ ~

k/ko
FIG. 2. Carrier wave frequency Q+(k) in the limit of infinite

acoustic sound speed. Solid line ( ), linear limit (o.=O);
dashed line ( ———), 6+{k) for o.= 4, 2, 4, chain dotted
{—.—- —), Q, (k); dotted ( ~ . . -), 9 (k) for o =4, —', —'. Note
that for o.= 4, co+(k) lies too close to co(k) to be resolved in this

graph.

v+
»[tan( —,

' sin 'o )]—' .
vf

(4.17)

Upper-branch (+) solutions are thus generally valid in
the outer zone, provided that coupling is sufficiently
weak. On the other hand, since v & vf for al/ solutions,
we find that (4.17), and hence the RWA, cannot be
satisfied by any lower-branch ( —) solution, regardless of
coupling strength.

In the inner zone, the condition 8 ))1 reduces to the
condition co(k) » i~U, . Using (4.15e), we find that the va-
lidity of the RWA depends on the validity of the inequali-
ty

T 2E—+vib —+bind+ 2~ sot v (4.20)

where E,-,b is defined as the bare vibron energy at k=0,
i.e., the v=O vibron energy in the limit 0.~0. Eb;„z is
the binding energy and m „~ is the effective mass of the
vibron soliton. E»b, E»„z, and m „,are given by

Upper branch (+) solutions are thus generally valid in
the inner zone, provided that coupling is suKciently
weak. On the other hand, for systems having vf (v,
(such as we consider), (4.18) and hence the RWA cannot
be satisfied by any lower-branch ( —) solution, regardless
of coupling strength.

One can see the effect a finite-sound speed has on the
above results simply by reintroducing the acoustic
Lorentz factor, replacing cr by y, o The bounds (4.17)
and (4.18) (with o replaced by y, o) which invalidate
lower-branch solutions continue to hold for finite-sound
speeds greater than the free-vibron speed, with the princi-
pal consequence of a finite-sound speed being that weaker
coupling is required at higher k values in order for solu-
tions to remain valid. However, if the sound speed is less
than the free-vibron speed, then there is no outer zone,
and only the bound (4.18) is relevant. The inequality
(4.18) does not strictly exclude all of the lower branch;
however, since part of the lower branch is excluded, and
since no lower branch solution is valid in the weak-
coupling limit, we interpret (4.18) as continuing to invali-
date all lower-branch solutions.

The total energy (4.11) can be written in the form (see
Appendix A)

2+2 2 2
E—n~~(k) 2(y2 y2+ 1)+

3yf
'

[cos( —,
' sin 'y, o ) ]

(4.19)

For small soliton speeds, E can be written as

3 3.2—

PQJ

E„;q= n Ace(0),

Ei,;„q=—,
' [3—2cos( —,

' sin 'o )

—[cos( —,
' sin 'o ) ] '

I n A'co(0),

m,» =nm [cos( —,
' sin 'o )]

(4.21a)

(4.21b)

2

1+
2

tan ( —,
' sin 'cr)

va
(4.21c)

I

0.&

I

0.8
I

0.2 1.00.0 0.6
4/k,

FIG. 3. Total, system energy in the solitary-wave state E(k)
in the limit of an infinite acoustic sound speed. Solid line
( ), linear limit (a =0); dashed line ( ———), upper
branch for ca= —', —', —;chain dotted ( ——- —.), critical cou-

pling (o =1). Note that although not plotted, the lower branch
energy is higher than the upper branch energy and is higher
than the linear energy in most cases.

We note that the maximum binding energy is obtained at
the critical coupling o.=1

Ei„.„~~,=
—,'(3 —2v'2)nirirg)(0) . (4.22)

2

Ei,;„~= n @co(0), (4.23)

and the effective mass can be simplified

In the weak-coupling limit, the binding energy comes
into agreement with the result for the Davydov model
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Pl sol
n %co(0) cr

V2 P4 v2f
(4.24)

This weak-coupling relation offers an interesting manifes-
tation of a distinction between the Davydov and Takeno
models noted in the introduction. In order to recover
Davydov's effective mass, we must assert the inequality

vf &)v„whereupon

3

\3

Tm so(
nA'co(0) 1+ o

vf2 6 v2
(4.25)

which agrees with Davydov's result. On the other
hand, when vf & —,

' v„as is the case in many narrow-band

systems, the effect of vibron-phonon coupling is to reduce
the effective mass, rather than increase it as in (4.25).

The general behavior of the carrier wave frequency
co(k) and the total energy E(k) are indicated in Figs. 4
and 5, respectively, for a case in which the speed of sound
v, is not excessively larger than the free vibron speed vf.
Two interesting consequences of a finite-sound speed are
the appearance of an ultraviolet wave-vector cutoff k
and a maximum speed v „other than the free vibron
speed vf. We observe that the carrier wave frequencies co

are real only if y, o. & 1. The condition y, o. =1 provides
extreme values which demark the maximum values vari-
ous parameters may assume; thus, we find generally

FIG. 4. Carrier wave frequency Q+(k) for a finite acoustic
sound speed, v, =&2v~. Solid line ( ), linear limit (o.=0);
dashed line (

———), co+(k) for o.= 4, ~, 4,
' bullet (), critical

coupling; dotted ( ), Q (k) for cr = 4, 2, 4. Note that for
o.= —', co+(k) lies too close to co(k) to be resolved in this graph.

ing responsible for the indicated features. In the absence
of further clarification of the possible role of a finite k,„,
the conservative interpretation of (4.26) and (4.27) takes
the form of a weak-coupling condition

o (1—vI/v, . (4.28)

2vf
vf, 0 o 1 —min. 1,

Va
(4.26a)

1.4
Vmax

v, &(1—o ),

2vf1+o +1—min 1 2
Va

(4.26b)

2vf0+o. ~1—min 1,
Va

co(0) vmax

V (
2 2 )1/2Vf Vmax

2vf1~o.~1—min. 1
2

Va

(4.278)

(4.27b)

C)
3 1.2—

C

IQJ

1.0

0.0
I

0.2 0. 4

I

0.6
4/ 4,

1

0.8

One must question whether the appearance of a finite

k,„ is an artifact of our rotating-wave approximation.
We have no physical arguments to support the existence
of an ultraviolet cutoff. If such cutoffs are physically
meaningful, they should be associated with a resonance
between the vibron and phonon systems, and there is no
physical resonance which can be clearly identified as be-

FICx. 5. Total system energy in the solitary wave state, E(k),
for a finite acoustic sound speed, v, =&2v&. Solid line ( ),
linear limit (o.=O); dashed line ( ———), "upper branch" for
o.= 4, ~, 4', bullet (), critical coupling (a=1). Note that al-

though not plotted, the lower-branch energy is higher than the
upper-branch energy and is higher than the linear energy in
most cases.
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V. INSTABILITIES

We encounter several instabilities in our analysis of the
quadratic Takeno model. Perhaps the most obvious is
the existence of a critical value of the coupling (o.=l)
beyond which the oscillation frequencies of our modulat-
ed carrier wave solutions become complex. One must
question whether this critical behavior is a property to be
found in real systems, or whether it is perhaps unique to
the quadratic Takeno model, or whether it is an artifact
of our approximate analysis. That the behavior is not an
artifact of our analysis can be seen easily by considering a
nonlinear Klein-Gordon equation which is related to our
integro-differential equations (4.2):

Clq(x, t)=co (0)q(x, t) —
q (x, t) .G(v)

p
(5.1)

Small-amplitude solutions of this equation are stable;
however, should the amplitude q (x, t) at any point exceed
a critical value

' 1/2
|Mcus (0)
G(v)

(5.2)

co, (0)
ko = lim k*=

y o 0 Vy

co(ko ) =v'3', (0),
@,(0)

k*, = hm k*=(—')'~~
5

y o~ i VI

(5.3a)

(5.3b)

(5.4a)

an unbounded growth in amplitude ensues, resulting in a
divergence which under most circumstances must be con-
sidered unphysical. The critical coupling (o.= 1) encoun-
tered in the previous section occurs when the maximum
value of the envelope function qo reaches the critical am-
plitude q, . Thus we assert that the critical values of the
various parameters we have found are not artifacts of our
approximate analysis, but mark true critical features of
the starting model.

The instability of the dynamics at large amplitude
raises difhculties for the practical application of the quad-
ratic Takeno model. Specifically, the spatial and tem-
poral uniformity of the small-amplitude condition
[q(x, t) &q, for all x and t] renders analysis of finite-
temperature systems problematic since the very nature of
thermal Auctuations assures that the critical amplitude
will be attained somewhere in the system in a finite period
of time. Whether such an event poses a problem in a
specific application will depend on the particular parame-
ter values relevant to the application and the particular
questions addressed.

A second instability can be found if one notes that in
general the energy of our solitary-wave solutions is not
less than that of corresponding linear (plane) waves for all
k. The crossing of the linear and nonlinear energies
occurs at a wave vector k *H ( k i, k o ) such that

solutions we have found in Sec. IV. On the other hand,
all solitary waves having wave vectors k (k

&
have ener-

gies lower than corresponding linear waves. Between k&

and ko the fraction of solitary waves having energies
lower than corresponding linear waves varies smoothly
from 1 to 0. These energy relationships suggest that
short-wavelength linear waves and broad, 1ong-
wavelength solitary waves dominate the spectral decom-
position of a general state.

We interpret the phenomenon giving rise to ko as the
well-known Benjamin-Feir instability. " The usual ex-
planation of the Benjamin-Feir instability is given in
terms of complex-amplitude wave trains in weakly non-
linear dispersive media. Plane waves are found to be
stable with respect to short-wavelength perturbations and
unstable with respect to long-wavelength perturbations.
Since our equations of motion yield real solutions, every
complex-amplitude wave train coexists with its complex
conjugate and hence experiences a perturbation having
the same wavelength as the real carrier wave. Thus, each
real plane wave solution perturbs itself in the sense of
Benjamin and Feir. On the basis of such an argument,
one should anticipate that short-wavelength (k )k*)
plane waves should be stable and that long-wavelength
(k &k') plane waves should be unstable. The reversed
energy relations we find above and below k* can be inter-
preted as a mechanical realization of this generic proper-
ty of nonlinear wave equations.

The rotating-wave approximation on which our calcu-
lations are based requires that the phase velocity co(k)/k
not be too close to the speed of sound v, . Moreover, the
Lorentz factor y, explicitly requires that the group ve-
locity not be too close to the speed of sound. The latter is
easily understood in terms of the locking which must ex-
ist between the solitary-wave envelope and the comoving
lattice deformation. Since the group velocity of lattice
wave packets must be less than the speed of sound, lock-
ing to the envelope can exist only for vibron solitary
waves having group velocities less than the speed of
sound in the lattice. However, since our vibron solitary
waves are modulated carrier waves, locking between the
vibron and lattice coordinates can be complete only if
locking between the individual carrier wave oscillations
and the lattice motions can be maintained as well. Since
the individual carrier oscillations travel with the phase
velocity, this requires that the phase velocity be less than
the speed of sound in the lattice. Clearly, in the inner
zone locking to the full carrier wave is not possible; how-
ever, near k=0 the oscillations of the carrier wave are
suSciently rapid that the RWA is justified, and locking
to the envelope is still possible. In the limit of an infinite
speed of sound there is no inner zone, and complete lock-
ing between vibron and lattice coordinates can be faith-
fully maintained.

Thus, our solutions are valid provided the wave vector
k is not too close to kRw~ defined by

~(ki*)=(—,
')' co, (0) . (5.4b) ~(kRWA ) kRWAva (5.5)

Thus, all linear (plane) waves having wave vectors k & ko
have energies lower than the corresponding solitary-wave

This observation, together with the form of the disper-
sion polynomial (4.14), is suggestive of polariton behav-
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ior; however, several differences are important to note:
First, in the polariton problem the hybridization of an ex-
citon or optical phonon field with a photon field results in
a two-branch polariton spectrum 8+(k) in which the
upper-branch frequencies co+(k) are blueshifted, unlike
the redshifting of the carrier wave frequency we obtain.
Second, as a linear problem, polariton energies are pro-
portional to polariton frequencies [E+(k)=nfico+(k)],
unlike the distinct behaviors we find for these quantities.
Third, hybridization in the polariton problem results in
level repulsion in the neighborhood of the intersection of
the decoupled dispersion curves (at k =kRwz), whereas
this apparent intersection is wholly featureless in our re-
sults. In all likelihood this latter distinction is an artifact
of our rotating-wave approximation; it is reasonable to
conjecture that the true dispersion curves are repelled
from the point 9(kRwA)=kRw~v, and merge with the
acoustic branch. It is possible that the physical reso-
nance suggested by kR~~ is the phantom resonance
which should be associated with k,„; such a possibility
would be consistent with the discussion of k,„above
and would reconcile both difficulties. In any case, one
should anticipate that for weak coupling the extent of the
hybridization region in k space should be small and that
our solutions and their associated spectra should be valid

I

over most of the Brillouin zone and particularly near the
zone center.

VI. QUASICGNTINUA

When the mean number of vibron quanta is sufficiently
large or the coupling between the excitation and the lat-
tice is sufficiently strong, the soliton width ~ can be-
come comparable to a lattice constant, and our continu-
um treatment may no longer faithfully reQect the dynam-
ics in the discrete medium~ Discreteness corrections can
be introduced by means of a gradient expansion, wherein
the leading correction is of second order in the lattice
constant l and brings in a second spatial derivative.
While these results allow a sense to be gained for the role
played by the microstructure of real solids, one must be
wary of overinterpreting extreme results; any large devia-
tions from our continuum results demand careful scru-
tiny, since a large contributiog from this first correction
suggests a significant role may be played by higher-order
corrections not taken into account.

Implementing the procedure of Ref. 18, we retain the
leading discreteness correction and consider the aug-
mented equations

C3q(x, t)=co (0)q(x, t)+ f"(x,—t)q(x, t)+ f d~ I+— q (y, r) q(x, t)
2 „) G(0) 8 1 8

p p o Bt 4 By p=x+v (t —r)

G(0) ~ a 1' a'+ dw — 1+—
q y ~

p O, Bt 4 By2 y =x —v (t —~)
q(x, t) . (6.l)

As in the previous section, we are interested in preformed solitary waves having the modulated carrier form (4.4). Im-
plementing the RWA in the same way as in the previous section, we find the modified wave equation

Clq (x, t) = co (0)q (x, t) P—(x, t)+ — P (x, t) q (x, t) .G(u) p 1 8

p 4 Bx
(6.2)

The rotating-wave criterion R &) 1 is the same as in Sec. IV; however, the details of the particular validity conditions
which follow from it will be modified since the relationships among the various parameters will be modified by discrete-
ness corrections. The equation for the envelope function can be written in the same form as that of the modified non-
linear Schrodinger equation. ' The envelope function can be found and characterized by a dimensionless discreteness
parameter D which vanishes in the continuum limit, but may be large in a real solid (see Appendix B).

Although the envelope function can be found for arbitrary D, the envelope equation can be solved most easily in the
limit D )) l, in which the solution approaches the form

n.l@co(k)

' 1/2

cos[1 '(x vt)]cos[—kx co(k)t] for Ix —utI ~—
2

q(x, t)=
0 for Ix —vtl—

2

(6.3)

Q(x, t)=
—y, —I21 '(x —ut)+sin[21 '(x —vt)] j for Ix vtI ~—

gpto(k) ~ 2

—y, sgn(x ut) for Ix u—tI~—nag mh

/pe(k) 2

(6.4)
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(It should be noted that these limiting solutions cannot
recover the continuum solutions, i.e., 1~0 is not a valid
limit. ) Since the width of this extreme state is so small,
the ballistic transport indicated by the characteristic
x —vt cannot accurately represent the motion of the exci-
tation; indeed, on the basis of this and other considera-
tions, one might expect such a highly localized state to be
pinned to the lattice in a real system. In such a case only
results for v =0 would be meaningful, and so we limit our
discussion accordingly. We retain suScient k depen-
dence as required to determine the relevant behaviors.

The carrier wave frequency is given by

[co (k) —co (k)]co(k)= cryo (—0)l 'v (6.5)

The critical value of the coupling beyond which (6.5) ad-
mits no real solitons is greater than unity in the limit, as
can be understood from the fact that the efI'ect of the first
discreteness corrections is to weaken the nonlinearity.
For a given k the critical value of the coupling constant o.

1s

2
4 8 (0) co(k)

0
3 sv& co(0)

The corresponding critical frequency is

co(k)
C

(6.6)

(6.7)

Since we maintain that only solutions with v=O are
meaningful in this limit, the meaningful critical values
are those at k=0

'jT

C

leo(0)

VI
(6.8)

2 o la) (k)
g( k) v/

(6.9)

From this it is easy to see that D is maximal at the criti-
cal coupling 0.=sr, . Thus, we define

2 l a)(0)
max

Vy
(6.10)

in which we have neglected the k dependence of this
quantity as being unmeaningful.

The total energy of the system is given by

E(0)= + + n %co(0) (6.11)
8'(0) 3'(0)D

and the relevant critical frequency is $,(0). Generally,
(6.5) admits two branches of solutions; however, argu-
ments similar to those advanced in the previous section
can be made which show the lower branch to be invalid
under our approximations.

It is important to question how large D can be, both to
check the internal consistency of our conclusions and to
gain a sense for relevant material parameters. When
D &) 1, D is related to other parameters via

E,(0)= —+5 1

4 D max

n fiB, (0) (6.12)

at critical coupling. This critical energy is the minimum
energy on the upper branch, but the global minimum ac-
tually falls on the excluded lower branch, a few percent
below E,(0). The arguments of Sec. V suggest that this
discrepancy may be due to the incompleteness of our
discreteness correction, and that higher-order corrections
may narrow the gap. In the limit D,„~~, E,(0) is ap-
proximately 76% of the continuum result (4.16c), corre-
sponding to a binding energy 4—5 times larger than that
found in the continuum calculation [cf. (4.22)]. However,
D and D,„need not be excessively large for discreteness
effects to enhance binding energies; sample calculations
show that significant effects can appear for D and D,„ in
the range 2—5.

VII. THE GENERAL TAKENO MODEL

(n) ng~(x, t) = gg~~"'q "(x,—t)
n

1 (2n —1)!! (.) 2.
n! ~ ~

n

(7.2a)

Qn

gx =
&

„gx[qlBq" q=0
(7.2b)

such that g~(x, t) is a function of x vt only. —
With the assumption that both v(q) and g(q) are at

least second order in q, we can factor a q from Bv[q]/Bq
and Bg [q]/Bq, and then similarly average the remainder,
from which

In light of the intrinsic instability of the quadratic Tak-
eno Hamiltonian encountered for large-vibron ampli-
tudes, we note here how our procedure may be general-
ized to obtain corresponding results for more general lo-
cal potentials v(q„) and coupling functions g(q„). The
more general form of the Takeno model is appropriate
when the vibron potentials v(q„) and the forces g(q„) in-
volve higher powers of Q„, as is more realistic for real sys-
tems. A positive sixth power, for example, is the
minimum addition necessary in order to quench the
large-amplitude instability of the quadratic Takeno mod-
el. Traveling-wave solutions in the form of (4.4) can
still be obtained in this case. For the sake of simplicity,
here we only discuss the case of the continuum limit,
from Eq. (3.13). By implementing a more general
rotating-wave approximation, we can obtain the follow-
ing equation for preformed solitons

dv~[q(x, t)]
q(x, t)=- q (x, t)

p Bq(x t) l

G(v) ~gx[q(x r)
, g~(x,r), (7.1)

pg Bq x r

where g~( tx) is the average of g~[q(x, t)] over one or
more vibron oscillations, as given by

(see Appendix B) which approaches the value q (x, t) = u (x vt)q (x, t), — (7.3a)
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where we have defined

4L
l

G (U) g'(x, t)
g x, t

g2
' q(x t)

1 v'(x, t)
u (x u—t)=-

@ q(x, t)

(7.3b)

8(t) =( ) i — f (t),
Pl Cc)

(8.2)

j(t)=( . ) . (8.3)

Transformation to polar coordinates shows that the fluc-
tuations drive only the phase of the oscillator, for which
the noise is additiUe:

8 x = —co P(x ) +yI u [P(x ) ]P(x ) (7.4)

is the envelope equation we seek. Equations (4.5b) can be
easily integrated once to obtain

E = — +U(P),
2 ax

(7.5)

where E is a constant of integration, and the "potential"
U(P) is defined by

U(P):——,'co P —
~ f dP'u(P')P' .

y~ 0
(7.6)

For solitary waves, the possible values of E are deter-
mined by the boundary conditions

It should be noted that this procedure averages the an-
tisymmetric part of v„and g& to zero; thus, the pro-
cedure is best applied in systems having potentials and
coupling functions of the appropriate symmetry. If we
equate coefficients of cos[kx co(k—)t] and sin[kx

co(k—)t], respectively, we find two independent relations,
the first of which is (4.10a), and the second

Systems exhibiting noise of this type are commonly called
Kubo oscillators.

In the Takeno model, thermal fluctuations drive only
the momentum of the oscillator, for which the noise is
multiplicative:

q(t)=( ' ' ' ),
P(t)=( ) —2f(t)q(t) .

(8.4)

(8.5)

Qualitative features of these two kinds of noise are
represented in Fig. 6.

It is possible for a Kubo oscillator to explore the entire
allowed energy surface (n=constant) through the action
of fluctuations alone; that is, if the mechanics of the oscil-
lator implied by the symbol ( ) above is neglected,
thermal fluctuations will nonetheless cause the oscillator
to pass through all of its allowed states. For example,
colored noise with a su%ciently long correlation time will
sweep the phase of the oscillator through all four qua-
drants of phase space, allowing the oscillator to execute
complete cycles under the influence of noise alone. White
noise achieves the same result by a more tortuous path.

P(+ ~ ) =0, P(+ ~ ) =0 .
a

Bx
(7.7)

In the specific case we have considered in this paper,
E=O was the only possible value; however, more than
one value of E may be possible when U(P) has multiple
minima. For each value of E, it is possible that there
may be more than one type of solution; these are found
by solving the equation

U($0) =E (7.8)

for the possible values of Po and inverting the integral

x = 1 7.9
&0 &2[E—U (P') ]

The typical solution does not satisfy boundary coriditions
(7.7) and takes the form of a traveling wave train, the
character of which depends on the choice of E and the
form of U(P).

VIII. FINITE TEMPERATURE

a(t)=( . . ) i f (t—)a(t) .
me@,

(8.1)

At present we have no solutions for the finite-
temperature case. We can, however, compare qualitative
aspects of the role of thermal noise in the Davydov and
Takeno models.

In the Davydov model, thermal noise drives the com-
plex mode amplitude a(t) and is multiplicative:

Taken o

FIG. 6. Fluctuations in the Davydov and Takeno models.
Solid arrows, eftect which a normalized Auctuation has at
dift'erent phases of an oscillation; dotted arrows, effect which the
multiplicative character of the noise has on a normalized Auc-

tuation. Fluctuations in the Davydov mode) drive a local oscil-
lator around the origin of phase space along an orbit of constant
energy. Fluctuations in the Takeno model are impulsive, chang-
ing momentum without changing position, thus causing the sys-

tem point jump between constant energy orbits. The multiplica-
tive character of both types of fluctuation has the consequence
that an oscillator experiences the same angular change during a
unit fluctuation for any amplitude of the oscillator.
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BE(k)/n
Bn

(8.6)

The solution (for v, ~~ ) is found by inserting into (4.14)
the particular value of the coupling constant given by

o c 2

0, k)ko

1/2

+ —+, 0&k &ko (8.7a)
4 (k;)'

(8.7b)

(See Fig. 7.)
We have thus identified the unique solitary-wave state

for each wave vector k which has the lowest total energy
consistent with that k. We note that the minimum ener-
gy envelope does not coincide with any "critical" energy

In the Takeno model noise also advances the phase of
the oscillator in the same sense in all four quadrants of
phase space; however, two characteristics of the noise
prevent it from carrying the oscillator through complete
cycles. First, since Auctuations in the Takeno model
drive the momentum only, there is no fluctuation which
carries the oscillator across constant-q surfaces; thus no
sequence of fluctuations exists which can carry the oscil-
lator through a complete cycle. Second, since Auctua-
tions appear in the momentum equation multiplied by the
position coordinate q, there exists one constant-q surface
(q=O) in the neighborhood of which all ffuctuations are
vanishingly small. Since noise-driven excursions of phase
in the Takeno model are confined relative to the un
bounded excursions possible in the Davydov model, these
geometrical considerations suggest that solitons of the
Takeno model may enjoy a higher degree of stability
against thermal Auctuations than do those of the
Davydov model.

A related question is whether nonconservation of vib-
ron number in the Takeno model should cause Takeno
solitons to be less stable then Davydov solitons, since the
loss of a conservation law opens up previously forbidden
regions of phase space to the vibron system and a6'ords
more channels for decay. We note that the Takeno soli-
ton is already an indefinite-number state and as such is a
coherent structure in the full phase space. Second, Auc-
tuations in the Takeno model cause changes in energy
which stimulate a mechanical and/or thermodynamic
response which generally opposes the fIuctuation. Such
restorative responses play no role in the Davydov model
since the vibron system never leaves the constant-n sur-
face.

On the other hand, in the absence of a number conser-
vation law, it is possible that thermal fluctuations may
decrease energy by changing the number of vibron quan-
ta associated with a solitary-wave state as well as by
changing wave-vector through scattering events. This
observation suggests the existence of an optimal number
of quanta and hence an optimal solitary wave may exist
for each k. Such an optimal solitary wave should be ex-
ceptionally stable. To identify these optimal states, we
minimize the total energy per quantum E(k)/n with
respect to the number of quanta n at fixed k

l.4

1.0

O. O

k/ko

FIG. 7. Minimum energy envelope and related quantities.
Solid line ( ), minimum energy envelope; dashed line
( ———), linear energy; dotted line (- - ~ .), critical energy.
Note that the energy scale is broken; [fico(0) —E, (0)]/
Ace(0) =5%.

IX. CONCLUSION

In this paper we have presented exact and approximate
results which follow from our analysis of the Takeno
Hamiltonian. %'e have obtained explicit solutions for the
vibron coordinates in the form of solitary waves, and we
have used these solutions to compute their energies and
dispersion relations, as well as derivative quantities such
as binding energies and e6'ective ma'sses. These results

(4.16c) except at k=0. The minimal solutions also distin-
guish themselves from other solitary-wave families in the
k dependence of their widths (a '). Every fixed-o (e.g. ,
fixed-n) family of solitary waves found in previous sec-
tions narrows monotonic ally with increasing k, in a
manner consistent with the Lorentz invariance of the
nonlinear Klein-Gordon equation. Quite a diff'erent be-
havior is found for the minimal solutions, whose width
increases monotonically from a minimum width at k=0
to an infinite width at ko and beyond

On the basis of these findings, a qualitative description
of thermalization can be given. A general epithermal
state can be expected to relax quickly to a distribution
along the minimum-energy envelope, resolving the initial
distribution into short-wavelength k )ko plane waves
and long wavelength k (ko solitary waves. The plane
waves can be expected to relax along the linear dispersion
curve toward ko through number-conserving k ~k'
scattering, since number-nonconserving events are not
energetically favored. Upon reaching k o, number-
nonconserving Auctuations play an increasingly impor-
tant role since increases in the mean number of vibron
quanta associated with the state become energetically
favored. Below ko, movement toward lower energies
along the minimum energy envelope is accompanied by a
decrease in the width of the relaxing state.

We thus arrive at the qualitative conclusion that global
energy minimization favors energy localization
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are given in terms of material parameters, allowing quan-
titative description of the dynamics of vibrational energy
transport. We have obtained particular solutions; howev-
er, by extracting general features such as nonlinear
dispersion relations, one can form inferences concerning
dynamical behavior not strictly subsumed by our
solitary-wave states.

One general property of nonlinear waves which is

exemplified in these results is the Benjamin-Feir instabili-
ty governing the decay of a general state into solitary
waves. We find that, consistent with Benjamin and Feir,
a characteristic wave vector ka separates regions of k
space in which linear waves or solitary waves dominate
dynamics. We have reached this conclusion, not by per-
forming a formal stability analysis, but by examining the
detail of the dependence of the total system energy on the
wave vector k.

The Benjamin-Feir instability depends on the softening
of the effective on-site vibron potential with increasing
amplitude. The quadratic Takeno Hamiltonian includes
this effect in the simplest way, at the cost of introducing
an instability at finite amplitude. Attainment of the criti-
cal amplitude coincides with the attainment of the rnax-
imum binding energy and maximum redshift. These are
given in this model as fixed fractions of the corresponding
linear quantities. These fractions are independent of all
other parameter values, and thus are good quantities with
which to characterize the model.

In the weak-coupling limit, agreement with certain re-
sults of Davydov can be established. Binding energies
and effective masses are found to agree in this limit, pro-
vided the vibron energy bandwidth is sufticiently wide
relative to that of acoustic phonons; for narrow-band sys-
tems the two models yield different results even in weak
coupling.

Our major conclusions are obtained in the continuum
limit; however, we have investigated the inAuence of
discreteness to leading order and have found that the
principal effect of discreteness is to enhance binding ener-
gies, at least near the zone center.

By examining the dependence of the energy on the
mean number of vibron quanta n as well as on the wave
vector k, we have been able to infer certain characteris-
tics of the mechanisms controling the decay of an excited
state toward thermal equilibrium. First, we have shown
that there exists a unique family of solitary waves which
should be highly stable and should dominate dynamics.
The existence of these states can be inferred from the fact
that the solitary-wave energy band possesses a
minimum-energy envelope. The existence of the
minimum-energy envelope depends only on the qualita-
tive requirement that the effective local potential softens
with increasing amplitude; the shape of the envelope is
characterized by three quantities: (1) the linear disper-
sion relation, (2) the Benjamin-Feir wave vector (ka ),
and (3) the critical energy or amplitude (E, or q, ) at
which the softening of the effective local potential ceases.
Second, we have shown that thermal Auctuations in the
Takeno model do not conserve vibron number, and hence
allow transitions between fixed-n solitary-wave families.
This opens up channels for decay which are forbidden to

conserved quanta, and at first blush would appear to des-
tabilize solitary wave states. Indeed, it would appear that-
over most of k space the greatest energy gain is to be had
by changing vibron number and hence decaying out of a
particular solitary-wave family labeled by n. However,
all such decays bring the state of the system closer to the
unique family of solitary waves which comprise the
minimum-energy envelope.

These findings contrast with well-known characteris-
tics of the Davydov model in which thermal Auctuations
are number conserving. The principal effect which
number-conserving fluctuations have on a state is to
decrease energy through phase randomization—
damping —one manifestation of which is a decreasing
group velocity. In the Davydov model, decreasing group
velocity is accompanied by a broadening of the solitary-
wave state toward the characteristic width of the k=0
state set by the coupling strength and the (fixed) number
of quanta. The number-nonconserving Auctuations in the
Takeno model also cause damping, which would be mani-
fested on the minimum-energy envelope by movement to-
ward k=O. Unlike any fixed-n family of solitary waves in
either the Takeno or Davydov models, movement toward
k=O along the minimum-energy envelope is accompanied
by a narrowing of the solitary wave towards its minimum
value at k=0.

We conclude that global energy minimization favors
energy localization.
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APPENDIX A

A =yI[co (k) —co (k)]/u/,
i G(u)B=y

PVy

(A2)

Substituting the trial solution (4.4) into (4.8) and equat-
ing coeflicients of sin[kx co(k)t] and —cos[kx co(k)t], —
respectively, we obtain two independent requirements for
(4.8) to be satisfied; the first is (4.10a), and the second is
the envelope equation

(j2rA = AP BP- (A1)
Bx

where we have defined the coe%cients A and B by
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p(x) =v 2 A /8 sech(& A x) . (A4)

Solving Eq. (Al) subject to the boundary conditions (7.7)
yields the envelope function p(x) having the familiar
form

= —y, tanh[ic(x v—t)]nag
gpco(k)

(A10)

which identifies

(A5)

and

y, =v'2Apa . (A6)

The carrier wave frequency co(k) is implicitly contained
in A and cannot be determined unless the amplitude of
the soliton envelope is known. This amplitude should be
fixed by the area under the soliton envelope. One quanti-
ty which is closely related to the area is the number of the
vibron quanta. In the linear system, i.e., for free vibrons,
the virial theorem provides that the normal modes have
the property

f dx —,'iuco (k)q'(x, t) = —,'nirtco(k), (A7a)

which is equivalent to (4.9b).
The total energy of the system is given by the expecta-

tion value of the Hamiltonian, as in (4.11). Although the
total energy is a conserved quantity, we have introduced
the rotating-wave approximation and thus need to aver-
age the Hamiltonian over a few vibron oscillations for
consistency. Thus, in the continuum limit, we have

E=f dx ,'@co—(0)q(x, t)+~q (x, t)

pvy+ [V„q (x, t)]

+ x ~V~ x t + I' xt
00

f dx ' = ,'nhco(k) —.—oo 2p
(A7b)

=
—,'niit'co(k),

I'

f dx ' =f dx —,'co ~(k)P~(x, t)

(ASa)

In the nonlinear system, our quantization hypothesis
(4.12b) has the consequence that the virial integrals (A7)
are replaced by

f dx —,'itcco (k)q (x, t)= f dx —,'pco (k)[—,'P (x, t)]

+2g V„Q (x, t)q (x, t) . (Al 1)

Using the solution of q(x, t) and Q(x, t), each of the
above terms can be integrated as given in Table I. The
summation of all terms in (Al 1) yields

+ 1+ n iit'co(k)
1 co~(0) u~

co (k) u&

2' 2' 2+1 1 1+v + 1+v Xa 2
3 2

'2
BP(x, t)

Bx

Kvy
X

co(k)
nA'co(k) . (A12)

nAK v=
—,
' n irtco(k) +

6co(k)
(ASb)

nhK V '(nm —m—„,)u
6co(k)

(A9)

which appears to be half of the kinetic energy associated
with the "missing mass. " The "other" half can be found
in the kinetic energy of the lattice deformation (see Table
I).

in which we have implemented the R%A. The quantum
number n so defined coincides with the number of the
free-vibron quanta in the linear limit [defined as the ex-
pectation value of the operator tt = g„a„a„;cf. (1.6)].
The "anharmonic part" of (ASb), which is explicitly pro-
portional to v, has a complex but interesting structure.
If we retain only the lowest order in each of o. and v, and
further consider only narrow bands (v& « v, ), then this
term can be put into the form

Using (A2) and (A5), ic can be eliminated

2 y~
—y, +1 co(k)

3 y&~ co(0)

ygco(0)+ nirico(0),
co(k)

y~co(0)

co(k)

(A13)

and using co(k) from (4.14), we can then obtain (4.15f) or
(4.19).

In the linear limit, co(k) goes to co(k), and we see from
(A13) that the energy of the system goes to the linear en-
ergy nA'co(k), verifying that the n defined in (4.12b) does
give rise to the correct vibron number in the linear limit.

In the case where v and o. both are small, Taylor ex-
pansion of (A13) yields

0 1 vE= 1 — +—
24 2 vI2

2
' 2

+
z

1 ——
z

cr niiico(0)
v 1 v

2

vg vy

To find the phonon variables we apply the RWA and
determine the lattice coordinates and momenta from the
condition that the last two terms in (4.7) cancel, ' which
leads to from which (4.22)—(4.25) can be obtained.

(A14)
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TABLE I. Integration results for computing energies in the solitary-wave state; continuum limit.

Contribution to E

f dx —'@co'(0)q'(x, t)

f dx~q '(x, t)

2

f dx [V,q(x, t)]

([V„Q(x, t)]'
dx

00 2

I'2(x, t)
dx

2g

f dx 2g V„Q (x, t)q 2(x, t)

Integration result

2
1 co(0) A-(k)

co(k)
'2

n AS(k)

n fico(k)

n AS(k)

1 1 v1+—
vf co( k)

1 v 1+—
2 vf 3 S(k)

2 2
Kvf

n AS(k)
3 yf co(k)

'2
17a v

yf vg co( k)
2

2 Kvf

3yf co(k)

APPENDIX 8

a2 a2~ = ~y —By'+Cy
BX BX

(81)

The solution for the case with discreteness corrections
can be found by substituting the trial function (4.4) into
(6.2). We obtain two independent conditions which must
hold in order for (6.2) to be satisfied; the first is (4.10a),
and the second is the envelope equation which now is
modified by a discreteness correction term

D =2CQO . (86)

The relationship of D to ~ cannot be completely deter-
mined without inverting (85); however, the limiting be-
haviors of the envelope function are easily seen to be
given by

The shape of the envelope is controlled by the parameter
D, which is a measure of the importance of the discrete-
ness of the medium. D is given by

A and B are defined as in (A2) and (A3), and the new
coefticient C is de6ned by

Posech(x.x), D « 1 (87a)

1 1 ~ G(v)C=——B=—y4 4 pv2f
(82)

cocos —(~x), D ))1, (87b)

Equation (Bl) can be integrated once to obtain the "ener-
gy" relation

and allows us to show that

E
1+2CQ

—AP +zBQ
2 Bx 2 1+2CQ~

(83)

&D1 ', D«1
D»1.

ml
(88b)

where E is an integration constant. The boundary condi-
tions (7.7) for localized solutions can be satisfied by set-
ting E=O (see also Ref. 18). The peak amplitude is given
by the zero of the "potential" in the same manner as in
the continuum case

T 2
1 o leo (0)
4 ~o (k)

D (&1 (89a)

1/2
2A
B

' 1/2
2p[co (k) —to (k)]

6(v) (84) 2 cT

~ to(k)

leo (0) D)&1
Vf

Thus, the envelope function is given by inverting the in-
tegral

2
1 /2

1 1+DuX— dg
D I tl 1 —it 2

The introduction of the scale factor m. /4 into (87) and
(88) is somewhat arbitrary, but this choice of scaling re-
sults in a definition of sc consistent with the quantization
hypothesis (4.12b), which results in replacing the virial
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TABLE II. Integration results for computing energies in the solitary-wave state; leading correction
to the continuum limit.

Contribution to E

f dx~co (0)q ~(x, ti
Oo

dx~q '(x, t)

Integration result

2
1 cg(0)
2 Q(k}

'2

1+1

2

2

n fico(k)
lm(k)

2

f dx [V„q(x,t)]

/[V„Q(x, t)]'
dx

oo 2

P2(x, t)dx
oo 27l

f dx 2gV, Q(x, t)q~(x, t)

1 v

l@(k)

3Xa n fi G(v)
4 zip co (k)

3'Va v n fi G(v)
4 v,' alp@ '(k}
3 n AG(v)
2 ~l&2~ 2(k)

n fiS(k)

integrals (A7) with

f dx —,'@co (k)q (x, t)= f dx z')Mco (k)[—,'P (x, t)]
1

tot

2
co(0)

co( k)

=
—,
' nirtco(k),

f dx~ ' = f dx —co (k)P (x, t)—oo 2p —~ 2p 2

+ 1 2 "dp(x, t)
Bx

2

(810a) 2

+ 1+
Vf

V2

1+ n A'co(k)
l co (k)

(811)
3 u +u 3 n fiG(v)+ — '
4 u, —u 2 irlpco (k)

With the help of (6.5), G (u) can be eliminated, yielding

'nfico(k) 1+—
2 4

K U

[co(k)]

E= (8y —6y, +5)r +6y, —5
8yfr,

(810b)
2

+ 1+
3Dmax

n A'co(0), (812)

The various contributions to the total energy in the
high discreteness case are given in Table II. Combining
all these contributions, the total energy is given by

wherein r =co( k) /yf co(0). The zero-velocity part of
(812) is given in (6.11).
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