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Binding energy of ionized-donor-bound excitons in two-dimensional semiconductors
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The ground-state energies of the two-dimensional ionized-donor-bound exciton (D,X) have
been calculated variationally for all values of the effective electron-to-hole mass ratio o.. They are
compared with those obtained in the three-dimensional case using the same 55-term wave function.
We found that in the two-dimensional case the (D+,X) complex remains stable until o.=0.88,
which is about two times larger than the value obtained in the three-dimensional case.

I. INTRODUCTION

Recently much interest has been devoted to the elec-
tronic states of semiconductor microstructures, surfaces,
and interfaces, mainly due to the possible applications to
optoelectronic devices. '

The exciton states play an important part in the optical
properties of these structures. In particular, their bind-
ing energies ' in the two-dimensional (2D) semiconduc-
tors are considerably enhanced compared to the situation
in the three-dimensional (3D) bulk semiconductors.

In the 3D semiconductors, the properties of excitons
bound to neutral or ionized impurities have been exten-
sively studied ' during the last few years. In particular it
has been proven by means of variational calculations and
within the effective-mass approximation that the
exciton —ionized-donor complex (D+,X) is stable only
for values of the electron-to-hole effective mass ratio o.
less than a critical value o., =0.426.

In the 2D case, the bound excitons are expected to ex-
hibit higher values of their binding energies so that they
may be observed at room temperature. Actually, some
experimental evidences of bound excitons in semiconduc-
tor superlattices has been reported recently. In particu-
lar, we expect also a more extended range of the stability
of the (D,X) complex, though, to our knowledge, no
theoretical study has been devoted to this subject.

We present here a variational calculation of the bind-
ing energy of the (D+,X) complex in two-dimensional
semiconductors. This situation corresponds to the limit-
ing case of very thin quantum-well semiconductor super-
lattices. This study may also be used to understand what
happens at doped semiconductor surfaces.

In the following section we specify our wave function
and describe our variational method of solution of the
Schrodinger equation relative to the ground state of the
complex. In Sec. III we present and discuss the results of
our calculations.

II. FORMULATION OF THK PROBLEM
OF THK BOUND STATES

OF THE COMPLEX AND TRIAL WAVE FUNCTION

In the effective-mass approximation, the Hamiltonian
of the system consisting of an electron (e ) and a hole (h )
bound to an ionized donor (D+) in an isotropic two-
dimensional semiconductor is given by

1 0. 1H= ——6 ——5 + 1 1

We restrict our study to the ground state, corresponding
to the lowest energy value E, determined by means of
variational calculations. From the 3D case studies, ' '"
it appears that the electron-to-hole and electron-to-
ionized-donor Coulomb interactions give essential contri-
butions to the binding of the complex. Therefore, it is
important to take the distances r, and r, l, into account in
the wave function. We choose a Hylleraas-type trial
function' centered on the electron rather than on the
ionized donor. It reads

g(s, t, u ) =P(ks, kt, ku ),
P(s, t, u)= g Cl~„~lmn ),

l, m, n

(3)

where ~lmn ) =aI „e ' s'u t" are basis functions nor-

reh

e is an appropriate dielectric constant taking into account
possible polarization efFects whereas o =m,'/mh*, defines
the electron-to-hole effective mass ratio. We use the unit
of length a =@A' /m, *e and the unit of energy e /ea.
The latter corresponds to twice the 3D donor binding en-
ergy.

To solve the problem of the bound states of the
exciton —ionized-donor complex, we have to find the wave
functions f satisfying the wave equation

(2)
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malized to unity.
s, t, u are el1iptic coordinates:

s=r, +r,I, , t=r, —r,&, u=r&

with 0+s + ~, —u +t +u, 0+u +s.
k is a scaling factor; I, m, n are positive integers or

zero. The CI „are variational coeScients. In order to
satisfy the variation condition, which sets

M=C+TC, I.= —C+VC, X=C+SC, (6)

0'T' " = I'm'n' ——6 ——6 lmnlmn 2 e 2 h

where C denotes the column matrix of the linear
coeScients CI „. The matrices T, V, and S are defined

with respect to the basis functions l
lmn & by

E=& ylHly&~&pl@&

to a minimum, we rewrite the energy E,

(4)
re

r .),

in terms of the quadratic forms
All these matrix elements may be expressed in terms of
the integrals J/ '„"( A, ,p, v ) defined by

m+m +p t"+" +

=2'( l +l'+ A, + m +m '+p+ n + n '+ v )!I + +„+„+„.+g„+„.+

with

(2n)!m. (n!) 2 "

(n ~)222~+ &
" 2"+ ' (2n + 1)!

OE aE
aC,.„=0 (9)

for any of the indices 1, m, n. The first of Eqs. (9) leads to
the relation

(10)

The expressions of TImn, ~)mn & a d ~hmn obtlned &n

this way are given in Appendix A.
The variational condition (4) becomes then

III. RESULTS AND DISCUSSION

We have calculated the binding energy of the (D+,X)
complex in a two-dimensional (2D) semiconductor for
several values of cr by using 55 terms characterized by the
condition I +m +n 6 in the trial wave function (3).
The (D+,X) complex is only stable if its energy E is
lower than the energy ED ' of the 20 neutral donor.
The variation of the ratio of the energy E to ED ' versus
cr is shown in Fig. 1. We can see that the (D+,X) com-
plex is stable in a 2D semiconductor if the mass ratio o is
lower than o.,' '=0.88.

In the 30 case, a critical mass ratio u', '=0.426 has

from which we deduce

E = —ek, where e=M/N,
whereas the last equations are equivalent to the system 1.3

(k T+kV ES)C=O . — (12)

With E= —k e, we are finally left with the eigenvalue
problem

( A —kB)C=O, (13)

where A and B denote the matrices T+kN and —V, re-
spectively, whereas k plays the role of the eigenvalue and
C that of the eigenvector of components C& „.

We solve equation (13) by means of iterations on e until
the desired accuracy on the energy is obtained. The ini-
tial value of e is deduced from the asymptotic behavior

k o.1+—= —k e2
asymp 4 2 asymp ~

1.0 0.2 0.4 0.6
&= GATI /fYlp

o.e

1 o.
asymp 4

(14) FIG. 1. Ratio of the ground-state energy E of the (D+,X)
complex to the neutral donor energy Ez as a function of
o =m, jmz in the 20 and 30 cases with E~ '=4ED
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been obtained using a more elaborated function. In or-
der to test the validity of our trial wave function (3), we
have calculated the binding energies of the (D+,X) com-
plex in the 3D case by using a method similar to that
presented in Sec. II and in the same function (3). The
corresponding matrix elements are reported in Appendix
B. The same 55-term development leads to a critical
mass ratio o', '=0.365 close to the value of 0.426 re-
ported above (Fig. 1).

Our wave function (3) constitutes therefore a good ap-
proximation in the 3D case. We can reasonably think
that the same conclusion holds in the 2D case. More-
over, the relative simple form of this function allows the
application of the present method to the study of other
properties of the complex. The comparison between the
critical mass ratios o.,' ' and o', ' shows that for a given
o. mass ratio, the (D+,X) complex is by far more stable
in the 2D than in the 3D case. We expect a comparable
accuracy of our 2D and 3D results. Thus our 2D critical
mass ratio cr', '=0.88 is certainly lower than that which
one may obtain by using the more elaborate wave func-
tion of Ref. 7. Therefore the range of stability of the
(D+,X) complex is probably extended up to o values of
the order of unity. The 2D energies are about four times

greater than those obtained in the 3D case. In particular,
in the limit of a zero mass ratio, the 2D- and 3D-energy
values are respectively equal to 2.6314 and 0.5731 in units
of two times the 3D donor energy.

These results seem to show that more favorable condi-
tions for the detection of the (D+,X) complex are real-
iied in strictly 2D semiconductors and quantum-well
(QW) superlattices (SL) than in bulk semiconductors.
Indeed the energies of the quantum-well superlattices are
expected to be between the 2D and 3D limits. This con-
clusion holds as long as o' '=o' '. In fact, in the
quantum-well superlattices, the valence-band offset leads
to a modification of the band structure and of the
effective mass of the uppermost heavy-hole valence band.
If o' '(o' ', the (D,X) complex is certainly more
stable in the quantum-well superlattices than in the bulk
semiconductors. However, when o' '& o' ', as in the
case of the GaAs-Al Ga& „As system, this conclusion
remains true so far as

E E
E (~sL)&E (~m)

D D

The exact value of o' ' depends in all cases on the mag-
nitude of the band offset and on the quantum-well width.

APPENDIX A: MATRIX ELEMENTS IN THE 2D CASK

We use the notation (A, ,p, v) instead of Jt' „"(A, ,p, v) [expression (8)]:

(S)',™"=
—,'[1+(—1)"+"][(2,1,0)—(0, 1,2)j,

( V)i™"=—,'[1+(—1)"+"][(2,0,0)—(0,0,2) —4(1, 1,0)],
(&)(™"=(&,)(™"+o(&t, )) „",
(T, ) ™~"=—,'[1+(—1)"+"j[—2(l2 —n )(0, 1,0)+(21+1)(1,1,0)——,'(2, 1,0)+ —,'(0, 3,0)

—21( —1,3,0)+21(l —1)(—2, 3,0)—2n(n —1)(0,3, —2)],

(Th)(™"= —,'[1+(—1)"+"] —
—,'(2, 1,0)+—,'(0, 1,2) — (l +n+2 m+1)( 01,0)

+ —,'(1+m+ 1)(1,1,0)— (2, —1,0)+ (0, —1,2)

——( —1, 1,2)+—(1—1)( —2, 1,2)——(n —1)(2, 1, —2)— (1,—1,2)
I 1 n Pl

+ —,'[1+(—1)"+"+'] ——(2, 1, —1)+ (0, 1, 1)+n(1+m +1)(1,1, —1)

—l(m +n + 1)(—1, 1, 1)— (2, —1, 1)+m (l n)(1, —1, 1—)

APPENDIX 8: MATRIX ELEMENTS IN THK 3D CASK

We use the notation (A, ,p, v) instead of I/ „"(A, ,p, v), where

p v) = f e ~s'+'+~ds f t +"'+~dt f u + '+du
0 —s

(I+l'+ A +m + '+my+ n + n '+ +2v)![1+( —1 )"+" ]
(n +n'+ v+ 1 )(n+ n '+ +v+m+my+2)
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(S)I „"=8m [(2, 1,0)—(0, 1,2)],
( V)I™"=8m [(2,0,0)—(0,0,2) —4(1, 1,0)],
(T)I™," =(T.)Inn" +tr(T~))m~" ~

(T, )I™"=8 ~12(l+ 1)(1,1,0)+2l(l —1)(—2, 3,0)—2l( —1,3,0)—2n(n —1)(0,3, —2)

—,'(2, 1,0)+,'(0, 3,Q) —[21(l+1)—2n(n+ 1)](0,1,0)I,
(Tz)I™"=8m~ — (m+2n+1)(2, —1,0)+ (m+2l+1)(0, —1,2)+ —,'(2+i+m)(1, 1,0)

+ —,'(2+m+n )(0, 1, 1)—l(m+n+2)( —1, 1, 1)+n(m+i+2)(1, 1, —1)+—(l —1)( —2, 1,2)l

——(
—1, 1,2) ——,'(2, 1,0)+—'(0, 1,2)— (2, 1, —2) ——(2, 1, —1)n(n —1) n

(2, —1, 1)— (1,—1,2) —m(n —l)(l, —1, 1)— (1+n+2m+3)(0, 1,0)Pl Nl ( l n)—
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