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This paper examines in detail the phenomenological local-moment model Hamiltonian used re-
cently by Paalanen, Graebner, Bhatt, and Sachdev [Phys. Rev. Lett. 61, 597 {1988)]to understand
experiments on metallic phosphorus-doped silicon near the metal-insulator transition. The model
describes the disordered metal in terms of two components: itinerant quasiparticles which lead to
charge transport and electron local moments. Fermi-liquid properties of the itinerant quasiparticles
in the presence of the low-energy spin fluctuations of the local moments are calculated. The local
moments lead to strong spin-flip quasielastic scattering of the itinerant electrons; this scattering
leads to a temperature dependence of the conductivity and modifies quantum-interference effects
near the metal-insulator transition.

I. INTRODUCTION

The metal-to-insulator transition (MIT) in doped semi-
conductors has been the subject of a large number of
careful experiments and theoretical analyses in the past
decade. ' Most of the theoretical work has concentrat-
ed on examining the e6'ects of disorder on the metallic
state by a weak-disorder perturbation theory. Supple-
mented by renormalixation-group methods such a pertur-
bation theory can yield information about the metal all
the way up to the MIT. Building upon earlier work of
Finkelstein and Castellani et al. , Castellani, Kotliar,
and Lee have recently succinctly stated the predictions
of such a perturbative renormalization-group approach.
A central result of this approach has been the prediction
of an enhancement in the triplet Fermi-liquid interaction
parameter ( A o ), as the strength of the disorder is in-
creased or the temperature is lowered, in a system with
spin-independent impurity scattering. The increase in A 0
then leads to an enhancement of the static spin suscepti-
bility of the metal; right at the MIT the spin susceptibili-
ty is predicted to diverge at zero temperature.

In a recent experiment, Paalanen et al. ' ' performed
a detailed comparison of the theoretical predictions with
the temperature dependence of transport (conductivity)
and thermodynamic (spin-susceptibility and specific-heat)
properties of metallic phosphorus-doped silicon (Si:P)
close to the MIT. They found that the scaling theories of
Finkelstein arid Castellani et al. significantly underes-
timated the enhancement of the spin susceptibility. In-
stead, a simple phenomenological two-fiuid model was
found to reproduce the temperature dependences of the
spin susceptibility and specific heat very accurately. In
this model the metallic state was assumed to be made up
of two distinct components: (i) a fiuid of itinerant quasi-
particles, which contributes a finite conductivity, and (ii)
electron local moments, which are distributed randomly
throughout the system; no charge transport is allowed be-
tween the local moment and the rest of the system, but its
spin is coupled via exchange interactions with the other
electrons. The local moments have a large, almost

Curie-like, spin susceptibility and can therefore account
for the experimentally observed enhancement of the spin
susceptibility. Similar models of the metallic state have
been discussed earlier in Refs. 7 and 8 and were also used
by Alloul and Dellouve to understand their nuclear mag-
netic resonance experiments on Si:P.

There is at present no complete first-principles theory
which can explain the success of the phenomenological
two-Quid model in describing the experiments on Si:P.
The enhancement of A 0 in the perturbative theories can
perhaps be interpreted as signaling an instability of a
disordered Fermi liquid towards the trapping of some
electrons in local-moment states. The determination of
the precise mechanism of this instability is clearly an im-
portant outstanding problem whose solution will need a
deeper understanding of the e6'ects of Coulomb interac-
tions in the presence of disorder; this is an issue which
shall not be addressed in this paper. Instead, we shall
take the success in explaining the experiments' as
sufhcient reason to conclude that the phenomenological
two-Quid Hamiltonian contains all of the important low-
energy excitations of a metallic system of interacting elec-
trons in the presence of strong disorder.

The main purpose of this paper is to develop a com-
plete theory of the properties of the phenomenological
two-Quid Hamiltonian. All previous analyses of this
Hamiltonian have been very simple-minded; the itinerant
electrons were treated as noninteracting fermions, and all
interactions between the local moments and the itinerant
electrons were ignored. One of the important conse-
quences of developing a precise theory will be the
discovery of a new source-temperature dependence for
the conductivity.

It is useful at this point to state more precisely the
structure of the model Harniltonian H. It consists of four
parts: H =H&+Hd;, +Hl~+H;„, . We describe each
component brieAy here, with the details being spelled out
in Sec. II.

(i) Hc+Hd;, describes the disordered Fermi liquid
formed by itinerant electrons moving in a random poten-
tial. Betbeder-Matibet and Nozieres' '" have presented a
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where kF is the Fermi wave vector, mc is the effective
mass, and ac the quasiparticle residue, arising from just
the Coulomb interactions, and ~, the elastic scattering
time arising from Hd;, . The spin-Qip quasielastic scatter-
ing time r~, and the frequency renormalization factor Z
are temperature dependent and arise from the interaction
of the itinerant electrons with the local moments (H;„, )

and are given by

3&ca,'Z(T)=1+ g K (R)f dQ
Rcd d

and

(1.2)

3~Xcac(T)= g E (R)
+qe 2 ReX,

X dAD Q, R coth
0

(1.3)

complete analysis of the Fermi-liquid properties of this
model.

(ii) HIM = $;.J;.S(R, ) S(R.) describes the spin- —,
' lo-

cal moments S at the spatial positions R; with mutual an-
tiferromagnetic exchange interactions J, . On the insulat-
ing side of the transition, Hl~ is the complete Hamiltoni-
an. In the insulator, J; falls off exponentially with
~R; —RJ ~, which leads to a broad distribution in the
values of log(J;~) at different sites. ' We shall assume
that this broad distribution persists on the metallic side.
This will lead to large variations in coR, the fiequency at
which the spectral weight of the local-moment spin Auc-
tuations at the site R is peaked.

(iii) H;„,= ga KaS(R) s(R) describes the interaction
between the local moments and the conduction electrons,
where s is the spin of the .itinerant electrons, and the KR
are exchange constants. We shall assume throughout
that the temperature is large enough so that all Kondo-
like effects can be neglected (this condition appears to be
satisfied by all current experiments ). Paalanen et al. '

implicity considered a Hamiltonian consisting of Hc,
Hd;„and HL~. The interaction H;„, has not been con-
sidered before.

Before describing the physical properties of H, it will
be necessary to make a few statements about our metho-
dology and the structure of the itinerant-electron Green's
functions. We find that the interaction between the
itinerant electrons and the local moments leads to a
strong frequency dependence in the self-energy of the
itinerant electrons. This frequency dependence can be
dealt with by techr|iques used previously in the context of
the electron-phonon interactions' and the heavy-ferrnion
problem. '" The interactions in Hc and H;„, lead to the
following structure in the itinerant-quasiparticle retarded
Green's function 6 for small frequencies ~ and momen-
ta k near the Fermi surface:

ac
G (k, co)=

coZ —(kz/mc)(k k~)+i (1/2~—, +1/2H, )

Dq +4/(3r, ) ice(4Z——4)/3

[Dq +4/(3r', ) iso(4—Z —4)/3](1+8') i co—
(1.4)

where the diffusion constant D is given by

kI;~D=
(3mc )

1 1

e +qe

Fpc is a Fermi-liquid constant arising from Hc, and F is
a Fermi-liquid constant involving both the Coulomb in-
teractions (Hc ) and the local-moment interactions (H;„, );
an explicit expression for F' is given in Eq. (2.6). The
thermodynamic response functions above follow from the
analytic continuation of Eq. (2.31) to real frequencies.
The important point to note here is that F~c and F' are
both temperature independent.

We are now finally in a position to state the conse-
quences of our analysis of H upon the physics of the sys-
tem. Using the response functions above, we find the fol-
lowing.

(i) The compressibility of the itinerant electrons is
Nc/(1+Foe. ) and is unaffected by the presence of the lo-
cal moments. In particular the frequency renormaliza-
tion factor Z (which can also be interpreted as a dynamic
effective-mass renormalization) has no effect. The same
phenomenon occurs in the phenomenological theories of
heavy ferrnions. '

(ii) The static spin susceptibility of the itinerant elec-
trons is Nc/(1+F'). As the presence of the local mo-
ments leads to a decrease in the value of F', there is an
enhancement in the value of the spin susceptibility.
However, there is no simple relationship between the
value of the temperature-dependent quantity Z and the
temperature-independent enhancement of the spin sus-
ceptibility. This feature is also applicable to the phenom-

where Nc= mckFI(2+' ) is the itinerant quasiparticle
density of states and D (Q, R) is the spectral weight of the
local-moment spin fluctuations at the site R; as noted ear-
lier, D(Q, R) is peaked at a frequency coa which fluctu-
ates over several orders of magnitude from site to site.
The sum over R in the two expressions extends over two
disjoint sets of local-moment sites X, and Xd. The set of
local-moment sites X, contributing to H, satisfies cuit ( T,
while the set Ld contributing to Z are the remaining lo-
cal moments. The temperature dependence of Z arises
from the temperature-dependent condition coR) T, which
determines the sites belonging to Xd. The quasistatic na-
ture of the spin fIuctuations on the local-moment sites in
X, is the reason for describing the scattering time r', as
quasielastic. The results (1.1)—(1.3) have been obtained
from the expressions (2.11)—(2.13) after analytic con-
tinuation to real frequencies. The density-polarization
function H" and the spin-response function y' of the
itinerant quasiparticles are also calculated in the hydro-
dynamic limit and have the following form:

2

II (q, co)=Nc
Dq (1+Foe) ico—
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enological model of heavy fermions used by Miyake
et al. "

(iii) The above two results justify the neglect of H~„, in
the comparison with experiment of the thermodynamic
properties performed in Ref. 1. The presence of H;„, sim-

ply leads to a temperature-independerit renorrnalization
of the itinerant-electron contribution.

(iv) It is not correct, however, to neglect H;„, for the
trarisport properties. The conductivity of the system can
be determined from the Einstein relation o =e NcD and
the expression for D above [Eq. (1.5)]. The presence of
the local moments therefore leads to a ternperature-
dependent decrease in the conductivity via the tempera-
ture dependence of ~q, . This prediction is compared with
experiments on Si:P in Sec. IV. Note also that the fre-
quency renorrnalization scale Z is absent from the con-
ductivity.

(v) %e have so far ignored the perturbative quantum-
interference effects, which are an important ingredient of
the scaling theories. ' These are, in principle, present in
H through the interactions in Hc+Hd;, . However, the
interaction of the itinerant electrons with the local mo-
ments (H;„, ) modifies the magnitude of these corrections.
Because the energy transferred in the quasielastic scatter-
ing events is much smaller than kT, (H, )

' acts as a
cutoff for long-wavelength Auctuations in the singlet and
triplet particle-particle, and the triplet particle-hole
ladders of the itinerant quasiparticles. The interactions
in H;„, therefore suppress the perturbatiUe quantum in-
terference sects of the scaling theories. It is therefore not
correct to describe the MIT by using the perturbative
renormalization-group theory ' on the itinerant quasi-
particles while assuming that the electron local moments
are an independent component of the system whose sole
physical effect is to enhance the spin susceptibility. This
effect of the spin-Aip quasielastic scattering may also be
important in understanding the difference in the trans-
port properties between compensated and uncompensat-
ed semiconductors.

It is clear from the above discussion that r', is an iin-
portant quantity characterizing the efFect of the local rno-
ments. Using Eq. (1.3) we will show that

1 ~ &y (&), (1.6)

where g is the local-moment contribution to the spin
susceptibility. This relationship predicts the I/H, falls
off as T' with falling temperatures. The exponent
a & 0 characterizes the divergence of the spin susceptibili-
ty. ' At low enough temperatures, therefore, I/Hq,
should become larger than kT. An experimental test of
the temperature dependence of the conductivity implied
by Eq. (1.6) is carried out in Sec. IV.

A separate but related issue addressed in this paper is
whether the spin relaxation time Hq, will appear as a
linewidth in the electron-spin-resonance (ESR) spectrum.
A naive extension of Eq. (1.4) to finite inagnetic fields
would predict that 4/(3r', ) contributes to the linewidth
of the itinerant-electron portion of the ESR spectrum.
However, as the g factors of the itinerant electrons and

the local moments are equal, the interaction between the
local moments and the itinerant electrons conserves total
spin and leads to no loss of spin coherence. On the basis
of very general arguments we therefore expect the ESR
spectrum of H to be a 5 function (this is the well-known
bottleneck effect' ). These principles are illustrated in a
simple Anderson model' calculation in Sec. III. Unlike
the model considered in Sec. II, the simplicity of this
model allows calculation of the all mutual correlation
functions between the local moments and the itinerant
electrons. The results of this calculation (i) confirm the
validity of Eq. (1.4) for the itinerant-electron spin correla-
tion function, and (ii) show that at low frequencies and
magnetic fields, ~, h «T, the total spin susceptibility y,
(involving the sum of itinerant-electron and local-
moment contributions and their cross correlations)
satisfies

h
y, (q=O, co) =y, (q=O, co=0)

h co

which predicts a 5-function ESR spectrum. In ESR ex-
periments on Si:P,' the dominant contribution to the
linewidth at low temperatures comes from the relaxation
of the local moments by their hyperfine interaction
with the phosphorus nuclear spins the rapid exchange
of magnetization between the local moments and
itinerant electrons rnotionally narrows the linewidth from
A/2 to approximately A /25.

The outline of the rest of the paper is follows. In Sec.
II we consider the general Fermi-liquid properties of a
system of itinerant electron interacting with a dilute con-
centration of local moments. Section III illustrates the
principles of Sec. II by an explicit calculation on a disor-
dered Anderson model. We also calculate the total
electronic-spin susceptibility in this section and show that
it obeys Eq. (1.7). Application of the theories of this pa-
per to various experiments is discussed in Sec. IV. Final-
ly, Sec. V reiterates the main conclusions of this paper.

II. FERMI-LIQUID THEORY

This section presents details of the Fermi-liquid prop-
erties of itinerant electrons moving in a random potential
with mutual Coulomb interactions and exchange interac-
tions with a dilute concentration of local moments.

The Coulomb interactions of the itinerant electrons are
described by Hc..

k
HC g Ckaeka

, a 2m

4me+
2 g g 2 Ck&+q, aCk —q, P k2, PCk~, a

k& k2 q ~,p

(2.1)

where ck is the destruction operator for an electron of
mass m with momentum k and spin a. Conventional
Fermi-liquid theory' tells us that at low temperatures
(T &&E~, the Fermi energy) the single-particle Careen's
functions of these electrons can be written as the sum of
quasiparticle and nonquasiparticle pieces:
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ac
Gc(k, co„)= . +P(k, co„),

l CO~ kF I@le k kF
(2.2) H;„,= g g g K(R)S"(R)cq o.~@q p

1

R kl, k2 a pp

where P is the incoherent nonquasiparticle piece of the
Green's functions which has no singularities near the
Fermi surface. We are using the Matsubara finite-
temperature formalism and co„ is the Matsubara. frequen-
cy. The subscript C has been added to the parameters to
emphasize that they depend only upon H&, the Coulomb
part of the Hamiltonian.

The local-moment part of the Hamiltonian HL~ is
given by

H~M = g J; S(R; ).S(R~ ), (2.3)

where S(R) is the spin- —,
' operator of the local moment at

the site R. As noted earlier, the properties of HL~ were
examined on the insulating side of the metal-insulator
transition in Ref. 12. In the insulator, the exchange con-
stants J; are known to fall off exponentially with the sep-
aration between R; and R~. This exponential dependence
of the exchange constants leads to a broad distribution in
the values of log(J; ). As a consequence, Bhatt and Lee'
showed that the ground state of HLM can be understood
as a condensation of nearest-neighbor pairs of spins into
tightly bound singlets. The condensation energy of these
pairs varied over several orders of magnitude because of
the variations in the magnitude of J. The large variation
in the strength of J; will be assumed to persist onto the
metallic side of the transition. The presence of the
itinerant electrons will lead to an additional Ruderrnan-
Kittel-Kasuya-Yosida (RKKY) coupling between the lo-
cal moments, which could be much larger than the
direct-exchange coupling J;~. Our assumptions of the na-
ture of the local-moment spin Auctuations can be stated
more precisely in terms of the time-ordered spin-
correlation functions

2)(Q„,R;,R ) = —,
' f dr( T,[S(R;,0).S(R,r)] )

0

Xe
i(k —k )R

(2.5)

A. Itinerant-electron self-energy

In this subsection we will calculate the self-energy X
which modifies the itinerant-electron Green s function as
follows:

(2.7)

The random impurities contribute the usual elastic
scattering term to the self-energy:

acX(k„k2,co„)= i sgn(—co )rrXcacu &t, , a,

1
i sgn(—co„) 5z z1' 2

e
(2.8)

The lowest nontrivial contribution of the local mo-
ments to the itinerant-electron self-energy is represented
by the Feynman diagram in Fig. 1(a). Analytically this
can be represented as follows:

where we have introduced the exchange constant K(R),
and o" are Pauli spin matrices measuring the spin of the
itinerant electrons. The effect of disorder is represented
by a distribution of s-wave scattering potentials

Hd;, = g g fdru; ~(r —R; )gt(r)g (r), (2.6)
R; o,

where u; „(r)=u5(r) is the s-wave scattering potential
and P is Fourier transform of cz

The rest of this section examines the effect of H;„, and
HI~ upon the Fermi-liquid properties of the itinerant
electrons. The discussion is divided into two subsections:
the first subsection deals with changes in the single-
particle Green's functions, while the second subsection
examines the forms of the vertex and response functions.

D (co, R;,Ri )
dco

LQ~ CO

acX(kt, k2)2.4
T g K'(R)2)(co„—E„,R„R,)G(p, E„)

where we have introduced the usual Lehmann spectral
weight decomposition of the spin-correlation function.
After we average over the positions of the local moments,
the only quantity which enters into the Fermi-liquid
properties of the itinerant electrons is the diagonal part
of the spectral weight D(co, R, R). The only assumptions
we shall make about the nature of the local-moment spin
fluctuations can now be stated as follows. ,(i) For a given
R, D (co, R, R) is peaked at frequency co+, which is of the
order of the exchange constants with which the spin at R
interacts with the other local moments. (ii) The frequen-
cy coR varies over several orders of magnitude as a func-
tion of the local-moment position R. As noted in the In-
troduction, site with co+& T will have a very different
effect upon the properties of the itinerant electrons from
the sites with ~R) T.

The interaction between the local moments and the
itinerant electrons is described by H;„,:

R& R2 p c„

1 1 2 2i(k —p) R —i (k —p) R
(2.9)

We will in the subsequent discussion neglect all com-
ponents of the self-energy which are off-diagonal in
momentum space. We expect these off-diagonal com-
ponents to phase average to zero if the positions of the lo-
cal moments are uncorrelated with each other. All self-
energies and Green's functions will henceforth carry only
one momentum index, implicitly referring to their diago-
nal components. We will also label the local-moment
spin-correlation function and spectral weight by one spa-
tial index R. The momentum integration over the diago-
nal component of Eq. (2.9) can be easily evaluated if we
make the assumption that the itinerant-electron Fermi
energy EF is much larger than any of the frequencies coR,
this assumption is similar to that made in the electron-
phonon problem and is easily satisfied in the present sit-
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uation. The result is independent of the momentum k
and the diagonal portion of the itinerant-electron self-
energy X(k, k, co„)=X(co„)has the following simple form:

m.Xcac
X(co„)= i— g T gK (R)2)(co„—e„,R)sgn(e„) .

R e„

(2.10)
k+ q/2

8+ (Ol

k+ q/2
+ 0)/2

The large variation in the magnitude of coR distinguishes
two diferent types of contributions to X. Let us
represent the set of local-moment positions by the symbol

The evaluation of the frequency summation in Eq.
(2.10) divides X into the two sets X, and Xz.. the sites in
X, satisfy toit & ~co„~ (the local-moment spin fiuctuations
on these sites are quasistatic); while the sites in X& satisfy
toit& ~co„~ and the dynamic nature of the local-moment
Auctuations on these sites is important.

Let us first examine the contributions of the sites in X,.
Since 2)(Q„,R) is roughly a Lorentzian peaked at Q„=O
with a width of order toit, the sgn function in Eq. (2.10)
can be taken out of the summation to yield the following
contribution to X:

3~iVcac'
acX(co„)= i — sgn(co„)

8, —(0

k - q/2

0)/2

- q/2

X + )lllllllll(

FIG. 1. (a) Self-energy of the itinerant electrons at order
E (R). The hatched lines represent the local-moments spin-
Auctuation propagator 2)(co„,R&, R&}. (b) The four-point func-
tion T of the itinerant electrons: 'T& is the contribution of the
Coulomb interactions in Hc and the X represents the static im-
purity potential.

X g T gE (R)2)(Q„,R)

(2.11)

As the right-hand side of Eq. (2.11) is independent of co„
(apart from its sign), we have identified this contribution
to X as the quasielastic spin-Hip scattering rate 1/H, .

Now we turn to the contribution of the sites in Xz.
Using the fact that 2)(Q„,R) is an even function of Q„,
Eq. (2.10) can be shown to be equivalent to

3Ãcmac
acX(co„)= i — g E (R)2)(Q„=O, R)T g 1

ReX„ c„(/co„j

EQ) n

cac'
K (R)2)(Q„=O, R):iso„(1——Z) .

ReX„
(2.12)

Combining the contributions of Eqs. (2.8), (2.11), and (2.12) to the itinerant-electron self-energy, we obtain finally the
following expression for the quasiparticle portion of the itinerant-electron Cireen s function:

G(k, co„)=
i co„Z (kF /mc )(k k—F )+i sgn(co„)—(1/2r, + 1/2@~, )

(2.13)

where the values of r„H~„and Z are given in Eqs. (2.8),
(2.11), and (2.12), respectively. Analytically continuing
onto the real frequency axis leads to the expressions in
Eq. (1.1) for the retarded Green's function.

B. Response functions

The density- and spin-correlation functions of the
itinerant electrons will now be evaluated in a conserving
approximation consistent with the expressions for X.
The momentum independence of X (which followed from

the fact that the maximum value of ~R was much smaller
than the Fermi energy) means that techniques developed
for the well-studied electron-phonon and heavy-fermion
systems'" can be used in the calculation. A 6rst step is
the calculation of the truncated density and spin vertex
functions of the itinerant electrons: 1 "(k,E„;q,co„) and
I'(k, e„;q,co„), where the itinerant-electron propagator%
carry the frequencies c,„+m„/2 and c.„—co„/2 and mo-
menta k+ q/2 and k —q/2. These vertex functions
represent the density and spin components of the correla-
tion functions:
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I p(k, 8„;q, co„)6(k+ q/2, 8„+co„/2)G(k —q/2, e„—co„ /2)
I= g f dy f dy'( T„[y &(q, O)ck+ /2 (y' —y/2)ck /2 p(y'+y/2)])e " e ", (2.14)

0 0

where

1I c(k, E„;q=0, con —+0)=
ac

I c(k, e„;q =0, co„~O)= 1

ac

(2.15)

A subscript C has been added to the vertex functions to
emphasize that they involve only the interactions in Hc.
Inclusion of the quasiparticle pieces of the response func-
tions involves introduction of the four-point function V'

shown in Fig. 1(b). The contribution V'c of Hc 1s

represented as usual in the form

& p s;c(k, E„;k',E'„;q,~„)

2 IFc(cos [k k'/( fkf fk'f)])5 y5ps
2Ncac2

+Fc(cos '[k k'I( fkf fk'f)])cr" ogpI .

(2.16)

As is usual' we will neglect the q, c.„,c„', and co„depen-
dence of the interaction parameters Fc and Fc and retain
only their dependence upon the angle between k and k'.
In the hydrodynamic limit co„~, &&1, qkz~, &&mc and
purely s-wave impurity scattering, the only quantities
which enter the response functions are the angular aver-
ages of Fc and Fc over the Fermi surface. As we shall
just be considering the hydrodynamic limit in this paper,
we will henceforth only retain the angular averages F0c
and F0c, of the parameters Fc and F,'.

The presence of the local moments and the impurity
scattering lead to additional terms in the expression for
7; These are shown schematically in Fig. 1(b). Retain-
ing only the terms which are consistent with our approxi-
mations for the self-energy we obtain

ap( q ) = ~ C k+ q/2, aC k q/2 p
k

We will examine the values of these vertex functions in
the limits q «k~ and co„,c.„&&E~ and k on the Fermi
surface.

We begin by reviewing the Fermi-liquid properties of
Hc. The nonquasiparticle part of the vertex functions is
obtained in the limit q=O, and co„—+0. Ward identities'
following from spin and density conservation constrain
these vertex functions as follows:

+apyS(en&en&~n ) +apys;C

+ g K (R)2)(E„—E'„,R)ogpcrg
R

—g lk (R)2)(co„,R)cr" crrS'p

1+ 5,5 p5s2' a
(2.17)

'T (e„;e'„;co„)=
cac

—g K (R)2)(E„—e„',R)
R

—2 g K (R)2)(co„,R)+ 5
R 2~Ncac

We are now in a position to write down explicitly the
integral equations satisfied by the vertex functions I "andI' including the all the interactions in the Hamiltonian
H. The equation for the truncated density vertex func-
tion is

I "(c„;q, co„)=
ac k'

n

X6 (k'+q/2, e'„+co„/2)

X G (k' —q/2, e'„—co„ /2),
(2.19)

where the Green's functions now include only the quasi-
particle pieces. The equation for the spin vertex function
is identical with the d's replaced by s's. This integral
equation can be solved by generalizing the techniques
developed by Leggett' for the electron-phonon problem.
The solution depends upon the following identity, whose
validity is established in Ref. 13:

The right-hand side of this equation is independent of q,
k, and k' and the explicit dependence of T upon these pa-
rameters has therefore been omitted. Instead of carrying
explicitly the dependence of T upon the spin indices, it is
convenient at this early juncture to split T into the com-
ponents T" and 7', which will appear in the density and
spin vertex functions, respectively. Using standard
methods we find

F
V'"(e„;c,„';co„)= 2

+3g E (R)2)(e„—E'„,R)
Ncac R

+ 5
1

2mNcac
(2.18)

T g g G(k+q/2, E„+co„/2)6(k—q/2, e, —co„/2)f (e„)
K„k

dQ„ B(e„+co„ /2) —e(E„—co„ /2)
=i~i1icacTQ f " " "

. . f(E, ) f(00 Q'cac .4' ico„Z —(k~/mc)q n+(i/y, +i/y'q, )sgn(co„)
(2.20)
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Here f (e„) is an arbitrary function of e„,which varies on
a scale A=max(coR), A satisfies A &(Ez, and f ( Oo )

represents f (c„))A). In deriving this result we have
also used the fact that Z(co„))A)&1. By repeated ap-
plications of the identity in Eq. (2.20) to Eq. (2.19) and by
using the approximations made in the evaluation of the
self-energy, it can be shown that the integral equation in
Eq. (2.19) reduces to algebraic equations in the following
quantities:

In the hydrodynamic limit Q reduces to

Q =sgn(co„)~(1 D—q r I co„ l~), (2.24)

s 1I ~= + I ~g sgn(ai„)
ac 7

1

38e

where D and ~ were defined in the Introduction.
In a similar manner we obtain the equations for the

spin vertex functions yield:

I' =I (e„))A;q,co„) . (2.21c)

I f =I (e„«A;q, co„), (e„+co„/2)(e„—co„/2) &0
(2.21a)

I "= I "(c,„&(A;q,co„), (e„+co„/2)(s„—co„/2) )0

(2.21b)

+r' +geo„F' Z —1

r;= +r' Q~„F'1, —, Z —1

ac

(2.25a)

—I' F', (2.25b}

+ I Qco (Foc+Z 1) I Foc (2.22a)

+ I "Qco„(F' +Z —1)—I "„F', (2.22b)
ac

d=1 + r"*Q~nFoc r'.Foc-
ac

(2.22c)

The left-hand sides of these equations are implicitly
dependent upon q and co„; these dependences have not
been made explicit to make the subsequent notation com-
pact. Exactly similar representations are also made for
the spin vertex functions.

Following the procedure above 6nally produces the fol-
lowing equations for the density vertex function:

I += + I +Q sgn(co„) +d — d 1 1

ac

r'„= ' +r„g~„F' r'„F—',
ac

(2.25c)

where

F'=Foe 2Ncac g —K (R)2)(co„,R) .
R

(2.26)

d= 1 1

acr leo„ I+( I+Foe)Dq
(2.27a)

The value of the Fermi-liquid constant F' used in the
thermodynamic response functions in the Introduction is
obtained by putting co„=0in Eq. (2.26).

The Eqs. (2.22) and (2.25) can easily be solved and we
obtain the following results for the density vertex func-
tions,

where Zl ai„ I +Dq
ac Ice, I

+(1+Foc )Dq 2
(2.27b)

x
Zco„+i (k~/mc )q.n+ sgn(ro„)( 1/v, + I /r~, )

Ice„ I+Dq
ac I~. I+(1+F;c)Dq' ' (2.27c)

(2.23) and for the spin vertex functions

1 1

acr [Dq +4/(3r', )+ I~„I4(Z —I )/3](1+F')+ Iai„l

1 ZIco„I+Dq +4/(3r', )

ac [Dq +4/(3r', )+ Ice„ I4(Z —1)/3](1+F')+ Ice„ I

1 I co„ I
(4Z —1 ) /3+ Dq +4/( 3r', )

ac [Dq'+4/(3+, }+l~. I4(Z —1}/3](1+F'}+l~n I

(2.28a)

(2.28b)

(2.28c)

Finally, we use the expressions for the vertex functions to calculate H", the polarization function and g', the spin-
response function, of the itinerant electrons. We use the relationship

g"(q, co„)= —T g g I "(q,co„)G(k+q/2, e„+co„/2)G (k —q/2, e„—co„/2),
c„k

where x =(d, s). Using the identity (2.20} this equation reduces to

y = —xcac(r"*g~.—r" ) .

(2.29)

(2.30)
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Evaluating Eq. (2.30) we obtain finally the following expressions for the density and spin-response functions of the
itinerant electrons:

2

II"(q,co„)=Nc' Dq'(I++o'c)+ I~. I

'

Dq '+ 4/(3+„)+1~„14(z—1)/3
y'(q, ~„)=X,

[Dq +4/(3r', )+ Ice„14(Z —1)/3](1+F')+ Ico„ I

(2.31)

Analytic continuation of these expressions to real frequencies leads to the expressions in Eq. (1.4) in the Introduction.

III. DISORDERED —ANDERSON-MODKI. CAI.CUI.ATION

In this section we perform a simple calculation on a disordered Anderson model' to illustrate explicitly the general
theory discussed in the previous section. The calculation also sheds light on the nature of the total transverse spin-
correlation function (involving the sum of the itinerant-electron and local-moment spins) which is measured in an ESR
experiment. In particular we will demonstrate how, when the g factors of the itinerant electrons and local moments are
equal, the cutoff I/(r', ) can appear in the itinerant electron spin-correlation function but not in the total spin-
correlation function. The local moments are represented by localized orbitals at the sites R;, with the electron creation
operators at these sites being cd . The subscript d simply distinguishes these sites from the itinerant electrons and does
not refer to an orbital with d-like symmetry. The Hamiltonian we shall consider is

ik-R,.
H~ = y Ekck ck + y y v[ck cd (i)+H. c.]e '+ y sd[ndt(i)+nd}(i)]

I

+ g Undt(i)nd}(i)+ ,'h g (c—qtckt ckgck}—)+ —,'h g [ndt(i) —ndi(i)]+Hd;, , (3.1)

where nd =cd cd, U is repulsion between two opposite-
spin electrons on the same site, h is a magnetic field
pointing in the z direction (the g factors of the itinerant
electrons and local moments are equal and have been ab-
sorbed into the definition of h), and Hd;„which was
displayed explicitly in Eq. (2.6), is the random static po-
tential scattering the itinerant electrons. The coupling
between the conduction electrons and the local moments
is represented by the hybridization parameter V. In this
respect H~ differs from the Hamiltonian considered in
the previous section, which had an exchange coupling be-
tween the local moments and itinerant electrons. The ad-
vantage of the hybridization coupling is that it simplifies
the integral equations for the vertex functions into a se-
parable form and also allows for a straightforward calcu-
lation of the local-moment spin-correlation functions. In
addition, the well-known Schrieffer-Wolff ' transforma-
tion shows the two types of coupling to be equivalent in
the large-U limit. To obtain a finite spin-relaxation rate
of the conduction electrons at a low order in the pertur-
bation theory it will be necessary to work in the broken-
symmetric phase of Anderson's Hartree-Fock theory. '

The local moments will be assumed to be polarized in the
z direction with a magnetization m. They will appear to
the itinerant electrons simply as quasistatic impurity po-
tentials which scatter up and down electrons with
different strengths. However, the transverse Auctuations
of the local moments will be shown to be of just the right
magnitude to lead to an infinitely sharp ESR line. A
drawback of the present approach is that the itinerant-
electron correlation functions are not explicitly rotation-
ally invariant even in the zero-field limit; the comparison
with the results of Sec. II must therefore be performed
with some care. We also note here that different aspects

of a similar model have been studied earlier by Caroli,
Caroli, and Fredkin.

The lowest-order terms for the self-energy of the con-
duction electrons are shown in Fig. 2(a). The single lines
represent the conduction electrons, the double lines the
local moments, and the solid circles represent the interac-
tion V. The conduction-electron Green's function has the
form

where a=+1 is the spin, c is the concentration of local
moments, and 6" is the local-moment Green's function.
The positions of the local moments have been averaged
over all space. We will consider, for simplicity, proper-
ties of the local moments only in the particle-hole sym-
metric case with Ed = —U/2. Under these cir-
cumstances, the mean occupation numbers of the local-
moment sites have the form

nd&
=

—,+—,nd& =-, ——1 (3.3)

where m is the local-moment magnetization. The local-
moment Green's function 6"has the value

G (co„)= 1

ice„—a(h/2 —Um/2)+ib sgn(co„)
(3.4)

where A=+V /X is the width of the d resonance, X is
the density of states of the conduction electrons, and m is
given by the self-consistency condition

G' (k, ro„)

1

ice„—sk —ah/2 —cV G (co„)+isgn(co„)/2r,

(3.2)
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cIcom— f (co)—m m (co —h/2+ Um/2) +b

(to+h/2 —Um/2) +&

(3.5)
where f (co) is the Fermi function.

We now proceed to a calculation of the response func-
tions of the system in an approximation consistent with
the Green's functions displayed above. %e will consider
the transverse spin-correlation functions, as they are the
ones measured in an ESR experiment. The calculations
for the density and longitudinal spin-response functions
can be carried out in a similar manner. Unless explicitly
stated otherwise, all the four-point, vertex, and response
functions introduced below will refer to their transverse
spin components. 'We begin by considering the local-
moment four-point function V'0"; the equation satisfied by
this four point function is shown in Fig. 2(b). The sub-
script 0 emphasizes that this four-point function involves
no intermediate itinerant-electron electrons. The dia-
grams in Fig. 2(b) leads to the expression

7dd( )
U

1+UT g G
&

( e„+co„ /2) 6 i ( e„—co„ /2 )

(3.6)
In the following calculation we will consider only the
case co„&0. The frequency summation in the denomina-
tor of Eq. (3.6) can be carried out as follows:

(a)

FIG. 2. (a) Self-energy of the conduction electrons (X') and
the local moments (X ). The single lines represent the conduc-
tion electrons, the double lines represent the local moments, the
solid circle represents the hybridization parameter V and the
wavy line is the Hubbard interaction U. (b) The four-point
function of the local Inoments To .

T g 6&(e„+co„/2)G&(E„—co„/2)= 1
—i co„+h —Um

+2i hT
co /2 (8 (co /2

6 t (e„+co„ /2)6 i (e„—co„ /2)

1
—i co„+h —Um

where we have introduced the quantity

1

( Um /2+i b, )

i APco„
m+ (3.7)

(3.&)

The summation in over e„between —co„ /2 and co„ /2 has been carried out in the limit co„,h « b„Um corresponding to
a low external frequency and magnetic field. We will also need below the local-moment vertex function I o", which is
defined by the equation

I "( co)=1 T+g 6 t (e„+co„/2)6 i (e„—co„/2)V'""(co„), (3.9)

and the subscript 0 again emphasizes that intermediate conduction-electron interactions have not yet been included.
The frequency summation can be carried out as in Eq. (3.7) and yields

—i~„+h —Um
I dd( ) —i co„+h +i EPUcu„ /m

(3.10)

Using the four-point function Vo we show in Fig. 3 an expression for the conduction-electron vertex function I ".
This is the full vertex function, involving all possible itinerant-electron and local-moment interactions, and therefore
does not have a subscript 0. The equation for I "can be solved very simply after making the following approximations:
(i) replace all summations over a frequency e„between —co„ l2 and co„/2 by a factor of co„/(2n. T); and (ii) replace all

G t G
&

factors in the argument of this summation by P. These same approximations were made in the evaluation of Eq.
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(3.7). This procedure yields

I "(q,co„)=
1 2cV—bPQ —Q/r, cV—b,P QVO"(co„)co„/m

(3.11)

where Q is the analog of the Q introduced in Eq. (2.23) and is given by the expression

Q(E„;q,co„)= g 6 ((k+q/2, e„+co„/2)6 i(k —q/2, E„—co„/2)
1

2vrX

dQ„ 1

4ir co„+ih +i (kF/m)q n+1/r, +icV [Gi(s„+co„/2)—Gi(E„—co„/2)]
(3.12)

In the hydrodynamic limit 1'„1r„k~qr, /m ((1,and, making the approximations (i) and (ii) enumerated above, we find

Q '(q, co„)= +2cV bP+(co, +ih)(l+cV P) icV P—Um +Dq
1

+e

where D is the diffusion constant given by D =kzr/(3m ) with

+2cV AP .? 2

7

(3.13)

(3.14)

Finally, we use the vertex function I "to evaluate the conduction-electron transverse spin correlation function g":
y"(q, co„)=—T g g G'(k+q/2, c.„+co„/2)G'(k —q/2, E„—co„/2)I "(q,co„)

Q
' 2cV bP ——1/r, cV bP 70—"(co„)m„/ir

(3.15)

Dq +4/(3r', )+1'„14(Z—1)/3

[Dq'+4/(3r'„)1~. 14(Z —1)/3]+ I~„ I

'

where we have defined

(3.16)

and

4 Um=tcV
3H~, ( Um /2+ i 5 ) +b, U/m.(3.17)

Using the expression for Q in Eq. (3.13) we obtain, in
zero external magnetic field h =0,

y"(q, co„;h =0)

I
I
I

I
I
I
I
I
I

I
I

OIL

a(
3cV 1

4 ( Um /2+i b, )
(3.18)

Comparing this to Eq. (2.31) we find that Eq. (3.16) has
the form demanded by Fermi-liquid theory with F'=0.
The lack of terms in the local-moments spin-fluctuation
propagator of H~ which survive the limit c,„—+ ce, is re-
sponsible for the vanishing of F'. Unlike Sec. II, the
values of the parameters D, Z, and r~, are now complex.
This is a consequence of the broken spin symmetry of the
local moments. The polarization of the local moments in
the z direction produces an internal field, about which the
spins of the itinerant electrons precess. The imaginary
parts of Z, D, and v~, are a direct consequence of this
precession. These parameters should, however, be real in
the longitudinal spin-correlation (y,") and the density-
correlation (II") functions because the internal field is
polarized in the z direction. We find

I

dd

+ 'To

Ww( k2 0
FIG. 3. The integral equation for the conduction-electron

vertex function I ". The dashed lines connecting the solid cir-
cles signify that the hybridization occurs at the same local-
moment site.
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Dq + l~. l4(Z, 1)/3
y,"(q,co„;h =0)=E

[Dq '+
I ~.14(Z. —1)/3]+

I ~. I

where

(3.19)

general Fermi-liquid considerations. We begin by calcu-
lating the local-moment transverse spin-correlation func-
tion

y" (co„)=—T g Gt(e„+co„/2)Gg(e„—co„/2)I (co„),

Z, =1+ 3cV 1

4 ( Um /2 ) + b, +a 5 U/rr
(3.20)

and a = —1. The expression for H" is identical but has
a=1. The value of ~ in the expression for D is now given
by

2cV 5
(Um/2) +b (3.21)

We note (i) Z, and r are real; (ii) the relaxation rate I/rq,
is zero for the longitudinal spin —this feature will not
occur in a calculation which includes terms which are
higher order in the coupling V; (iii) there is a frequency
renormalization factor Z, in the expression of II"—this
is because, unlike the model of Sec. II, the number of
conduction electrons is not conserved by Hz.

The remaining part of this section pushes the model
calculation beyond what could have been anticipated by

(3.22)

where the subscript 0 has been introduced to emphasize
the absence of intermediate conduction-electron states.
Evaluating the frequency summation we find

m +i hpco„/7r
gdd( ~ )— —i co„+h +i APUS„/m

(3.23)

We are now in a position to calculate the total electron
transverse spin-correlation function y, including the con-
tributions of the cross-correlations between the itinerant
electrons and the local momenta. The expression for y,
in terms of all the quantities introduced so far is shown in
Fig. 4. We have also introduced a conduction-electron
four-point function Y" which is related to the vertex
function I" by the conduction-electron analog of Eq.
(3.9). With the usual approximations, the diagrams in
Fig. 4 lead to the equation

%co„
g, (q, co„)=~+cy" (co ) —(1+cd'2PI d

)
g

—1 2cp2+p 1/& cv2gp2cjdd(~ )~-/~ (3.24)

Although complicated in appearance, this expression for
y, can be reduced to a very simple form in the limit q=0.
Using the expressions for yo, I 0, and To" in Eqs. (3.23),
(3.10), (3.6), (3.7), and (3.8), we find after analytic con-
tinuation to the real frequency axis

y, (q=O, co„)= +cm —Xh
co —h o) —h

(3.25)

This equation has a simple pole at ~=h corresponding to
an infinitely sharp ESR line. The susceptibility y is seen
to be a simple sum of itinerant-electron and local-
moment contributions. For ~=0 the local-moment con-
tribution is —cm/h. This is exactly the form required in
a system with broken spin symmetry and the divergence
in the susceptibility as h ~0 is a signal of the Goldstone
fluctuations. Finally, this expression for y, is consistent
with the ansatz discussed in Eq. (1.7) in the Introduction.

IV. APPLICATION TO EXPERIMENTS

The new quantity introduced in this paper is the spin-
flip quasielastic scattering rate 1/H, ; a direct conse-
quence of this scattering which is potentially measurable
in experiments is the temperature dependence of the con-
ductivity induced by the relationship

FIG. 4. Expression for the total transverse spin susceptibility
g, in terms of the vertex functions introduced earlier.
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k~
o.=e X~

3fPl C
(4.1)

and Eq. (1.5). To test this relationship we begin by estab-
lishing a simple correlation between the temperature
dependence of Hq, and that of the local-moment static
spin susceptibility. Using the constraint on the equal-
time correlation function (S„S ) =—,'5„at each local
moment site R, we obtain

155-
I

g 150-.
U

A145-

g 140-

T QXl(Q„,R) =
—,
' (4.2) 80-

Equation (2.11) therefore simplifies to

1

+qe

3rrXcacK (R)nf
8

(4.3)

where K (R) is the mean square average of the couplings
K (R) and nf is the number of free local moments, i.e., lo-
cal moments with coR(T. The calculation of Ref. 12
showed that static spin susceptibility of the local mo-
ments (y ) was nearly equal to nf/(2T) We th.erefore
obtain the simple expression

75-

70-,
0

I

T(K)
FIG. 5. The conductivity of two samples of Si:P as a function

of T (solid lines). The squares represent the best fit to Eq. (4.5)
using the measured susceptibility. (Unpublished data of M. A.
Paalanen. )

bo(T) —3~XcacK (R)[2Tr(T))
8

(4.4)

for the change in the conductivity [b,cr(T)] induced by
the interaction with the low-lying-spin local spin Auctua-
tions. We have assumed here that v((Hqp.

Experimental testing of the above relationship is corn-
plicated by the &T temperature dependence of the con-
ductivity induced by localization effects contained in the
Hamiltonian Hz+Hd;, . We also know that the rela-
tionship cannot hold very close to the MIT because the
conductivity decreases to 0 with falling temperatures at
n =n, . However, there is a regime of doping densities in
Si:P (1 05n, ( n. ~ 1.5n, ) where the Fermi-liquid theory of
this paper is expected to be valid and the conductivity
does increase with falling temperatures. If we now make
the drastic oversimplifications of ignoring the localization
effects and assuming that the total static spin susceptibili-
ty g, is dominated by g, we obtain the simple relation-
ship

o(T) =cro cd, ( T), — (4.5)

where o.o=cr(T=O) and c is a temperature-independent
constant whose value follows simply from Eq. (4.4). In
Fig. 5 we have plotted o (T) versus T along with the best
one-parameter fit to Eq. (4.5) for two dift'erent samples of
Si:P. The fit is reasonable indicating that the temperature
dependence of conductivity can be consistently interpret-
ed as arising from slow local spin fluctuations. The
values of the parameters 0.0 and c obtained from the fit
are listed in fable I. The slightly larger value of c for the
denser sample can be due to the increases in either the
value of Nc or the value of K (R) [K (R) is larger be-
cause exchange constants are larger when the impurity
sites are closer to each other]. The fit yields an estimate
of H, =8&, =(kT) ' at 10 K. Taking the local-moment

TABLE I. Values of the parameters o.o and c of Eq. (4.5) ob-
tained from the experimental fits in Fig. 5.

n/n,

1.09
1.25

[(0cm) ']

83.0
155.9

C

[10' (0 cm) ' {emu K/cm') ']

0.21
0.28

picture literally and using values of nf from Ref. 1 we ob-
tain an estimate to [K (R)]'/ of 5 —10 K which is rather
large: a full calculation of the formation of local mo-
ments is therefore necessary to understand the strength of
the coupl|ng between the itinerant quasiparticles and lo-
cal spin Auctuations.

We emphasize again however that the neglect of the
&T corrections is not justifiable and all Fig. 5 indicates is
that the spin-Aip quasielastic scattering yields a tempera-
ture dependence to the conductivity which is consistent
with experiments, and should be considered on an equal
footing with &T localization corrections in a more com-
plete analysis. To really settle the issue of the relative im-
portance of the spin-Aip quasielastic scattering and the
localization corrections it is important to perform experi-
ments which have a different dependence upon the two
quantities. A probe which will provide additional con-
straints is the magnetic field dependence of the conduc-
tivity. At zero temperature the magnetic field will polar-
ize spins which were weakly locked into singlets and lead
to increased scattering: the local moments therefore in-
duce a positive magnetoresistance. The localization
corrections of noninteracting electrons always have a
negative magnetoresistance while those of interacting
electgons can have either sign.
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V. CONCLUSIONS

This paper has presented a description of the Fermi-
liquid properties of a new phenomenological Hamiltonian
H designed to understand the finite-temperature proper-
ties of the metallic state near the MIT. The model con-
sists of a Quid of itinerant electrons interacting with a di-
lute concentration of local moments placed randomly in
space. The presence of the local moments leads to a
temperature-dependent frequency renormalization factor
Z(T) and a temperature-dependent spin-flip quasielastic
scattering rate I/r', ( T) in the itinerant-electron Green's
functions. The factor Z(T) does not affect the values of
the compressibility, conductivity, or spin susceptibility.
The itinerant-electron spin susceptibility is, however,
enhanced by a temperature-independent decrease in the
value of the Fermi-liquid parameter I o due to the pres-
ence of the local moments. The presence of an interac-
tion H;„, between the itinerant electrons and the local
moments therefore leads to an innocous temperature-
independent renormalization of the thermodynamic prop-
erties and justifies the neglect of H;„, in Ref. 1. The
spin-Aip quasielastic scattering has two important conse-
quences.

(i) It leads to a temperature dependence in the conduc-
tivity even with the Boltzmann approximation (tempera-
ture dependence from localization contributions only ap-
pears in terms which are higher order in disorder). The
predictions of the theory provide a reasonable fit to ex-
perimental observations; the fit leads to a value of
1/~, = 10 K at 10 K in Si:P.

(ii) The rate I/H~, acts as cutoff in the singlet and trip-
let particle-particle and triplet particle-hole ladders of the
itinerant electrons. It will therefore have important
consequences for any attempt to use the scaling theories
of the MIT upon the itinerant electrons.

This paper also addressed the properties of the total
electron spin susceptibility involving the itinerant elec-
tron and local-moment contributions and their cross
correlations. This was done by examining a disordered
Anderson model at the self-consistent one-loop level. In
a finite magnetic field h and assuming that the g factors of

the local moments and itinerant electrons are equal, the
spectral weight of the total transverse spin susceptibility
was found to be a 6 function at co=h. Thus the rate
1/r', does not act as a cutoff for the spin total suscepti-
bility, and the ESR linewidth will arise solely from cou-
plings to nuclear spins and the lattice. 'As noted in Ref. 9
the dominant contribution to the linewidth at low tem-
peratures comes from the relaxation of the local moments
by their hyperfine interaction A with the phosphorus nu-
clear spins.

Although not complete, our analysis should serve as a
useful starting point for more sophisticated theories of
the MIT. An important question which has not been ad-
dressed in this paper is the mechanism of the formation
of electron local moments from a disordered Fermi Auid.
Anderson solved the problem of local-moment formation
on an impurity site with a tightly bound d orbital and a
large Hubbard U. ' The strong interactions on the im-
purity site clearly distinguished it from other
conduction-electron sites and lead to moment formation
on the impurity site alone. In the present situation, the
microscopic Hamiltonian can be approximated by a Hub-
bard model with random hopping matrix elements but
with an equally strong U parameter on every site. The
mechanism by which local moments form preferentially
on some sites has not been addressed in this paper and is
a problem which is currently being investigated.

Note added in proof The que. stion raised above has
been addressed in a recent work. This paper develops a
criterion for the formation of local moments in a disor-
dered Hubbard model.
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