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Band-edge states in short-period (GaAs) /(A1As)„snperlattices
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We investigate the character of the electron and hole states in [001]-stacked (GaAs) /(A1As) „su-
perlattices with m, n ~3 by means of the first-principles linear —muffin-tin-orbital method. The
highest valence states are found to localize more on the GaAs layers with increasing superlattice
period, while the lowest conduction states at the I point are confined in the A1As region in most
cases. The calculated gaps (direct and indirect) compare well with experimental results. The
heavy-hole- and light-hole-like states, split by the tetragonal perturbation of the superlattice, exhibit
dispersions with strong nonparabolicities related to anticrossing of states for values of k close to the
I point, and spin splittings along the superlattice layers. The effective masses of holes and electrons
are calculated at the I point and are found to show little variation within themselves. The spin

splittings are accounted for by k-linear terms. A semiempirical k p perturbation theory is

developed for the two highest valence states, the parameters of which are obtained by a fit to the
first-principles bands.

I. INTRODUCTION

Compositional superlattices consisting of alternating
layers of different semiconductors have attracted a great
deal of experimental and theoretical interest. One of the
fundamental questions in the study of these systems is
how the presence of a new periodicity normal to the lay-
ers manifests itself in the character of the electron and
the hole states. Superlattices grown with GaAs and
A1As, which have similar lat tice parameters but
significantly different fundamental energy gaps, consti-
tute a prototype for such studies. These superlattices
with large periods ( ~ 60 A) are of type I where the elec-
trons and holes at the band edges are confined in the
GaAs layers by the barrier potential of the A1As layers.
One has then the familiar multiple-quantum-we11 struc-
ture, ' where the motion of the electrons and holes normal
to the layers is quantized while the motion along the lay-
er is of two-dimensional character. ' However, as the su-
perlattice period is decreased with the GaAs layer
&30 A and the A1As layer of the same thickness or

larger, the superlattice switches from type I and type II,
where the electrons and ho1es are spatially separated.
The electrons are no longer bound in the GaAs layers but
are identified as those associated with the X state in
AlAs.

The electronic structures of these superlattices have
been studied theoretically in great detail by an envelope-
function approach in which each layer is considered
like a macroscopic crystal modified at most by a slowly
varying potential. The wave functions can then be writ-
ten in the form of amplitude-modulated Bloch waves with
slowly varying envelope functions satisfying definite
boundary conditions. Thus the basic ingredients of this
approach are the bulk band structures of the two layers
in a suitably parametrized form (k.p) and the appropri-
ate band offsets. This has been successfully used to study

many interesting problems such as effects of modulation
doping, band mixing, and excitonic interaction. Oth-
er approaches involving a full three-dimensional band-
structure calculation include the tight-binding
schemes ' ' and the empirical pseudopotential
methods. ' ' These methods, although treating the
boundary conditions in a more natural way, contain
many empirical parameters which are obtained by a care-
ful fit to experimental data of the bulk semiconductors
constituting the superlattice.

It is the purpose here to address the topics of
confinement effects and electronic structures of superlat-
tices when. the thicknesses of the alternating layers are re-
duced down to a few monolayers, where each monolayer
has as thickness half the cubic lattice constant of bulk
GaAs (-2.8 A). The interaction between the particles
in the different layers increases considerably and it be-
comes questionable to treat each layer using bulklike pa-
rameters. The empirical methods described before have
been applied' ' ' to these very-short-period superlat-
tice systems but provide many conAicting results when
compared with each other. In order to obtain a more ac-
curate description of these systems we therefore treat
them as usual bulk crystals (with many atoms in the unit
cell of the superlattice) and perform a first-principles
band-structure calculation described in Sec. II. Natural-
ly, no boundary conditions are required. We consider su-
perlattices with a periodic stacking of m monolayers of
GaAs and n monolayers of A1As along the [001] direc-
tion, and restrict m, n ~ 3.

This microscopic description of the electronic states
leads to several interesting features presented in Sec. III.
The confinement of the valence-band top in the GaAs re-
gion increases drastically with superlattice period while
the lowest conduction-band state is confined in most
cases to the A1As region. The location in the Brillouin
zone of the conduction-band minima is established and
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II. FORMALISM

The electronic band structures of (GaAs) /(A1As)„su-
perlattices constructed along the [001] direction of bulk
zinc-blende material, as shown in Fig. 1 for the
(GaAs), /(A1As)

&
case, are calculated here within the

framework of the local density functional theory by
means of the self-consistent, relativistic linear —muffin-
tin-orbital (LMTO) method. Similar to the calculations
of zinc-blende-type semiconductors, we include empty
spheres, that is, atomic spheres with no net nuclear
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FIG. 1. Atomic positions and crystallographic directions for
the mouolayer superlattice constructed along the [001] zinc-
blende lattice. The positions of the empty spheres E& and E2
used for purpose of calculation are shown only in the superlat-
tice unit cell.

we find that most of the superlattices studied are indirect
both in real and k space. The calculated gaps (direct and
indirect) compare well with available experimental data.
We have also calculated the effective masses of holes and
electrons at the I point. The hole masses for all the su-
perlattices treated differ considerably from the values of
the bulk constituent but show little variation within
themselves. The dispersion of heavy-hole- and light-
hole-like states along the superlattice layers close to the I
point exhibit spin splittings and strong nonparabolicities.

Other first-principle calculations have been performed
for these ultrathin superlattices. ' However, most of
these have only addressed problems of stability and band
offsets. In addition, the fine structure of the energy bands
around the I point, which is of concern here, has not
been examined before.

It is of great interest to study the effect of external
fields such as magnetic field, electric field, and uniaxial
stress on these very-short-period superlattices. Unfor-
tunately, the first-principle calculations cannot treat these
problems nor can the approaches used for thicker super-
lattices be extended to the present case due to the nonap-
plicability of bulklike parameters. We show in Sec. IV
that treating the short-period superlattices considered
here as bulk crystals we can expand the states around the
band edges in a k.p form, the parameters of which can be
extracted by fitting the first-principles bands. As an ex-
ample we consider the four heavy-hole and light-hole
states and reproduce their essential features around the I
point using the k p formalism.

charge, in the empty tetrahedral sites in order to obtain a
close-packed structure. The so-called combined correc-
tion term ' is also taken into account.

The unit cells of superlattices with (m+n ) =even hav-
ing the space-group symmetry D2d (as shown in Fig. 1 for
the monolayer case) are simple tetragonal with
c/a =(m +n)/&2, while those with (m +n)=odd hav-
ing the space-group symmetry D2d are body-centered
tetragonal with c/a = (m +n)&2, where c is the unit-cell
dimension along the stacking direction ([001] here). The
number of basis atoms (including empty spheres) in the
unit cell is 4(m +n) for both cases. The positions of the
atoms in the (GaAs), /(AlAs)& superlattice unit cell as in-
dicated in Fig. 1 are

Ga: —(0,0,0), Al: —1, 1,—a a C

'a

As: —0, 1,' 2a
As: —1,0,

a 3c
2a

E . a 103C
7 7 2 j

a C
0, 1,

E: —00 — ' —(1 1 0)a c a
2 2

where E, and E2 are the empty spheres surrounding the
cations and anions, respectively. The positions of the
atoms in larger unit cells for the other superlattices can
be written down very easily by extending those presented
in (1) for the (GaAs) &/(AlAs)

&
case. We obtain

a =ac/V 2, where ao is the (cubic) lattice constant of the

constituent bulk materials. We take for ao the bulk
0

CxaAs value of a0=5.66 A. In addition, we assume no
lattice mismatch between the superlattice layers, This is
quite reasonable as the difference in the lattice constants
of GaAs and A1As is less than 0.2%. The Brillouin zone
of superlattices with ( m +n )=even is simple tetragonal
while that for (m +n) =odd is body-centered tetragonal.
In Fig. 2 the Brillouin zones for a few cases are drawn
embedded in the parent zinc-blende Brillouin zone in or-
der to describe zone foldings. For example, the X point
(along the k, direction) of the fcc zone folds onto the 1
point for cases with (m +n) =even and onto the Z point
for cases with (rn+n)=odd From .Fig. 2(b) we notice
that as we increase the number of layers the superlattice
Brillouin zone is compressed along k, and is accom-
panied by increased zone foldings.

The wave functions in each atomic sphere (including
empty ones) contain s, p, and d partial waves. We have
included spin-orbit interaction in all the calculations as a
perturbation to the scalar-relativistic Hamiltonian. Thus
the Hamiltonian matrices involved in the computation
are of dimension 72(m +n) This limit. s the procedure to
rather restricted values of m and n. It is of particular im-
portance to note that we have not treated the cation d
states as ("frozen" renormalized) corelike states but as
fully relaxed band states. ' ' This is necessary because
the d states hybridize with the valence-band maxima, and
hence inAuence the band-offset values. '
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ky

FIG. 2. Bri11ouin zone of superlattices (thick line) with (a) (m +n)=3 (odd) and (b) (m +n)=2 (even) embedded in the parent
zinc-blende Brillouin zone. In (b) the Brillouin zone of the superlattice with (m +n) =4 is also drawn.

The crystal potentials are obtained by iterating the
one-electron wave equation . to self-consistency with an
effective potential where exchange correlation treated in
the local density approximation is of the form construct-
ed by Ceperley and Alder in a parametrized form.
This is known to produce gaps which are too small. We
correct for this in the same way as done for bulk semicon-
ductors by adding external potentials V, (r) of the form

ro
V, (r)= Vo e

—(»/» )
(2)

which are sharply peaked at each atomic site a. The
values of the parameters Vo and ro were chosen in Ref.
30 for the bulk zinc-blende semiconductors, such that the
band gaps at the three symmetry points I", X, and L, agree
with experiments at 4 K. The values of Vo and ro thus
chosen for the different atoms in bulk GaAs and A1As are
retained here for all the superlattices; they are presented
in Table I. The reasons for doing so are first, the lack of
accurate knowledge of experimental gaps, and second,
the fact that the strengths and lengths of the Ga—As and
Al—As bonds are very similar and hence are not expect-
ed to undergo drastic changes in the superlattice. This
represents an empirical way of correcting for the self-
energy term. ' These extra potentials are included in the
final self-consistency runs. It should be noted that the
valence states and the ground-state properties remain
quite insensitive to these extra potentials.

Vo 280.0 340.0 190.0
ro 0 015 0 015 0 015

5.0
0.55

6.0
0.55

TABLE I. Parameters Vo (hartrees) and ro (bohrs) of the po-
tentials [see Eq. (2)] added at the different sites to correct for the
band gaps.

Empty sphere surrounded by
cations anions

Ga Al As

III. RESULTS AND DISCUSSIGN

A. Electronic structure

Equipped with this formalism, we calculated the band
structure of (GaAs) /(A1As)„superlattices in the [001]
orientation with m, n ~ 3. The results of such a calcula-
tion along high-symmetry directions are presented in Fig.
3(a) for the (GaAs)2/(A1As)2 superlattice with (I +n)
=even and in Fig. 3(b) for the (GaAs), /(A1As)2 superlat-
tice with (m + n ) =odd. The symmetry points in Fig.
3(a) referred to the tetragonal Brillouin zone [Fig. 2(b)]
are I =(m/a)(0, 0,0), R

=(mitt�

)(1,0,a/2), 2 =(m/a)(1,
1,a /c ), Z = (m. /a )(0,0, a /c ), M = (m /a )( 1, 1,0), and
X = (rr/a )(1,0,0) and those in Fig. 3(b) referred to
the body-centered tetragonal Brillouin zone [Fig.
2(a)] are N =(m/a )(1,0,a /c). , X = (m. /a )(1,1,0),
p=(~/a)(l, l, a/c), and Z=(m/a)(0, 0,2a/c). The en-
ergies are referred to the natural scale in the atomic
sphere approximation in which the Coulomb potential of
the atomic spheres is zero at infinity. The gross features
of the valence-band structures calculated (see Fig. 3) are
the dispersionless Ga 3d bands around —16 eV [these
states have not been shown in Fig. 3(b)]. The As 3d
bands (not shown in Fig. 3) lie at about 11 eV below the
Ga 3d states and are treated as frozen core states. The
As s bands lie around —12 eV and the broad band from
about —I to —7 eV consists mainly of Ga p, Al p, and As
p states. The total widths and gaps of valence bands are
comparable with those of the constituent materials,
namely bulk GaAs and AlAs. Similar bands for
(GaAs), /(A1As), along a few symmetry directions have
been given in Ref. 32.

The valence-band top, which is of particular interest
here, consists mainly of the anion (As) p states like in
bulk semiconductors. However, in these superlattices the
anion bonds (As p) are shared between Ga and Al atoms
and hence it is important to find out the nature of the As
state (i.e., the confinement efFects) at the valence-band
maxima. This is done by analyzing the angular momen-
tum composition of the wave functions around each of
the atomic spheres. The results are presented in Fig. 4 as
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the relative As p contribution (in percent) to the valence-
band maxima originating from each layer of the superlateN

tice. The dots in Fig. 4 are the values obtained from the
present ab initio calculation while the dashed lines are
just guides to the eye. In the (GaAs), /(A1As)i superlat-
tice the As originating from both GaAs and A1As layers
contributes equally to the valence-band top. However,
this situation changes drastically as the superlattice
thickness is increased where we observe an increasing
contribution from the GaAs layers. A similar calculation
for the (GaAs)7/(A1As)7 superlattice, shown in the lowest
plot in Fig. 4, indicates that the valence-band top is al-
most completely confined to the GaAs region. Similar
analysis can be applied to the lower valence-band states
and we can identify states confined in'the A1As region or
in the interface region. These conclusions support the
application of the envelope-function-type approaches to
the thicker-period superlattices but not to the very short
ones. Similar conclusions have been drawn by other
first-principles methods. '

The conduction bands also show interesting confine-
ment features. As indicated earlier IFig. 2(b)], in super-
lattices with (m + n ) = even the X point (along k, ) of the
bulk fcc zone folds over to the I point of the superlattice
zone. Since the X conduction band of A1As is lower than
the I conduction band of GaAs it has been conjec-
tured that the conduction-band edge at the I point
in these superlattices is an X-like A1As band. Analysis of
the wave functions of the present calculations indicates
that this is indeed true for cases with m =n (with the ex-
ception of the m =n =1 case), and for others with m&n
having larger A1As content. This is clearly seen in Table
II where we have presented the two minimum I gaps,
one I 6 arising from the normal I -like GaAs band (Eo)
and the other I z from the folded X3-like A1As band
(Eo~) in the case (m +n)=even and from points along 5
(see Table II) close to X for (m +n)=odd. For m =n a
systematic decrease of Eoz with increasing m is found
while some fluctuations are found in the gaps for m&n
In the case (m +n) =odd we usually find larger Eo~ gaps
than for the closest (m +n)=even superlattices, which is
expected from the fact that in the former case the gaps
correspond to points inside of the large zone (not at X).
In this case the diff'erence between (m, n) and (n, m) gaps
decreases with increasing I +n as the corresponding 6
point approaches X.

In Table II we have also listed the indirect energy gaps
Eg smaller than the I gaps, along with the location in the
Brillouin zone of the conduction bands (the valence-band
top is always at I ). The lowest gap falls in the range
1.8+0. 12 eV and fluctuates as it switches from one point
of the Brillouin zone to another, a fact which is not
surprising in view of the small range of energies involved.
From a numerical point of view we believe that these
fluctuations are meaningful. However, they may not be
from a physical viewpoint as a result of systematic errors
in the method, in particular the way of treating the "gap
problem. "

All these energies have been listed in order to facilitate
comparison with different experimental data. Opti-
cal excitations across the gap are dominated by pairs of
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FIG. 3. Energy-band structure of {GaAs) /{A1As)„superlat-
tices in the [001] orientation with (a) (m +n) =even and (b)
{m +n)=odd. The various symmetry points for the two cases
are indicated in Fig. 2. The dispersionless Ga 3d states are not
shown in {b).
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states coupled by large momentum matrix elements.
Structure factor considerations dictate that such matrix
elements be small for transitions between nonfolded and
folded states. These have also been evaluated explicitly in
the present scheme for the purpose of calculating
optical-absorption spectra. Thus optical-excitation and
-absorption measurements would detect the
Eo(I 6

—I'6) gaps between nonfolded states even though
they may not be the smallest gap at the I point. It is the
minimum energies Eg which should be considered in in-
terpreting luminescence data. ' Similar calculations
performed on the (GaAs)7/(AIAs)7 system indicate that
the lowest conduction-band state is still the folded X-like
A1As state. Thus all superlattices studied up to
m =n =7 are of type II. The (GaAs), l(AIAs), is the only
exception with the X-like A1As state lying 0.06 eV above
the I -like GaAs state. However, this energy difference is
very small, and a definite conclusion regarding the order-
ing cannot be made for this case. Calculations are
presently being extended to larger systems in order to
determine the critical periodicity where the superlattice
switches from type II to type I.

B. Symmetry considerations

We now consider the changes in the valence-band sym-
metries in going from the point group Td of bulk zinc-
blende semiconductors to the D2d point group describing
the superlattice. The p-like valence-band top in bulk
GaAs in the presence of spin-orbit interaction consists of
the fourfold degenerate I 8 states and a twofold degen-
erate I 7 split-off state. In the angular momentum repre™
sentation (j,m~ ) with [001] as the quantization direction
the I"

s states are the four ( —,', +—,
'

) and ( —3, +—,
'

) states while
the I 7 are the ( —,', +—,

'
) states. For k&0, a splitting of the

heavy-hole ( —,', k —', ) states from the light-hole ( —,', +—,')
states occurs.

On the other hand, using the notations and character
table of Ref. 41 we find that in the point group symmetry
D2d of the superlattice the p-like valence-band top trans-
forms like the three doubly degenerate states I 6, I 7, and
I 7. Thus the most obvious change is a splitting of the
fourfold degenerate I 8 states in, say, bulk GaAs into two
twofold degenerate states I 6 and I 7 in the superlattice.
This is the splitting 6 of the heavy-hole and light-hole

TABLE II. The two minimum I gaps Eo and Eo&, spin-orbit splittings 50, heavy-hole and light-hole splittings 6, the minimum
(indirect) energy gaps Eg, and experimental gaps for different superlattices. The position in the Brillouin zones of the lowest
conduction-band state is indicated in parentheses. The bulk values are from Ref. 46.

Superlattices
period
(m, n) (eV)

Ao

(eV)

Band gaps at I point
Eox

=Elr; —r;I =Elr,"—r„'I
(eV) (eV)

Eg
(eV)

Experimental
results

(eV)

(2, 1)
(1,2)

(2,2)
(3,1)
(1,'3)

(3 2)
(2.3)

(3,3)
bulk GaAs
bulk AlAs

0.021

0.013
0.012

0.012
0.012
0.011
0.014
0.016

0.022
0
0

0.34

0.35
0.33

0.34
0.36
0.33
0.35
0.34

0.34
0.34
0.28

1.93

1.74
2.03

2.03
1.66
2.30
1.76
2.13

1.97
1.52
3.13

1.99

2.12"

2.50'

1.85
1.93
1.91
1.96"
&.88"

1.79

1.69 (R)

1.88 (X)
1.92 (Z)

1.62 (X)
1.89 (M)

1.83 (Z)
1.86 (X)
1.77 (Z)

2.23

2.35,' 2.24 2.27,' 2.006
2.108,' 2.086, 1.931, 1.890," 2.05'
1.83,' 1.84,' 1.815, 1.845
2.48,' 2.53,' 2.101

2.19,' 2.190, 2.08,' 2.070, 1.971, 2.02'
1.82,' 1.776'
2.59,' 2.60,' 2.127

2.114, 2.120,' 2.07,' 2.035," 2.031g

'Excitation spectra of luminescence from Ref. 33 {4.6 K).
Excitation spectra of luminescence from Ref. 34 (2 K).

'Ellipsometric results of Ref. 36 (30 K).
Resonant Raman measurements of Ref. 37 (300 K).

'Resonant Raman measurements of Ref. 38 (300 K).
Photoluminescence data of Ref. 33 (4.6 K).
Photoluminescence data of Ref. 34 (2 K).

"Photoluminescence data of Ref. 35 (1.7 K).
'Photoluminescence data of Ref. 39 (4 K).
"This gap corresponds to the folded point along 6 (4m/3) (001) and not to the X point.
"This gap corresponds to the folded point along 6 (8m/5) (001) and not to the X point.
'Excitation spectra of luminescence from Ref. 35 (1.7 K).
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states, induced by the tetragonal perturbation of the su-
perlattice even at the I point, in addition to the spin-
orbit splitting b, o. The values of b, and b,o (measured
from the average heavy-hole and light-hole levels) are
presented in Table II; they do not change much with su-
perlattice period. Using the coupling coe%cients of Ref.
41 we describe the six valence states as

I' = —(x iy—)l,1/2
6

I 6
'~ = —(x +iy )1,—]/2 1

6

I 1/2
7

I—(x+iy)j, , or —z1,
2

(4)

C. Eft'ective masses of holes and electrons

In order to study the finer structures around k=0, we
divide the Brillouin-zone segments along [100], [110],and
[001] directions using a dense k mesh of up to 1000
points. We calculate the electronic energies for about 30
such points around k =0, the results of which are shown
in Fig. 5 for the two highest valence bands [heavy-hole
(I 6) and light-hole (I 7) states] of a (GaAs)z/(A1As)2 su-
perlattice along the [110],[100],and [001]directions. We
notice that the bands along [100] and [110]directions ex-
hibit special features such as nonparabolicities related to
anticrossing of states for values of k close to the I point
and spin splittings. The bands along [001] show no such
mixing or spin splittings, as displayed in Fig. 5 for the
(GaAs)2/(AlAs)2 superlattices. It should be noted, how-
ever, that all other superlattices studied exhibit similar
features. It would be interesting to observe effects of
these band mixings experimentally like those reported for
larger-period superlattices.

By fitting parabolas to the calculated bands shown in
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Transforming to the (j,m ) representation it is straight-
forward to see that the I 6 states behave as ( —', , +—', ) while
the I 7 states have mixed ( —', , +—,

' ), ( —,', +—,
'

) character even
at k=0. Away from k=0 the I 6 and I 7 bands (m, =+—',
and +—,

'
) are completely mixed.

Fig. 5 in the immediate neighborhood of k =0 the
effective hole masses can be obtained along the different
directions. These are presented in Table III together
with the masses of the spin-orbit-split band. The trans-
verse masses, that is, masses calculated along [100] and
[110], are nearly isotropic and are given in Table III as
perpendicular (J.) masses while the longitudinal mass cal-
culated along [001] is presented in Table III as the paral-
lel (~~ ) mass for the different superlattices considered here.
We observe that these hole masses remain more or less
constant with superlattice period but are considerably
changed from the constituent bulk values also presented
in Table III. The hole masses of bulk GaAs are those cal-
culated in Ref. 30 using the same scheme followed here
while the hole masses of bulk A1As are taken from Ref.
45. We observe that for directions parallel (~~) to the su-
perlattice growth direction, [001], the heavy-hole band
has an effective mass larger than that of the light-hole
band while this situation is reversed for directions perpen-
dicular to [001] (J.). These results are similar to those ob-
tained when a uniaxial tensile stress is applied along [001]
to bulk zinc-blende crystals, reducing the symmetry from
Td to D2d. In this case the upper bands are heavier than
the lower ones along the direction of stress but lighter
along the perpendicular direction while the spin-orbit-
split bands remain nearly isotropic.

The effective masses of electrons in the two lowest con-
duction bands at the I point calculated along directions
parallel and perpendicular to the growth direction are
also presented in Table III. The bands which are
identifted as folded bands (see Table II) are characterized
by heavier effective masses and some have even negative,
that is holelike, masses. The effective masses of I 6 elec-
trons arising from the normal I 6-like GaAs state are al-
most isotropic and approximately scale according to the
gap of the state. However, some of the masses along the
growth direction are found to be very large. This may be
due, as discussed in Ref. 47, to a large mixing from the
higher-lying states. It should be borne in mind that all
the conclusions drawn for the conduction-band electrons
depend sensitively on the details of the correction used
for the band gaps. There are no experimental data for
these electron and hole masses in the superlattices con-
sidered. These masses have been calculated in Ref. 23 for
the (GaAs) /(A1As)„superlattices using the linearized-
augmented-plane-wave method and they obtain com-
position-dependent masses for both holes and electrons.
This is in contrast to the conclusions drawn here. Calcu-
lations are under way for larger unit cells using the
present scheme to study the changes in their effective
masses.
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FIG. 5. Dispersion of the heavy-hole and light-hole states
close to the I point for (GaAs)2/(A1As), superlattice along the
direction [110], [100], and [001] as calculated with the LMTO
method.

As mentioned earlier, all states perpendicular to the su-
perlattice growth direction exhibit spin splittings as
shown for the heavy-hole and light-hole states in Fig. 5
for the (GaAs)2/(AIAs)2 superlattice. These spin split-
tings can be explained by a linear spin-orbit term for
crystals with the D2d point group symmetry. In simplest
terms such as interaction can be written in the form



39 BAND-EDGE STATES IN SHORT-PERIOD (GaAs) /(AlAs)„. . . 5171

TABLE III. The effective masses of the heavy-hole, light-hole, spin-orbit hole, and the two lowest conduction states at 1" calculat-
ed along the directions parallel (~~) and perpendicular (l ) to the growth direction ([001]). The nature of the electron states can be
identified from the I gaps presented in Table II.

Superlattice

period

(m, n)
hh P . ]h mp ~p c mp

(1,1)
(2, 1)
(1,2)
(2,2)
(3,1)
(1,3)
(3,2)
(2,3)
(3,3)

bulk GaAs
bulk AlAs

0.186
0.192
0.234
0.202
0.160
0.220
0.160
0.200
0.200

0.61
0.5

0.376
0.352
0.406
0.384
0.338
0.420
0.380
0.420
0.432

0.248
0.202
0.252
0.236
0.216
0.296
0.244
0.278
0.252

0.096
0.26

0.168
0.142
0.180
0.160
0.132
0.190
0.150
0.176
0.170

0.268
0.240
0.286
0.264
0.230
0.298
0.254
0.284
0.278

0.20
0.37

0.252
0.230
0.276
0.254
0.220
0.290
0.244
0.274
0.264

0.146
0.118
0.160
0.214
0.108
0.256
0.162
0.252
0.254

—0.216
0.128
0.328
0.518
0.128
4.442
0.234

—1.000
—1.094

0.068
0.124

0.260
0.236
0.186
0.144
0.254
0.170
0.162
0.144
0.132

0.072
—0.458
—0.050

0.176
0.722
0.180
0.344
0.150
0.124

H, =acr. (mXk), (5) 10

where cu is any vector field with the full symmetry of the
superlattice, o; is a constant, and cr and k are the spin and
momentum operators, respectively.

In Fig. 6(a) we present the spin splittings for the three
highest valence bands as a function of k close to F. Simi-
lar plots for the two lowest conduction states are shown
in Fig. 6(b). The slopes of these curve at It=0 determine
the constant a in Eq. (5) for a given choice of re. The
spin splittings can also be characterized by their slopes C.
The values obtained for these slopes from the data shown
in Fig. 6 are (in atomic units)

LLj
O

C„„=5.56 X 10, C, =3.01 X l0

Ct} = 1.50X 10 C~ =5.79X 10
2

C,h =1.31 X 10

(6)

10 8 6

k [110]

2 0 2 4 6 8 10

k /kp
k [100]

where the subscripts hh, lh, sh, c&, and c2 refer to the
heavy hole (u, ), light hole (uz), spin-orbit hole (u3), and
the two lowest electron states c& and c2 at the I point.
We find that for the heavy-hole bands the linear term is
extremely small. The spin splittings for bulk materials
have been described in detail in Ref. 49.

IV. k-p ANALYSIS

3.5

3.0

2.5

2.0

1.5

1.0

I I ] I I t I I I
'

I I ] I I I I I t

For the interpretation of the most experimental data a
detailed knowledge of the wave functions and the energy
levels throughout the Brillouin zone is not necessary.
However, a description of the states around certain spe-
cial points (particularly the I point) of energy bands is
needed in terms of certain serniernpirical parameters such
as e6'ective masses. This also facilitates the study of the
evolution of these states under external perturbations.
Thus we develop a semiempirical k p perturbation theory
for short-period superlattices.

We consider here the two highest valence bands, the
heavy-hole (I 6) and the light-hole (I 7) states [Eqs. (3)

0.5

I ] I ] I I I L

10 8 6
I I ] ] ] ] l I

2 0 2 4 6 8 10

k /ko ——
k [100]k [110]

FIG. 6. Spin splittings of the (a) heavy-hole (U] ), light-hole
(U2), and spin-orbit-split hole states and (b) the two lower
conduction-band states for (GaAs)~/(AlAs)2 superlattices close
to k=O along the [110]and [100] directions as calculated with
the LMTO method.
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and (4)] around k=0. We neglect coupling to the spin-
orbit-split band here as we are considering energies much
less than the spin-orbit splitting of about 350 meV. We
include linear terms as described by Eq. (5). We obtain
for the representations of the group D2d the products '

r, X I.,=r, +r, +r„ I,XI,=r, XI,X r„and I,
Xr7 I1+I2+I5 and using the basis functions for
these representations we can write the k.p Hamiltonian
for the four basis states I 6, I 7 ', I 7, and I 6

' as

ag

b' —l*,

c*—l2

3

a&

c —l2

14

l4 a,
+l)fc 6 Q +

l3

c+l2
—b+l,

ag

(7)

where

a„=El, — k, — (k +k ),

a, =E, — k, — (k +k ),A1 ~ A2

b =A5(k, +i' )k, ,

2
(k k)+—ik~k kc=

and the linear terms, obtained from Eq. (5), are

l, =C', (k ik )—,
l2 =C2k, ,

l3=C, (k +ik ),
1~

= C2 ( k, i k ) . —

(7a)

(7b)

Here E& and EI are the energies at k=0 of the I 6 and I 7

states, respectively, and A, 1 A1 A2 Az A3 A,4, A, s, C1 Cz
C„and C2 are constants to be determined.

The results of the first-principles calculations presented
in the preceding sections indicate that the superlattices
studied behave as bulk crystals. In addition the fine
structures of the valence bands, obtained very accurately
in the present scheme, are fairly similar for the different
superlattices considered. Hence we can combine these re-
sults with the k p model of Eq. (6) to extract the values of
the parameters.

We notice that along the superlattice growth direction
[001], the heavy-hole and light-hole states decouple with

no mixing or spin splittings and with effective masses
1/k, and 1/A, '„respectively. The dispersions parallel to
the layers are, however, characterized by mixing and spin
splittings. In Ref. 48 the linear terms were neglected and
the dispersions parallel and perpendicular to the layers
were combined with the simplified (2X2) k p model to
obtain the values of the parameters listed in Table IV.

. The same set of A, 's was used in Ref. 48 to obtain good fits
for all superlattices.

For bulk zinc-blende materials a k.p Hamiltonian simi-
lar to that presented in Eq. (7) is obtained with the con-
stants replaced by functions of the Luttinger parameters

and y 3 as shown in parentheses in Table IV. The
corresponding values for bulk GaAs and A1As are
presented in this table. They were obtained by using '

y1=6.85, y2=2. 1, and y3=2. 9 for the Luttinger param-
eters for GaAs and y, =3.45, y2=0. 68, and y3= 1.29 for
A1As. The linear terms C, and C2 give rise to the spin
splittings of the heavy-hole and light-hole states [Eq. (6)].
The terms C1 and C2 are only important in the coupling
region and hence can be neglected for small k. We note
that the bulk materials also exhibit splittings linear in k
except for k along (100). These splittings, however,
are much smaller than those seen in Fig. 6, with the ex-
ception of that of the v1 band. In fact, in the bulk ma-
terials the splitting vanishes for the lowest conduction
band at I . The lh and sh bands of the bulk materials,
however, have large spin splittings which are proportion-
al to k for small k, the proportionality factors y being
given in Table VII of Ref. 49. These factors can be used
to estimate linear terms in the superlattices if we take
into account that confinement along z generates a spread
in k, (we label it b, k, ) which contributes two powers of k
to the yk splitting. We thus find

bE=yk(bk, )

where k is the magnitude of the k component in the x,y
plane. Using the values of y calculated with the LMTO
method for GaAs and given in Table VII of Ref. 49 we
find from the Cih, C,h, and C, of Eq. (6) b,k, -=4X 10

2

bohr ', considerably smaller than that which would cor-
respond to complete confinement in one of the constitu-
ent layers (hk, =0.3 bohr '). This confirms the weak
confinement of band-edge states in the (GaAs)z/(A1As)2
superlattice (see Fig. 4).

From the linear splittings given in Ref. 49 for bulk
GaAs we find for the heavy-hole bands Chh =6.2X10
a.u. in rather good agreement with the value calculated

TABLE IV. The valence-band parameters for the short-period superlattices obtained by means of
the LMTO method. The corresponding bulk GaAs and A1As values are also shown.

Ar 1

A2

A2

A3

k4

Valence-band parameter

(y)+2y2)
(yl+y2~
(yi —

y2~
(&3y2)
(&3y, )

(CraAs) m ~

(AlAs) „
m, n ~3

5.2
12.0
10.0
8.2
6.2
3.1

GaAs

2.65
11.05
8.95
4.75
3.64
5.02

A1As

2.09
4.81
4.13
2.77
1.18
2.23
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from the data of Fig. 6 [Chh =5.56X 10, Eq. (6)]. The
small linear splitting of the hh band in the superlattice
thus mainly arises from coupling to the d-like core levels
of Ga as in bulk GaAs.

V. CONCI USION

In conclusion, the first-principles LMTO method has
provided some detailed features of the band-edge states in
(GaAs) /(AlAs) „superlattices with m, n (4. The
effective masses of electrons and holes calculated at the I
point should serve as useful parameters in the interpreta-
tion of many experimental data. The strong nonparaboli-
cities of the heavy-hole and light-hole states found for
dispersions along the superlattice layers is explained in

terms of mixing between these states. The spin splittings
are explained by the presence of k linear terms.

The lowest conduction states in the (GaAs) /(AlAs)„
superlattices are found to localize in the AlAs region for
the cases with m ~ n ~ 7. Most of the short-period super-
lattices studied here have therefore gaps that are indirect
in real space, i.e., the electrons and holes are confined to
different regions, and in reciprocal space. The sem-
iempirical k p theory developed to describe the disper-
sions of the heavy-hole and light-hole states around I
should be useful in predicting the behavior of those states
when external perturbations (e.g., magnetic, electric
fields, uniaxial stress, and impurities) are applied and also
for calculations of excitonic states.
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