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The effects of spin-dependent impurity scattering in interacting systems have been studied to in-

vestigate the role of spin flipping. While charge-density fluctuations continue to be undamped,
spin-density fluctuations are found to be damped due to spin flipping. This leads to damping of spin
waves and Stoner excitations in the ferromagnetic phase. Also, spin flipping works against fer-
romagnetism and leads to a modification of the Stoner criterion for the onset of ferromagnetic insta-
bility. Another manifestation of the tendency of spin flipping to inhibit ferromagnetism is in the
distortion of the -minority-spin band, especially near the band edge. When localization corrections
are included, spin-orbit impurity scattering is found to lead to identical reduction in the spin-
diffusion constant and the spin-relaxation rate which is due to the quantum-interference effect of
weak localization. This is in contrast to the enhancement of the charge-diffusion constant due to
antilocalization and demonstrates the dissimilarity between diffusion of spin- and charge-density
fluctuations. The dynamical localization mechanism that effectively reduces the spin-flipping rate is
also found to correspondingly enhance the band shift and thus cause a stiffening of spin waves and a
widening of the Stoner excitation gap. In the ultralocalized limit, random spin-orbit coupling is
found to lead to competing interactions in a lattice system with a half-filled band. This points to-
wards the possibility of having frustration in a system in which the spin-orbit strength is of the same
order as the hopping term.

I. INTRODUCTION

Some of the combined effects of normal disorder due to
spin-independent impurity scattering and electronic
correlation in an itinerant ferromagnetic system near the
magnetic instability have recently been studied' with
respect to spin- and charge-density fluctuations, spin-
wave mode, and Stoner excitations. Typical Fermi-liquid
behavior was obtained in lowest order with two separate
diffusion constants for spin- and charge-density fluctua-
tions, and the diffusion constants acquire identical weak-
localization corrections. In the ferromagnetic phase
Stoner excitations are localized, and while the dc conduc-
tivity is reduced due to weak-localization effect, the
stiffness constant of the spin-wave mode remains
unaffected by localization. This suggests that the system
can exist in an insulating state and exhibit long-range
magnetic order —a "ferromagnetic Anderson insulating
state. "

In a system which has only spin-independent impurity
scattering, the only available mode for spin relaxation is
spin diffusion, and hence a dynamical effect such as local-
ization affects the spin-fluctuation mode just as it does
the dc conductivity. In the absence of any scattering
which flips the spin, dynamical processes have no effect
whatsoever on magnetization, and hence the spin-wave
stiffness constant is unaffected by localization. In this pa-
per we make some observations on the possible conse-
quences of spin-dependent impurity scattering processes
(e.g. , spin-orbit coupling, magnetic impurity scattering)
on the magnetic behavior of an itinerant system. Spin-

flipping impurity scattering processes provide an intrinsic
mechanism for spin relaxation which will work in con-
junction with the simple diffusion process in a disordered
system. We expect this combined relaxation process to
show up in the dynamical spin-response function. Spin-
flip processes work against ferromagnetism and this
should result in a modification of the Stoner criterion.
We also expect spin relaxation due to flipping to cause a
distortion of the spin bands in the ferromagnetic phase
and effectively reduce the magnetization, and hence make
it susceptible to dynamical processes such as localization.

Indeed, we find that for spin-orbit impurity scattering
(which leads to singular localization corrections owing to
its symmetry under time reversal), weak-localization
corrections due to the quantum-mechanical interference
of scattering amplitudes lead to an enhanced probability
of finding a particle in the same spin state and in the
same spatial region. This enhancement is reflected in the
reduction due to localization in the spin-diffusion con-
stant and the spin-relaxation rate. Localization therefore
favors magnetization by effectively reducing the spin-
relaxation rate, and this has significant effects on the
spin-wave mode, unlike the case with normal impurities
only.

The presence of spin-independent scattering processes,
it was argued in Ref. 1, does not lead to any change in the
qualitative nature of magnetization, and at finite temper-
atures itinerant magnetic systems with nonmagnetic im-
purities behave like random magnets. In the electron-gas
model with a parabolic band, the system undergoes a fer-
romagnetic transition with increasing interaction
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strength. In a lattice system with a half-filled band, to
take another case, the magnetic phase is of the disordered
antiferromagnetic type, as was shown using the exact-
eigenstate approach. We believe the situation to be quite
different in this regard when strong spin-dependent
scattering is present. We have shown that in the local-
ized limit, presence of strong spin-orbit scattering gen-
erates competing interactions possibly leading to frustra-
tion and spin glassiness.

Recent neutron inelastic scattering experiments on the
spin dynamics of amorphous Fe9o Ni Zr, o have re-
vealed a temperature-independent spin-wave line width
which goes as q . This is contrary to the T dependence
which is expected from the contribution to damping of
spin waves by magnon-magnon interaction. The temper-
ature independence of the spin-wave broadening was tak-
en to be suggestive of the relevance of intrinsic broaden-
ing mechanisms arising, possibly, due to magnetic disor-
der in the system. Our study of the effects of normal im-
purity scattering on spin waves' at zero temperature has
indicated a damping term, proportional to q, which
arises from the diffusive mode indicating the importance
of intrinsic broadening mechanisms at low temperatures.
In this paper, we consider in detail the effects of spin-
dependent impurity scat tering processes as well, and
study their effects on spin waves and Stoner excitations.

A systematic way to incorporate the effects of both dis-
order and interaction is to introduce a generalized N-
species model of interacting fermions' and to study it
within the 1/N expansion technique. The ferromagnetic
transition is accessible in the N~ ~ limit, and hence the
method affords a convenient starting point for the investi-
gation of effects of spin-dependent impurity scattering in
the ferromagnetic phase. Spin-dependent scattering
could be due to random spin-orbit coupling or due to
magnetic impurity scattering. These two impurity
scattering processes play identical roles in the N~ ~ ap-
proximation [provided only the s-wave part of the spin-
orbit vertex is kept, which is valid in the limit where the
momentum exchange is much smaller than the inverse
mean free path (ql (( 1 ) ]. When weak-localization
corrections are incorporated, by including in the impuri-
ty susceptibility maximally crossed diagrams which are
of 0 ( 1/N), one must distinguish between the two, owing
to their different symmetries. Spin-orbit scattering obeys
time-reversal symmetry with spin, and weak-localization
corrections in this case indicate localization of spin-
density fluctuations and antilocalization of charge-density
fluctuations. Magnetic impurities break time-reversal
symmetry, and weak localization corrections are ren-
dered nonsingular by ~ ' which acts as a cutoff in the
diffusion pole.

Formally, we have extended the generalized ¹ rbital
model of interacting fermions (see Ref. 1 and references
therein) by including spin-dependent impurity scattering
processes, and have studied it within the 1/¹xpansion
technique which systematizes terms in perturbation
theory involving both the interaction and the disorder
strengths. The spin response of the system has been stud-
ied exactly in the N~ ~ limit, and localization effects
have been studied systematically by including all 0 (1/N)

localization corrections. Advantage has been taken of
the Ward identities which are obeyed order by order in
perturbation theory.

II. LARGE %LIMIT

r„'=2nN(0)y„

r,~'=2mN(0)y, f .
(2)

The contribution due to interaction is just the Hartree
term proportional to the particle density of opposite spin.
There are two additional impurity terms due to spin-
dependent scattering in the parallel and antiparallel spin
channel, their respective strengths being y, f /3 and
2y, &/3. This complicates the evaluation of self-energy in
the ferromagnetic phase which we shall take up later.

A. Paramagnetic phase

First, we consider the paramagnetic case in which par-
ticle densities and the Green s functions are spin indepen-
dent, and so evaluation of the self energy can be carried
through with y replaced by (y„+y,&). The Green's func-
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FIG. 1. Effective spin-dependent impurity scattering process-
es.

Spin-dependent scattering leads to two more effective
impurity scattering vertices in addition to the spin-
independent vertices introduced earlier. ' These effective
scattering vertices are shown in Fig. 1. First, we consider
the N~ ~ limit, in which case terms of order 1/N and
higher can be neglected. Spin-orbit scattering and mag-
netic impurity scattering play identical roles in this limit,
so we shall collectively use the term spin-flip scattering to
refer to both. The self-energy correction due to impuri-
ties and interaction is shown diagrammatically in Fig. 2,
and represents the following Dyson equation:

X (co)= n U+(y„+y„/3) f d k G (k, co)
1

(2~)

+(2y„/3) f d k „G (k, co) .(2' )"

Here, n is the spin —o. electronic density, and y„and
y, f are, respectively, the strengths of normal and spin-flip
impurity scattering processes. In terms of the elastic life-
times, we have
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Here,

Jt)(q, co;co') = j„,G "(k',co')G )(k' —q, co' —~) .

Evaluation of the frequency integral is done as before'
and in the diffusive limits of small frequency (cur «1)
and long wavelength (1/q »1), the susceptibility to or-
der (co, q ) can be expressed as

FIG. 2. Self-energy corrections in the N~ ~ limit.

tion is then given by

2

q (co}—k

1 exp[iq (co) ~r
—r'~ ]

G(k, co)=

G(r —r';co)=—
(3)

where

1

q (co) =—+sgn(co)[2(co+co )]'~
2l F (4)

with the condition that 1m[2(co+coF)]' &0. The mean
free path and the elastic lifetime are now given by

(6)

The impurity-averaged transverse magnetic susceptibility
is thus given by

X.+X,f
kF

(y„+y,f) .
'7T

We now evaluate the impurity-averaged transverse mag-
netic susceptibility in order to study the spin response of
the system. Evaluation of the transverse susceptibility is
more convenient than that of the longitudinal susceptibil-
ity which involves the spin-flip scattering vertices as well.
In the paramagnetic phase there is no difference between
these two susceptibilities apart from a factor of 2. In the
X~ ~ limit the relevant two-particle propagator con-
sists of ladder diagrams involving ladders of interaction
vertices and the normal and spin-Aip impurity scattering
vertices. The diagrammatic series for the impurity vertex
I,t t' (q, cu) is shown in Fig. 3, and it corresponds to the
following self-consistent equation:

g; ~ (q, co)=g; „+(q,O) 1+
—', ~,f '+Dq

where r)=—N(0)/y; ~ (q, O) and r,&' =k„y—,„/vr is the re-
laxation rate due to spin-Aip scattering and
N(0)=kF/27r, D =1 /3r as before. It is characteristic
of systems with spin-dependent scattering that the static
susceptibility is smaller than the one-particle density of
states so that g) 1. This is simply because spin Aipping
tends to reduce the net magnetization for a given applied
magnetic field. This reduction in the static susceptibility
has bearing on the Stoner criterion for onset of fer-
romagnetism and will be discussed in more detail later.

In the limit when r)co«r, f, we can write Eq. (8) in a
form which clearly shows the damped nature of spin-
density fluctuations:

+(q, co)=g; +(q, O)
—', z,f '+Dq

—', ~,f '+Dq —ig~

In the X~~, the dynamical susceptibility for the in-
teracting system can now be written in terms of

+(q, cu) in the form of a (RPA) random-phase approxi-
mation type expression, '

X '(q ~)=Y, ,'(q ~)/[I —UX, ,'(q, ~)]
We obtain

p
(0,0)

x +(q ~)=
1 —Uy; +(0,0)

—', ~ '+D q'

+D q 1'/co

(10}

Thus, the dynamical spin-response function is seen to
exhibit typical diffusive behavior in the small frequency
and long-wavelength approximation. Up to this level of
approximation, interaction is seen to lead to a Fermi-
liquid —type renormalization of the various physical
quantities —the static susceptibility, the spin-orbit relax-
ation rate, and the diffusion constant for spin-density
fluctuations
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2~ 1 —(y„—y,f/3)J (q, co;co') ' = [1—Uy; (0,0)]r,p
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FIG. 3. Diagrammatic representation of the impurity vertex
relevant to the transverse magnetic susceptibility in the N~ ~
limit.

From Eq. (10) we observe that due to spin flipping associ-
ated with the spin-dependent scattering term, spin Auc-
tuations in the system are damped with a relaxation rate

, and this leads to an "infinite-wavelength broaden-
ing" of the spin resonance. This result has been obtained
previously by treating the spin-Aip term to lowest order.
We find essentially the same result in the N~ ~ limit in
which spin-Aip is treated to all orders, but with one
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difference: The energy scale is found to be renormalized
by the spin-flipping term which tends to suppress static
susceptibility. Spin flipping leads to an effectively slower
spin relaxation due to diffusion (D/q & D)

The presence in Eq. (10) of a relaxation term, which
cuts off the diffusion pole at q, co~0 has important conse-
quences on the temperature behavior of the specific heat
of a nearly magnetic system. For temperatures much
smaller than the relaxation rate, the specific heat goes as
T and crosses over to a T -like behavior only when
T —~ '. As will be discussed in Sec. III, weak-
localization corrections reduce the effective spin-
relaxation rate which suggests that the temperature range
for the T behavior of specific heat is actually much
smaller.

A careful evaluation of the static susceptibility leads to

„+(q,0) =N(0)
3kFI„1— tan

3kFls, 2

—aq /12kF2 (12)

Here I„-=kF~, is the mean free path due to spin-flip
scattering. The factor a is obtained numerically from the
q dependence of the static susceptibility. The variation of
o, with increasing strength of spin-flip impurity scattering
is shown in Fig. 4 for different values of (kFl„) '. We
notice that spin-flipping impurity scattering is about an
order of magnitude more effective in reducing o. than
normal impurity scattering (see inset in Fig. 4). The
reduction in o. indicates that spin-density fluctuations be-
come more and more localized spatially. This behavior
of a also has bearing on the spin-wave energy, as will be
discussed later.

r 2 3kF is&
1 —U, N(0) 1 — tan

3kFl t. 2
=0. (13)

In the absence of spin-flip scattering (kFl,.&~ ~ ) we re-
cover the Stoner criterion, independent of strength of
normal disorder. However, the critical interaction
strength, U„required to make the system magnetic, is
seen to increase with increasing spin-orbit or magnetic-
impurity scattering strength. This is simply because spin
flipping associated with these scattering processes works
against ferromagnetism.

B. Ferromagnetic phase

The Green's function in the ferromagnetic phase, with

magnetization m = n ~ —n ~, is given by

G (q, cu)= 2
q' (co) —k' (14)

where the complex wave vector

q (~)=[2(co—X (co)]' '

The second term in Eq. (12) for the static susceptibility
vanishes in the limit of kFl', f~ ~ and approaches 1 in the
limit of strong spin-flip scattering (k~1,t~0). Thus, spin
flip processes lead to a reduction in the static susceptibili-
ty from its normal value which equals the density of
states. An inference to be drawn from this reduction is
that of suppression of spin-density fluctuations due to
spin-flip impurity scattering. This reduction in the static
susceptibility also results in a modification of the Stoner
criterion. The criterion for the onset of the ferromagnet-
ic instability is now given by

I.O
is obtained from Eq. (1) for the spin-dependent self-
energy, which yields after the momentum integration

0.9
2

qa Xsf

2 3
1

q

0.8

0.7

2
+

3

l

2~ q (15)

0.6

Solving Eq. (15) for the two spins self-consistently, we
find that to first order in b, = —(n t —n t)U, we can ex-
press q (cu) in the following form:

q (co) =q (co) —o.h6q (co)/2, (16)

0.5
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5q (cu) =
sgn(co)+2(co+co„)+i (2/3l, .;)

(17)

where q(cu) is given in Eq. (4), and 5q (cu) =:qt(co) —
q ~(co)

is given by
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FIG. 4. Variation of a with ( k z- l „- j

This indicates that in the ferromagnetic phase the spin-
flip term causes the mean free path and the elastic
lifetime to be spin dependent. Basically, this spin depen-
dence arises because while the spin-dependent densities of
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states are symmetric about the average value, the scatter-
ing amplitudes for the spin-flip and non-spin-flip process-
es due to spin-orbit are not equal (see Fig. 2).

If no spin-flipping impurity scattering is present, 6 also
measures the relative band shift between the majority and
minority spin bands; there are no minority-spin states up
to energy 5 measured from the bottom of the majority-
spin band. However, if spin-flip processes are present,
one finds that the band edges of the two spin bands must
coincide. Keeping in mind that the density of states is re-
lated to the real part of q (co) [see Eq. (3)], this can be seen
from Eq. (15), wherein if Req vanishes, it is then impos-
sible to satisfy the equation unless Req also vanishes
simultaneously. However, if spin-flip scattering is small,
then the density of states in the minority spin band does
become significant but only outside this region. For ener-
gies far from the band edge, 5, apart from a renormaliza-
tion, still measures the band shift.

The two spin-coupled equations in Eq. (15) can be
decoupled resulting in fourth-order equations for q
Solution for this quartic equation with complex
coefficients is obtained numerically, and results for the
real part of q, which is proportional to the density of
states, is shown in Fig. 5 for some representative values of
magnetization and impurity scattering strength. Spin
flipping leads to a distortion of the minority-spin band in
the low-energy region and c&~

—
c&~ becomes a strong func-

tion of k for k ((kF. This should lead to interesting ex-
perimental consequences, in that if one depopulates the
very low-energy states of the majority-spin band and
looks for spin-flip transitions, one should observe no en-

ergy gap.
The transverse static susceptibility [Eq. (7)] involves

qt (co')+q &(co'), which, to first order in b, , is independent
of magnetization from Eq. (16). Therefore, to first order
in b„y; „+(q,O, b, ) in the ferromagnetic phase is given by
the same expression as in the paramagnetic phase [Eq.
(12)] but where kz=+2co~ is the Fermi momentum in
the ferromagnetic phase. As shown in the Appendix the

I

LLI

OJ

static susceptibility is just equal to 1/U.
The frequency dependent part of y; +(q, co) involves

q t (co')+q t (co' —co), where 0 & co' & co. Using Eqs. (16)
and (17) we obtain, to first order in co and 6,

I C9
q t ( co' ) +q t ( ru' —co ) = —+

F

where

6 —= b, /[ 1+ ( 2/3k~ l,r )'] . (19)

We observe that the spin-flip term renormalizes the rela-
tive band shift, A. This effective reduction in 5 comes
essentially from the reduction in the difference of the up-
spin and down-spin densities of states arising from the
distortion of the bands due to spin fiipping. Using Eq. (7)
and evaluating the frequency dependent part of

„(q,~), we obtain, after adding the static part,

I I I
1 I I I t I t—0. 1 0.0 O. I 0.2 0.5 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E/EF

FIG. 5. Density of states in the ferromagnetic phase showing
distortion in the minority-spin band.

2

+(q, co, A) =y; (0,0, b, )
—N(0) +N(0)

12kF (b, —co) —4ir, r
' iDq /(1+i—Ar)

(20)

1 —Ug; +(q, co, h)=0,
which yields

2

co — 5 l —7 .f +4 ] Dq
1+(b,r)

aq2/12kF2 .

(21)

(22)

The stiffness constant of the spin-wave mode is propor-
tional to b,a, which, in view of the variation of a [see Fig.
4], decreases rapidly with increasing spin-fiip scattering
strength, y,f. The presence of an imaginary part indi-

where N(0)—:kz/2vr; kz=+2cuz now being the Fermi
momentum in the ferromagnetic phase.

The equation for the spin-wave mode can now be ob-
tained from the condition

cates that spin waves in this system are damped, the
damping being proportional to q . The damping term (or
the spin-wave inverse lifetime) is proportional to
a(kFl, .f), the behavior of which, with increasing spin-
flip scattering strength, is shown in Fig. 6. The spin-wave
damping appears to saturate with increasing spin-flip
scattering strength.

We comment here on the static susceptibility in the fer-
romagnetic phase which, in view of Eq. (21) for the spin-
wave mode, is of importance in determining the nature of
spin-wave spectrum in the disordered system. Evaluation
of the static susceptibility can be carried out rigorously
for the case of normal impurities only. As in the
paramagnetic case, the static susceptibility turns out to
be completely independent of normal impurity scattering
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FIG. 6. Variation of spin-wave damping term with (kFl, f. )

strength and is equal to 1/U in the ferromagnetic phase
so that there is no energy gap in the spin-wave spectrum.
When spin-flip scattering is present, the static susceptibil-
ity in the paramagnetic phase does depend upon the
spin-flip scattering strength. However, in the ferromag-
netic phase, evaluation of static susceptibility carried out
to order 6 leads to the result 1/U, independent of disor-
der strength. The evaluation has been sketched out in the
Appendix. This result should actually hold for all orders
in 6 because our system is isotropic and so spin waves
should be Goldstone modes and there should not be a gap
in their spectrum. The situation does change if one intro-
duces anisotropy which may be due to an external mag-
netic field or some internal anisotropic interactions aris-
ing from crystal-Beld effects.

We now briefly discuss the nature of Stoner excitations,
the spectrum of which is obtained from the pole in the
frequency dependent part of the transverse susceptibility.
From Eq. (20) we obtain, in the limit b,r(( 1 for simplici-
ty, the dispersion relation for Stoner excitations as

in order to determine the effects of localization on such
features as the Stoner excitations and spin waves. We
take the case of spin-orbit impurity scattering only in the
following as it is the more interesting of the two. Mag-
netic impurity scattering breaks time-reversal symmetry
and localization corrections in this case are nonsingular.
Spin-orbit scattering preserves time-reversal symmetry
with spin, and as is well known, leads to singular correc-
tions which cause antilocalization of charge-density fluc-
tuations. Our interest here is mainly to examine the na-
ture of weak-localization corrections for spin-
fluctuations. For the case of normal impurity scattering
only, it was found' that the band shift is unaffected by
impurities and Stoner excitations are localized. The
stiffness constant of spin waves was found to be
unaffected by localization corrections as a consequence of
an exact cancellation. Presence of spin-orbit scattering
causes spin relaxation and leads to distortion of bands
and a consequent reduction of the band shift, A. We find
that localization corrections effectively reduce the spin
flipping and lead to a reduction in the effective spin relax-
ation rate and an enhancement of the effective band shift.
Results for the paramagnetic phase can be obtained sim-
ply by setting the magnetization to zero. This should tell
us about localization effects on the dynamical spin
response and, therefore, how spin diffusion is affected by
spin-orbit impurity scattering.

Weak-localization corrections to the transverse rnag-
netic susceptibility are of order 1/X within the 1/N-
expansion technique and involve maximally crossed dia-
grams in the particle-hole propagator. ' These maximal-
ly crossed diagrams become ladder diagrams in the corre-
sponding particle-particle or Cooper propagator. The
partic1e-particle propagators relevant to the transverse
magnetic susceptibility are shown in Fig. 7. The vertex
parts obey the equations:

11;lt (1.+1,.~3)+(1.+r,.~3)Jt t Ft 1;t t

+( —2&„/3)J„I

Fl t; 1 t ( 21'-~3)+(y.+1'-~3)~i t F& t;&

+( —2),.~3)J1)F 1 t; tl .

$=6 E 3'7(p EDq (23)

The fact that it is the renormalized band shift,
which enters the above expression, is consistent with the
distortion of the bands due to spin flipping as discussed
earlier. Spin flipping thus leads to damping of Stoner ex-
citations which is proportional to the spin-flip relaxation
rate.

I

I

4

I

4 4 4

a y&
I

4

III. LOCALIZATION EFFECTS
ON FERROMAGNETIC FLUCTUATIONS

We now study the localization corrections to the trans-
verse magnetic susceptibility in the ferromagnetic phase

FIG. 7. Diagrammatic representation of Cooper propagators
relevant to the transverse magnetic susceptibility.
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Notice that the bare amplitudes for the spin-orbit impuri-
ty scattering vertices in the Cooper propagator have
opposite signs. This is because in the Cooper propaga-
tor the total incoming momentum is vanishing and so

the vertex involves (kXk') (
—kX —k') and not

(k X k') ~ (k' X k). This is precisely where the time-
reversal symmetry with spin of spin-orbit scattering
comes in. Solving for I

& &. & &
we obtain,

2y,,/3+(y„—y,,/3)(1 —yJ $$ )

[1—(y„—y„/3)J) t](1—yJ(t )
—(2y„/3)(J(t —Jt( )

(25)

Other localization diagrams of order 1/N which contribute to the transverse magnetic susceptibility and charge-
density correlation function are shown in Fig. 8. But before considering the diagrams themselves, we first study the
general structure of the transverse susceptibility upon including the localization correction, L t (q, to), in the antiparal-
lel spin channel. The O(1/N) localization correction with impurity-ladder diagrams of O(1) also included in on either
side is

t

y; p(q, orb)=i f tt L
2~ 1 —(y —y /3)J(~ 1 —

( y „—y „/3 )J t " (26)

where L" denotes the complete O(1/N) localization correction in the antiparallel spin channel. Actually, a resumma-
tion of the localization diagrams (which are the most singular ones) can be performed and, after adding the O(1) part
given in Eq. (7), one arrives at the following expression:

dc' Jll
(q, co, h) =i

t 2~ 1 (y y /3)J tl L 'ft/Jt( (27)

The correctness of the above expression to 0 (1/N) can be seen explicitly by expanding the integrand in powers of
I/N. It is physically more appropriate to bring the localization correction downstairs so that one can see directly the
effects on the diffusion constant, relaxation rate, etc.

We first take up the paramagnetic phase in which case 6=0. The frequency-dependent part of the susceptibility
comes from the co integration over the interval 0 (co & co, it is also in this frequency range that localization corrections
are most singular. In the diffusive limit, we have, for 0 & m' & co

1 —
y J(q, co;co') = r(Dq its), —

where y=y„+y„and ~ '=kFy/~ as given in Eq. (5). Substituting

J (q, co;co')=y [1+2~(Dq —it@)]

in Eq. (27), we obtain for the frequency dependent part of the transverse susceptibility

CO 1

—4y„+yr(Dq it@)—y [1+—2~(Dq' —it@)]L t t(q, )to

(28)

(29)

Now we study the various vertex parts in the paramagnetic phase and isolate the ones with most singular contribu-
tion. Using Jt t=J t t and Eq. (28), we obtain from Eq. (25) the vertex part in the antiparallel spin channel

+1

r(DQ ito)— X SO
~(DQ i to ) +—', —

yy-'3. )

(30)

Comparing with the case for normal impurities only, we notice that half of the singularity in the diffusion pole as
Q, ~A@0 is killed by the spin-orbit term and that the singularity occurs with the same sign. This, as we shall see, leads
to localization of spin-density fluctuations just as for the case of normal impurities only. The vertex parts in the parallel
and spin-flip channel are similarly obtained by solving diagrammatic equations. In the presence of spin-orbit impurity
scattering, the vertex part in the parallel channel becomes nonsingular:

r.....(q, ~)=y
~(DQ i to) + —', —

r.—r,./3
(31)

The localization effect on the spin-diffusion constant is in contrast with the antilocalization eQect of spin-orbit impuri-
ty scattering on conductivity and the charge-diffusion constant ~ The localization correction to these two quantities in-
volves the sum g .r .. ~ in which the singularity due to the diffusion pole occurs with a negative sign,
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(Q, ~)=— 1

2 r(DQ —jco)
r(DQ —i cu)+—

3 . y. y-~3

(32)

The coefficient —
—,
' of the singular term is characteristic

of this system which belongs to the symplectic ensemble"
and leads to a quantum enhancement of the conductivity
and the charge-diffusion constant. Thus, while spin fluc-
tuations in the system are localized by the 0 (1/N) locali-
zation corrections, the charge fluctuations get delocal-
ized. This antilocalization is due to the symmetry of the
spin-orbit term under time reversal. Because of the phase
factor of ~ associated with spin- —, particles under time re-
versal, the scattering amplitudes interfere destructively,
which leads to a quantum reduction in the backscatter-
ing. A fundamental consequence of spin-orbit impurity
scattering is, therefore, that it leads to markedly different
diffusion constants for spin- and charge-density fluctua-
tions.

Now that we know about the nature of the vertex
parts, we consider carefully all the localization diagrams
of 0(1/N) shown in Fig. 8 which contribute to the trans-
verse susceptibility and the density-correlation function.
Of the diagrams for L tt [shown in Figs. 8(a) and (b)] we
need to consider only those which involve a singular ver-

tex part. I . is nonsingular and so we can ignore the
diagrams in Fig. 8(b). Now, in general, the contributions
from the diagrams can be arranged in powers of co and q
and we keep terms up to 0 (co, q ). If no spin-orbit
scattering is present, the 0(1) and 0(co) terms from dia-
grams in Fig. 8(a) cancel exactly. These cancellations are
connected with Ward identities related to total particle
conservation and energy conservation in elastic scattering
respectively. ' Notice, however, that the second and
third diagrams in (a) involve an impurity line which con-
tributes (y„—y„/3) and not y„+y„=y, and so we see
immediately that there will be net contributions of 0(1)
and 0 (co) proportional to (—', )y„ in addition to the 0 (q )

contribution. The singular 0(co) contribution does, how-
ever, get cancelled in Eq. (29) as it should because spin-
orbit scattering is elastic and will not lead to any renor-
malization of the energy scale. The non-cancellation of
0(1) terms leads to a singular correction to the spin re-
laxation rate due to localization. Evaluation of all the
relevant diagrams leads to the following expression for
L''(q ~).

L (q, co) =N(0)4vrr y 'Cd(co)[ —3y„+r(y„—,'y„)Dq —+2,'y„i'~]—, (33)

where

z
—,(r,' ) '+ D 'q —i cu

(35)

y1d&1
Cd(co) =—— (34)

(2~) DQ ico-
expresses the singular nature of the localization correc-
tions and leads to the interesting physical dependences on
scale or temperature which act as infrared cutoffs in the
system. This has been extensively discussed in Ref. 13
and other references therein.

Substituting for L t~ in Eq. (29), we see that the singu-
lar 0 (co) term vanishes due to cancellation, and the
scattering-strength coefficients with the Dq terms add up
to y so that the spin-relaxation rate and the diffusion con-
stant acquire identical localization corrections. This is
explained in the next paragraph. The frequency depen-
dent part of the transverse susceptibility can finally be
written as

tt; tJ

0
~ ~n ~so~3~

( 7f) + '@so/3)

tJ;tt t l; Jt

~~.+ ~so~»

t

tt;tt
( b )

t'. t

2&so

where the effective spin-diffusion constant and spin-
relaxation rate involve identical localization corrections
and are given by

D '(co) =D 1— 1 1

2rrN (0) g DQ ico—
(36)

2yso I3

t,.
t

ie; tt

2vrN(0) fg DQ icu— FIG. 8. Localization diagrams of 0( 1/4') which contribute
to the transverse magnetic susceptibility and the density corre-
lation function.
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Weak-localization corrections can be interpreted as
arising due to interference of scattering amplitudes. The
reduction in effective spin-diffusion constant is due to
constructive interference which leads to an enhanced
probability of finding the spin at a later time t in the vi-
cinity of where it was placed at time 0. This very in-
terference also results in an enhancement for finding the
particle in the same spin state and leads to an identical
reduction in the effective relaxation rate due to spin Aip-

ping. As discussed later, in the ferromagnetic phase this
effective reduction in the spin Aipping causes a corre-
sponding increase in the band shift.

We now discuss the nature of the localization correc-
tion expressed in Eq. (36) which tends to decrease the
spin-diffusion constant and the spin-relaxation rate for
low frequencies. The momentum integration leads to
logan' and &co dependences in quasi —two dimensions and
three dimensions, respectively. ' At a nonzero tempera-
ture, it is the inelastic-relaxation rate which acts as a
cutoff in the diffusion pole and governs the dependence
provided that cu &&~;„'. The temperature dependence of
the inelastic-relaxation rate then translates into 1ogarith-
mic (in quasi —two dimensions) or a power-law (in three
dimensions) temperature dependence for the localization
correction to the spin-difFusion constant and the spin-
relaxation rate.

Localization diagrams which yield singular contribu-
tions to the density correlation function are shown in Fig.
8(c). We notice that contributions from the impurity
lines are such that they add up to y„+y„/3
+2y„/3=@ when account is taken of the different signs
of the singular vertex parts involved. Hence, the situa-
tion is virtually identical to the case of normal impurity
scattering only, and one sees immediately that the
q, co~0 contribution to the density-correlation function
vanishes due to exact cancellation. This is only to be ex-
pected because the density-correlation function for zero
frequency and momentum is related to the well-behaved
thermodynamic density of states, BN /Bp, and hence
should not exhibit any singular behavior.

In order to study localization effects on spin waves and

(37)

where we have used

1 —yJ t(Q, co;6) =r[DQ —i (to+5.)],
1 —yJt t(Q, to;5) =r[DQ i (co ——E)],

(38)

(39)

and have kept terms to first order in Q, co, and 6 in
evaluating the denominator in Eq. (25). From Eq. (37) we
notice that unlike the case of normal impurities only,
low-frequency spin fluctuations in this case continue to be
affected by localization correction in the ferromagnetic
phase which will have an important consequence on the
spectrum of spin waves. On the other hand, Stoner exci-
tations involve frequencies of the order of 6 and thus, the
corrections are rendered nonsingular by 6 which acts as
a lower cutoff in the Q integration.

Unlike the singular ~-dependent terms which cance1
exactly, a cancellation of the 6 terms is avoided due to
the nature of the diffusion pole in Eq. (37). This is briefly
discussed below. Evaluation of the diagrams in Fig. 8 us-

ing Green's functions appropriate for the ferromagnetic
phase leads to terms like i (co —b, ) in place of the its
terms, and one obtains for the frequency-dependent part
of the transverse susceptibility

Stoner excitations, we now turn to localization correc-
tions in the ferromagnetic phase, the relevant vertex part
for which is given in Eq. (25). In the ferromagnetic
phase, the term J —J is proportional to 6, and this
term cancels the 0 (b, ) contribution from the first term in
the denominator, so that to first order in 6, the denomi-
nator yields a diff'usion pole for Q, co~0. This is unlike
the case of normal impurities only (where the diffusion
pole occurs at to~b, ) and has, as discussed below, impor-
tant consequences on spin waves and Stoner excitations.
For y„&0, the most singular contribution to the vertex
part is obtained as

yo y—,./3 .—I tt. i)(Q, co;Z)= 1 — id'
(DQ —i to) 2y„/3

Q) 2
—', y„+y r [Dq —i ( to —5 ) ]—y I I +2r [Dq —i ( co —b, ) ] I L t i

( q, co, 6 )

(40)

But the diffusion pole in the vertex part, I ~ ~'~, which
goes into the localization correction, L. ~ ~, continues to be
of the 1/(DQ —ito) type. Therefore, the contribution
from terms like fDQ /(DQ its) goes as ito an—d not as
i (co —b, ). That the singular O(co) terms cancel, there-
fore, necessarily indicates that the singular O(b, ) terms
do not.

By evaluating the singular localization corrections in
the ferromagnetic phase using diagrams shown in Fig. 8
for L ~ ~ and then isolating terms of order 6, we obtain

L (q, to, A) L(q, c0,0)=—N(0)4rtr y 'Cd(to)

X [ i Zr( y„+——", y„)],
(41)

where, L (q, co, 0) is given in Eq. (33). Substituting in
Eq. (40), we find that the scattering strength coefficients
with the 5 term add up to y, so that the frequency-
dependent part of the transverse susceptibility in the fer-
romagnetic phase can be written as



514 AVINASH SINGH 39

1CO

—', (r„) +D q
—i (co —6 )

(42)

where the effective band shift, 6 ' is seen to be enhanced
by localization corrections which are of exactly the same
form as for the effective spin-diffusion constant and spin-
relaxation rate but with a difference in sign:

S'=S 1+ 1 1

27rN (0) g Dg~ i to—
(43)

~=[A ' —i —', (r,'„) ']aq /12kF . (44)

To summarize, then, for spin fluctuations, weak-
localization corrections which are viewed as arising from
the quantum-mechanical interference of scattering ampli-
tudes lead to an enhanced probability of finding a particle
in the same spatial region and the same spin state. This
results in an effective reduction in spin diffusion and
spin-relaxation rate due to spin flipping. Since spin flip-
ping distorts the spin bands, and hence reduces the band
shift in the ferromagnetic phase, an effective reduction in
the spin-flipping rate due to the dynamical localization
phenomenon results in a corresponding increase in the
band shift, and hence in the spin-wave stiffness constant.

As far as spin waves are concerned, these localization
corrections to the band shift and the spin-relaxation rate
translate into corresponding enhancement of the stiffness
constant and reduction in spin-wave damping, respective-
ly. Dropping the q term for simplicity, we can write, in
analogy with Eq. (22), the equation for the spin-wave
mode as

H'= —V g'(a, a +a a, )

t~J~~

+ g '(f'~ .a, a +f' .a, a, ~ ), (46)

where a prime to the sum indicates that the sum is done
only over nearest-neighbor pairs of sites. The second
term represents the spin-orbit interaction and f may
be written in the following form'

f ='[~r ff (47)

gyral1
—2U

(48)

If the singly occupied system forms the ground state, as
has been assumed, then it is easy to see that this correc-
tion energy is always negative. The implication is that if
only normal disorder is present, it is the antiferromagnet
ic arrangement of spins which is favored in the ground
state.

Consider now the correction due to the spin-orbit term
in H'

~ For parallel and antiparallel occupancy, the
corrections are

where f is real and antisymmetric in the site indices.
Consider now a single pair of sites labeled 1 and 2, with

on-site energies e& and e2. If the spins of electrons occu-
pying these sites are aligned parallel to each other, the
second-order correction due to the first term in H', which
is diagonal in spin, vanishes. This is because the virtual
state is a doubly occupied state with parallel spins which
is excluded from Pauli's exclusion principle. For antipar-
allel alignment, the second-order correction due to the
first term is

IV. COMPETING INTERACTIONS

I & ilH'Im & I

I (45)

In a tight-binding representation of the Hamiltonian the
perturbation is

As pointed out earlier, a model with repulsive interac-
tion and spin-independent impurity scattering can be
effectively mapped to a spin- —,

' Heisenberg model with
random (but all with same sign) exchange constants. And
so, the critical behavior of itinerant ferrornagnets with
nonmagnetic impurities is expected to be identical to that
of random ferromagnets. In contrast, we believe the situ-
ation to be quite different in this regard when spin-
dependent scattering processes are present. As we show
below, in the localized limit the presence of strong spin-
orbit scattering effectively generates competing interac-
tions leading, possibly, to frustration and thereby to
spin-glass behavior. '

In this section we consider a lattice system with a half-
filled band in the site-localized limit in which each site is
occupied precisely by one electron. We evaluate the
second-order correction to the ground-state energy by
treating as perturbation the hopping term and the ran-
dom spin-orbit coupling term which is also off-diagonal
in site indices

—2U (f'+f')
U —(e, —e2)

(49)

gg't l
2

—2U 2

U —(e, —e~)
(50)

V. CONCLUSION

In this paper we have considered the effects of magnet-
ic and spin-orbit impurity scattering in interacting sys-
tems and have shown how the spin dependence of
impurity-scattering processes leads to basic differences
from the case of normal impurity scattering where no

It is not clear now whether it is the parallel or the anti-
parallel arrangement which is favored in the ground
state. The answer depends on the relative magnitude of
f, + V and f +f Aparallel arra. ngement is favored if
f, + V (f„+f and vice versa.

If the spin-orbit term is of the order of the hopping
term, then due to the randomness in f, it is likely that a
parallel spin arrangement is favored energetically for
some pairs, whereas the antiparallel spin arrangement is
favored for others. Thus, in this system, both ferromag-
netic and antiferromagnetic interactions between spins
are effectively present and this leads to frustration and
possibly to a spin-glass phase.
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spin flipping is present. Thus, while charge-density fluc-
tuations continue to be undamped, spin-density fluctua-
tions become damped due to spin flipping. This leads to
damping of spin waves and Stoner excitations in the fer-
romagnetic phase. Also, spin flipping works against fer-
romagnetism and, indeed, we find that the Stoner cri-
terion for the onset of ferromagnetic instability is
modified, and the critical interaction strength increases
with increasing spin-flip scattering strength. Another
manifestation of the tendency of spin flipping to inhibit
ferromagnetism is in the distortion of the minority spin
band, especially near the band edge. Far from the band
edge, the effective band shift is reduced by spin flipping.

When localization corrections are included, we find
that spin-orbit impurity scattering leads to identical
reduction in the spin-diffusion constant and the spin-
relaxation rate which is due to the quantum interference
effect of weak localization. This is in contrast with the
enhancement of charge diffusion constant due to antilo-
calization, and indicates that the similarity between
diffusion of spin- and charge-density fluctuations, as
found in the case of normal impurities only, is broken.
The reduction in the effective spin-relaxation rate and
also its temperature dependence will have important im-
plications on the low-temperature specific heat of a
nearly-magnetic system which is being investigated. We
also find that the dynamical localization mechanism
which effectively reduces the spin-flipping rate also corre-
spondingly enhances the band shift, and thus causes a
stiffening of spin waves and increases the Stoner excita-
tion gap.

Finally, we have shown that in the ultralocalized limit
random spin-orbit coupling leads to competing interac-
tions in a lattice system with a half-filled band. This
points towards the possibility of having frustration in a
system in which the spin-orbit strength is of the same or-
der as the hopping term.

ACKNOWLEDGMENTS

as well as spin-dependent impurity scattering is briefly
sketched out here for the sake of completeness. From
Eq. (7) the static susceptibility is given by

where we have'

1 —(y„—y,r/3)J (co)
(51)

J 11(co)=
m[q 1 (co)+q1(co)]

(52)

From Eqs. (16) we find that to first order in b, ,
q&(co)+q&(co) is explicitly independent of b, and ap-
parently independent of U as well. However, the depen-
dence is hidden in the Fermi energy cuF which, in the fer-
romagnetic phase, implicitly depends upon U.

Since there is no explicit dependence on 6 one can
proceed as for the paramagnetic case and obtain [see Eq.
(12)]

kF 2 ] 3kFlsf
(53)

N (co) = +2(co+coF ) 1+1

2m2

o.6/2
2(~+coF )+(2/31,„)

(54)

From which we obtain the particle densities

n = f dcoN (co) .
F

Since n ~ —n ~ =6/U, we get

(55)

where kF =+2coF.
In order to determine the manner in which kF depends,

in the ferromagnetic phase, implicitly on U, we need to
evaluate the particle densities for both spins and relate
the difference to A. We proceed with the density of states
obtained from the real part of q (co)
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1 '1/ 2(CO+COF )
dc'

2m' F 2(co+coF)+(2/3I, f)'

2 3kFlsf
1 — tan

3kFlsf 2
(56)

APPENDIX

The evaluation of static susceptibility in the ferromag-
netic phase for a system with normal impurity scattering

Comparing with Eq. (53) we immediately see that in
the ferromagnetic phase (6&0), the static susceptibility
is equal to 1/U.
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