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The tight-binding theory of total energies in semiconductors, based upon universal parameters, is
modified following the findings on the overlap repulsion by van Schilfgaarde and Sher. The
nonorthogonality S of neighboring orbitals is thus taken to vary as 1/d rather than 1/d', giving a
repulsion proportional to 1/d'. An additional repulsion due to nonorthogonality of valence orbitals
with neighboring cores is taken to vary as 1/d' . The two coeKcients are chosen to give the ob-
served equilibrium spacing and bulk modulus of the homopolar materials. The fit gives nonortho-
gonalities S near the expected value of 0.5. A natural generalization of the repulsion to polar ma-
terials predicts spacings and bulk moduli in reasonable accord with experiment in the compounds.
The method is then applied to the prediction of lattice distortion around substitutional impurities
and energies of substitution. The results are in excellent agreement with the known experimental
values.

I. INTRODUCTION

When an impurity atom is placed at an atomic site of
an ideal bulk semiconductor, it exerts forces which dis-
place the surrounding host atoms from their equilibrium
positions in the unperturbed crystal. This lattice relaxa-
tion' influences both the solubilities and the electronic
properties of the impurities in semiconductors. Further-
more, it seems that lattice relaxation also aA'ects the
transport properties, more strictly the capture cross sec-
tions, especially at low temperatures. It is therefore of
scientific and technological interest.

Experimental studies are mainly restricted to extended
x-ray-absorption fine structure (EXAFS) experiments.
However, information about the lattice distortion may
also be extracted from spectroscopic investigations. '
The spectroscopic methods are especially powerful for
the measurement of the lattice distortion energies. "
From solubility data' substitution energies can be ex-
tracted. A variety of theoretical studies exists. The more
sophisticated calculations for both the lattice distortion
and the energy use the local version of the density-
functional theory. ' ' However, semiempirical models
are also applied. '

We continue this line of semiempirical calculations and
apply the well-known tight-binding theory ' to the
ground-state properties of the perturbed system. In Sec.
II we restate the total-energy problem using a new form
of the pair repulsion energy. The purpose is to obtain a
form and associated parameters which may be expected
to apply to the system with impurities. The theory is
tested by calculating important ground-state properties of
the ideal crystals: the equilibrium interatomic spacing,
the cohesive energy, and the bulk modulus. In Sec. III
the theory is extended to perturbed systems and used to
estimate impurity-host interatomic distances and total-
energy changes. In Sec. IV the results are compared with
experimental and other theoretical values and are dis-
cussed.

The principal goal is to provide a simple theory for in-
teratomic distances since an earlier tight-binding
analysis appeared unreliable in this regard. Certainly
for this purpose the metallization of bonds through cou-
pling to neighboring antibonds cannot be ignored since it
is responsible for the lack of dependence of bond length
on polarity in the series isoelectronic with germanium
while there is a strong dependence on polarity in the
series isoelectronic with carbon. " Therefore, a rather
complete analysis is necessary.

II. IDEAL SEMICONDUCTOR CRYSTALS: A TEST
OF THK THEORY

A. Total energy of the bulk

We consider a tetrahedrally coordinated compound
with two atoms 3 and B, cation and anion, in the ele-
mentary cell. The numbers of valence electrons of each
atom are Z~ and Z~, with Z„+Z~=8. The principal
quantum numbers of the valence electrons (which corre-
sponds to the row in the periodic table in which the atom
is situated) are denoted by n~ or ns. The valence elec-
trons form two chemical bonds per atom by interaction
between opposing sp hybrids. A complete theory of the
total energy of such a system is rather difficult. However,
reasonable approaches are possible within the tight-
binding method which moreover allows physical insights
into the bonding process. We follow the procedure given
in detail by Harrison and Kraut. In the bond-orbital
approximation ' the total energy of a zinc-blende (or
diamond) structure with K atoms per unit volume can be
approximated as

E,",~t =4N(Eb, „d+E „+E„p+E„,) .

The four contributions are the following.
(a) The one-electron energy Eb,„d of an electron occu-

pying a bond
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& ( A+eB) ( @2+y2 )1/2

where the sp hybrid energies of cation and anion

A ]( 2+3 A) (3)

are given in terms of atomic s and p orbital energies, c,
and c.", respectively. We use the atomic Hartree-Fock
values of Mann. A complete collection can be found in
Ref. 28. The difference of these hybrid energies is written
as twice the polar energy V3 defined by

The first term originates from the nonorthogonality of
the neighboring hybrids, with S the nonorthogonality or
the overlap integral of the two sp hybrids. If S is calcu-
lated numerically from Hartree-Fock wave functions, it is
found to vary approximately as 1/d rather than as the
1/d suggested by extended Hiickel theory. We recog-
nize that its value will depend upon the principal quan-
tum number but neglect any dependence upon the
column in the periodic table. Since two different atoms
are involved in the overlap we make the ansatz

3 2
(4)

ao
S =[So(n~ )*So(n~ )]'/ (10)

where

V3a
( @2+ y2 )1/2

is the polarity of the bond. V& or V] arises from interac-
tion of two different hybrids on the same atom 3 or B. It
is called the metallic energy. ' ' Again it is taken here
to be the magnitude of the coupling,

VA —l( 3 sA)
1 4 p s

(c) The interatomic repulsion energy E„(per electron)
may be split into two terms,

E„=SV2+AE„, (9)

Each of these sp hybrids is coupled to another forming a
two-center bond with the covalent energy V2 which is
given as in Refs. 28 and 29. We define here Vz to be the
magnitude of the coupling, positive rather than the nega-
tive values defined earlier,

V2=3.22fi /md

in terms of the nearest-neighbor interatomic distance d.
The energy E]„„~neglects any coupling between bonds
and neighboring antibonds.

(b) The metallization energy E „ is a correction to
E]„„z due to the coupling of the bonds to nearest-
neighbor antibonds, calculated in perturbation theory.
To second order in this coupling it has the form

3
( 1 2 )3/2[( yA )2+( 1/B )2]/y.

Q

with the atomic unit ao =0.529 A. The correction AE„
represents contributions from the valence-core and core-
core nonorthogonality which van Schilfgaarde and Sher
have found to be essential. We write these small correc-
tions as a short-range potential

bE„p= [C(n„)*C(n~)]'

of the form of the Lennard-Jones potential. ' Whereas
So( n ) is a weak function of the principal quantum num-
ber n of the valence electrons, the dependence of C(n) on
n is much stronger. We have chosen such functions so
that the resulting total energy Eq. (1) gives the correct in-
teratomic equilibrium spacing d =do and bulk modulus
B for the four covalent materials diamond, silicon, ger-
manium and grey tin. The results for the pair repulsion
energy are summarized in Table I. The nearly constant
value of Sdo is consistent with the ansatz Eq. (10) and the
findings of van Schilfgaarde and Sher that S—1/d for
variations from material to material as well as for a single
material. The overlap integrals are found to have the
correct general magnitude, S=0.5. The magnitude of the
short-range contribution EE„ is found to be approxi-
mately the same for all four homopolar semiconductors.
Thus it varies as EE„=C(do/d)' with a universal con-
stant C=0.2 eV. Despite its small magnitude, its second
derivative makes a large contribution to the bulk moduli
B. The short-range part contributes to B as 1566E„
whereas the overlap interaction adds 12SV2. The in-
clusion separately of a 1/d and a 1/d' term, rather

TABLE I. Overlap repulsion SV2 and short-range repulsion AE„,~ resulting from the requirement
that the total energy Eq. (1) gives rise to the correct interatomic equilibrium spacings do and the bulk
moduli B in the ease of group-IV materials C, Si, Ge, and a-Sn. Some derived parameters entering Eqs.
(10) or (11)are also listed.

Parameter Si n-Sn

n
0

do (A)
B (10" erg/cm')
SV2 (eV)

(eV)
S
s*d, (A)
S,(n)
C(n) (10 )

2
1.54

44.20
6.032
0.150
0.584
0.899
1.670
0.408

3
2.35
9.78
1.717
0.233
0.387
0.909
1.718

96.199

4
2.44
7.72
1.428
0.213
0.347
0.846
1.599

145.15

5

2.80
5.31
0.761
0.231
0.244
0.683
1.291

819.75
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than the single 1/d term used earlier, is essential to ob-
taining both correct spacing and bulk modulus. Van
Schilfgaarde et al. found that the short-range term is
present and we explored possible forms, finding that a
d ' gave better results than a d form.

(d) The energy E, , represents the effects of the
electron-electron interaction which are different in the
solid than in the atom. The principal effect comes from
promotion of electrons to an sp electron configuration in
the solid. Thus they affect the cohesive energy but,
since they are largely intraatomic they have little
effect on the interatomic forces. We adjust it to fit the
cohesive energy for C, Si, Ge, and a-Sn and use the same
value for any atom in the same row.

The resulting total energy per atom Eq. (1) as a func-
tion of nearest-neighbor distance d is shown in Fig. 1 for
C, Si, and a-Sn; The curves are shifted on the energy
scale in such a way that the negative value of E,", /N at
the minimum position, i.e., the equilibrium position
d =do, is equal to the cohesive energy of these elemental
semiconductors. For large distances d, larger than the
second-nearest-neighbor spacing ( —', )'~ d, the perturba-
tion theory used in calculating E „becomes inappropri-
ate and E,"„ /X begins to grow in proportion to —d
However, E„, is well behaved up to third-nearest-
neighbor distances. Furthermore, this artifact of the ap-
proximation is remarkably softened in the case of the po-
lar compounds since the separation of antibonding and
bonding level is increased by the polar energy V3.

Etot =2e, +(Z„—2)E~ +4E,"„. (12)

where the total energy of the bulk semiconductor has to
be taken at the equilibrium nearest-neighbor spacing do.
With Eqs. (1) and (12) the well-known form

E4'„—=4[E„. (V', —+ V,')'"+E „+E„„+E...]
(14)

results if the promotion energy (per solid-state electron)

E „=—,'[V, + V, +(1—
—,'Z„)(E~ —e~)] (15)

is introduced. The small additional contribution due to
the difference in the electron correlation in the bulk and
the free atoms we have represented as

bE„,=—,
' g U(n; )[1+2(1—

—,'Z;)+1.41(1—
—,'Z;) ]

according to a more detailed analysis of the inclusion of
the electron-electron interaction into the tight-binding
theory. ' U(n) in Eq. (16) is taken to be the value
fit for C, Si, Ge, and a-Sn.

Now the cohesive energy E„„per atom of the bu1k com-
pounds can be represented by a combination of expres-
sions (1) and (12) as

EAB —](EA +EB ) EAB(d d )/+

B. Ground-state properties of the materials

1. Cohesive energy E„h

2. Equilibrium conditions

The equilibrium conditions and formula for the bulk
modulus for zero temperature are

Within the same approximations used in the derivation
of E,"„ in Eq. (1) the total energy of a free atomic with
two s electrons and (Z„—2) electrons follows as

a E,"„(equ)=0,
a2

V 2 E,"„(equ)=8 .

(17a)

(17b)

CD

&- 0—
U
CL

z -2
LJJ

4
O

The dependence upon d of each term in the total energy
has been written explicitly. Thus Eqs. (17) may be rewrit-
ten with respect to d instead of V in equations defining
the equilibrium bond length do and the bulk modulus B.
The bond length d has to be replaced by the equilibrium
value do and the bulk modulus by the experimental one
to obtain the functions So(n) [Eq. (10)] and C(n) [Eq.
(11)] so determining the repulsive interaction for the
homopolar semiconductors. The generalizations Eqs.
(10) and (11) to compounds then allow prediction of their.
properties.

3. Explicit values: predictions for compounds

I I I I I 1 I

2 3 4 5
NEAREST-NEIGHBOR SPACING (A)

FIG. 1. Total energy per atom in diamond, silicon, and grey
tin as a function of the bond length. The energy zero point is
shifted so that the negative value of the energy in the minimum
gives the cohesive energy of the material.

The data resulting from Eqs. (14) and (17) for the
ground-state properties of bulk semiconductors are sum-
marized in Table II. Note that parameters have been ad-
justed to fit the homopolar materials so the table
represents the generalization of the equations to corn-
pounds. For comparison experimental data for the in-
teratomic spacing do and the bulk modulus are also
given. We restrict ourselves to materials in the diamond
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TABLE II ~ Equilibrium properties of a variety of diamond- and zinc-blende-structure semiconductors.

Semiconductor

C
Si
Ge
o.-Sn
SiC

1.54
2.35
2.44
2.80
1.88

E~oh (eV)

7.36
4.64
3.87
3.12
6.34

Experiment
B (10" erg/cm')

44.20
9.78
7.78
5.31
9.70

do (A)

1.54
2.35
2.44
2.80
2.22

E,.„(eV)

7.36
4.64
3.87
3 ~ 12
5.12

Theory
B (10" erg/cm')

44.20
9.78
7.78
5.31

12.57

BN
Alp
AlAs
Alsb
GaP
GaAs
GaSb
InP
InAs
InSb

1.57
2.36
2.43
2.66
2.36
2.45
2.65
2.54
2.61
2.81

6.68
4.26
3.78

3.56
3.26
2.96
3.48
3.10
2.80

8.60
7.73
5.93
8.87
7.48
5.63
7.25
5.80
4.66

1.58
2.38
2.41
2,67
2.41
2.43
2.68
2.58
2.61
2.79

6.71
4.67
4.39
3.57
3.74
3.49
2.79
3.86
3.45
2.72

28.47
8.74
8.94
6.97
9.00
9.48
6.89
7.72
7.48
6.38

Mg Te
ZnS
ZnSe
ZnTe
CdS
CdSe
CdTe
Hg Te

2.76
2.34
2.45
2.64
2.53
2.63
2.81
2.80

2.86
3.18
2.58
2.28
2.84

2.06

7.80
5.95
5.09
6.44
5.50
4.24
4.23

2.77
2.57
2.54
2.66
2.91
2.83
2.88
3.06

3.37
2.94
2.60
2.20
2.89
2.39
1.87
4.75

3.73
3.01
4.48
5.29
1.58
2.72
3.66
3.16

or zinc-blende structure. The experimental data are tak-
en from different collections.

The comparison between theoretical and experimental
values is considerably improved over the earlier analysis "
which was based upon a d repulsion. The chemical
trends and approximate absolute values for the equilibri-
um bond length do and the cohesive energy E„h are
correctly predicted by the present theory in most cases.
This holds also for the magnitude of the bulk rnoduli B.
The smallest discrepancies are observed if the row and/or
the column in the periodic table of the two atoms form-
ing the compound are the same. The discrepancies in-
crease with increasing differences between the two atoms.
The general agreement suggests that the theory of the to-
tal energy may be applicable to the impurity problem,
particularly for the study of the lattice relaxation and the
energy of substitution. However, we should be aware of
the limitations in accuracy suggested by discrepancies in
predictions for the bulk.

One discrepancy worth noting is the cohesive energy of
SiC, which we predict to be smaller than the average of
that for Si and C values by 0.88 eV, whereas the experi-
mental cohesion of SiC is seen to be larger than the aver-
age by 0.34 eV. This may be related to a tendency for
tight-binding theory to overestimate cohesion in the
carbon-row compounds by a factor of order two. This
does not appear in the diamond cohesion in Table II
since we have adjusted a correlation correction to bring it
into accord. With this large a correction we cannot have
confidence in its extension to compounds and impurities.

Because of this we should be particularly skeptical of any
estimates involving elements from the carbon row, and
we shall restrict our consideration to elements below that
in the periodic table, except for the solution of Be and C
in Si. Predictions for these two cases should be con-
sidered as quite tentative.

III. SUBSTITUTIONAL IMPURITIES:
AN APPLICATION OF THE THEORY

Harrison and Kraut have given in detail a procedure
for calculation of the energy of substitution

Ega(XA ) E,~, +E~"0, E—,",t E„,+(Zx ——Z„)E,—,

(18)

E„~(X~) is the energy required to remove an atom A

from the bulk compound AB, leaving it as a free atom,
and substitute a free atom X in its place. Any excess or
deficit of electrons due to substitution of an atom of
different valence are placed at, or removed from, the
valence-band rnaximurn E, . In circumstances for which
this is not appropriate, as in n-type hosts, corrections are
to be made for the difference. E, , means the total energy
of the AB compound under consideration in which one
atom A is replaced by an atom X. E, denotes the energy
of the valence-band maximum which can be well de-
scribed by the tight-binding method. As did Harrison
and Kraut we include the change in metallization in the
substitution. Our procedure differs from theirs principal-
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ly in that we use the 1/d and 1/d' repulsions described
above for the overlap repulsion E„,while they used a
1/d repulsion 6t to give the observed lattice distance.
This change has allowed us to fit the bulk modulus, while
their predicted value was generally too small by a factor
of order two. It has also provided us with much better
predictions of equilibrium bond lengths in the com-
pounds.

A second change, for cases in which electrons are add-
ed to or subtracted from the valence band, is that we did
not include the shift S ( —', V + —', V ) in the valence-
band maximum due to nonorthogonality of the orbitals
on neighboring atoms. Harrison and Kraut took S to be
0.5 for hybrids and scaled it by the ratio of the coupling

3 Vpp +
3 Vpp to the hybrid coup 1ing Vz . We actual 1y

have obtained values of S, as listed in Table I, and could
use the same scaling. The contribution is small and the
significance of our estimate of S uncertain enough that
we chose to drop the correction.

We also carefully considered the self-consistent shift in
the term values due to charging of the atoms but con-
cluded that they were sufficiently small to be neglected,
consistent with the more detailed cluster calculations by
Harrison and Klepeis. We noted that, for example, re-
placing a single germanium atom by arsenic in bulk ger-
manium adds a proton to the germanium nucleus produc-
ing. a potential e/r, reduced to e/re by the dielectric re-
laxation of the bonds in the crystal. From Poisson's
equation we see that this leaves the germanium atoms in
the bulk of the material neutral, but leaves a local charge
of e/e on the arsenic atom at the center. This shifts the
hybrid energy on the arsenic down by U/e, where U is
the Hubbard U=8.31 eV for arsenic (the difFerence be-
tween electron affinity and ionization energy of the atom),
tabulated by Harrison. There is no shift in the arsenic
hybrid energy from the neighboring germanium atoms
since they are all neutral. However, the charge of e/e on
the arsenic lowers the hybrid energies of the nearest-
neighbor germanium atoms by e /ed=5. 90 eV/e, almost
as large as the arsenic shift. Thus the polarity of the
bond is little affected, and we can proceed with free-
atom-term values as did Harrison and Kraut.

In both analyses, two energies of substitution are calcu-
lated. The first retains all bond lengths at the bulk AB
value. The second allows formally the impurity-host (X-
8) bond length to vary, holding all others fixed, in order
to obtain an X-B natural bond length in AB, written d„.
(This is of course not geometrically possible in a real lat-
tice, but is mathematically convenient as a first step. ) A
simple force-constant model (given, for example, by Har-
rison and Kraut ) then shows that the relaxed impurity-
host bond length in the system is three-quarters of this
natural bond length d„plus one-quarter of the host bond
length dp.

We list in Table III our computed natural bond lengths
d„and relaxed impurity-host bond lengths
d =(3d„+do)/4 for a number of systems. These are
compared with experiment and with the results of full
self-consistent calculations where they exist. They are
also compared with values obtained by Harrison and

Kraut using the 1/d" repulsion and with the semiempiri-
cal estimates for isovalent substitutions given by Martins
and Zunger. '

In Table IV we list the substitution energy we obtained
E„~(X„) while allowing the full relaxation of the
impurity-host bond length to its natural value so that
every bond in the system has its natural length. In the
real system, according to the simple force-constant mod-
el, the impurity-host bond is shifted to
do+3(d„—do)/4 and the three neighboring host bonds
are approximately deformed to do —(d„—do)/4. The to-
tal elastic energy from the distortion of these 16 bonds is
found to be of the simple form E,h„=—,'k(d„—do),
where k is the force constant (taken from the bulk
modulus for the host material). It describes the elastic
deformation of the surrounding bonds and the lowering
of the deformation of the central bonds going from d„ to
d and, therefore, has to be added to the full relaxed
values to obtain the correct E„ii(X~) with inclusion of
lattice relaxation. For comparison in Table IV the values
of E„ii(X„)without consideration of lattice distortion,
i.e., where all bond lengths are equal to dp, are also given.
The difference of the two values for E„ii(X„)(with and
without relaxation) defines the lattice relaxation energy.

IV. DISCUSSIQN

The most reliable experimental determination of the
lattice distortion around a substitutional defect comes
from EXAFS measurements. From the comparison of
the impurity-host bond length d in Table III we see that
the present theory predicts changes of d with respect to
the host-bulk bond length dp Ad =d dp which are in
excellent agreement with all EXAFS results for isovalent
but also nonisovalent impurities in covalent and polar
semiconductors. Our predictions, compared with experi-
mental values in parentheses, are for Si:As, 0.06 A
(0.06+0.02 A); GaAs:In, 0.14 A (0.14 A); AsGa:P,
—0.02 A ( —0.04 A); AsGa:S, 0.03 A ( —0.02+0.04 A);
PGa As, 0.02 A (0.05 A); InAs Ga, —0.15 A (

—0.12
A); SeZn:Te, 0.09 A (0.15 A); TeZn:Se, —0.09 A
(
—0.14 A); ZnTe:Cd, 0.18 A (0.11 A); and CdTe:Zn,—0.17 A (

—0.12 to —0.13 A).
The predicted hd agrees less well with lattice distor-

tions extracted from spectroscopic data via the relative
volume changes. ' For group-V and group-VI donors in
Si the trend of enlargement of the lattice distortion by
heavier impurity atoms is correctly reAected. However
the theory gives somewhat larger Ad. For the impurities
P and S from the same row as the silicon host we predict
a small outward relaxation while the experiment indicates
a small inward displacement. At the same time we
should note that the spectroscopic values do not agree so
well with the presumably more accurate EXAFS deter-
mination where both have been made. The same con-
clusion holds for the agreement with the self-consistent
pseudopotential calculations of SchefBer. ' On the other
hand, we should mention that the IR measurements for
Si:S, Se, Te (Ref. 10) are done for neutral donors.

The comparison with other self-consistent pseudopo-
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TABLE IV. Energies of substitution with and without lattice relaxation. Results of an earlier tight-
binding calculation (Ref. 24) are given for comparison.

Semiconductor Impurity Without
Egg (&g ) (eV)

With Ref. 24

Be
Mg
Al
Ga
In
C
P
As
Sb
S
Se
Te

5.48
3.92
1.41
3.13
4.55

—2.22
—0.41
—0.19

1.04
1.08
0.77
1.65

2.75
3.87
1.41
3.11
3.48

—4.04
—0.46
—0.30
—0.07

0.94
0.55
0.31

6.22
3.03
3.74
4.94

—2.00
—2.00
—1.50

0.32
—2.65
—2.08
—0.87

Zn
In
Ga
Sn
As
Se

4.86
2.99
2.01
0.93

—0.87
0.19

4.85
2.34
2.01
0.36

—0.91
0.05

6.06
3.91
3.11
1.12

—1.51
—1.91

GaAs
Zn
Al
In
Si
Ge
As

2.96
—1.83

0.84
—3.13
—2.31
—4.46

2.91
—1.84
—1.02
—3.16
—2.32
—4.66

2.62
—1.03

0.25
—3.46
—3.01
—5.62

AsGa
Ga
P
Sb
S
Se

5.98
—0.52

1.33
—0.18
—0.04

6.08
—0.52

0.80
—0.23
—0.10

8.68
—1.12

2.17
—2.90
—1.86

GaP
—2.25 —2.77

PGa
0.51 1.24

AlAs
Ga
Si

1.86
—1.37

1.84
—1.37

InAs
0.29 —0.09

PIn
In 11.41 10.57

ZnSe
Ga
Ge

—3.19
—5.67

—3.33
—5.99

—2.85
—5.75
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TABLE IV. (Continued. )

Semiconductor Impurity Without
E»(X, ) (eV)

With Ref. 24

SeZn
Ge
As
Te

8.02
2.78
1.01

7.80
2.72
0.81

11.31
4.77
2.57

ZnTe
Cd 1.42 0.75

TeZn
Se —0.69 —0.77

CdTe
Zn —0.29 —0.64 0.53

tential calculations' ' ' gives similar results. The
agreement with respect to the trends —inward or outward
relaxation —is good but with respect to magnitude is scat-
tered. In this context we mention two facts. (i) The
self-consistent pseudopotential calculations give quite
di8'erent results for the lattice relaxation depending upon
the details. For example, in the case of the arsenic an-
tisite in GaAs one calculation gives a strong outward re-
laxation Ed=0.2 A (Ref. 18) (as in our calculation) and
another gives zero atomic displacements. ' (ii) If in our
calculation an atom with a low metallic energy V&" is re-
placed by an atom with a much higher V, , as for the
As&, antisite formation in GaAs, the minimum of the
total-energy change Eq. (18) with respect to the bond
length d is rather Aat so that small changes in the param-
eters produce strong changes in the lattice distortion hd.

The semiempirical force-constant mode1' is expected
to be reliable for isovalent substitutions, such as In for
Ga in GaAs, since all bonds present exist in pure com-
pounds with known bond lengths. Our calculations, as
expected, agree quite well with those semiempirical esti-
mates, particularly for III-V and column IV systems.

Comparison with the recent tight-binding calculations
of Harrison and Kraut shows the e6'ects of using the
new pair repulsion. The new approach has predicted
bulk lattice spacings too large in the strongly polar pure
compounds. Harrison and Kraut avoided this by ad-
justing the coeKcient of the repulsion to obtain the
correct spacing for every compound but this leads to less
certainty in the extrapolation to impurities. Our
discrepancies for the II-VI pure-compound bond lengths
seem not to have caused serious problems for the impuri-
ties.

Considering the general trends among lattice relaxa-
tions in Table III, the most significant correlations, as ex-
pected, are that impurity atoms below the atom replaced
in the periodic table cause outward relaxations and those
above in the periodic table cause inward relaxations. The
principal uncertainty in sign comes from substitutions
from the same row. In that case the tendency is for
atoms to the left to cause inward relaxation and those to
the right to cause outward relaxations. These are in con-

trast to the predictions of tetrahedral radii. The trend
arises because of the increased metallization for elements
to the right in the periodic table due to the larger V&.
Exceptions arise when elements from column II in the
periodic table are involved.

In the case of the substitution energies E~~(X„) a
comparison of theory and experiment is difticult. These
energies are carefully measured only for a few systems.
For neutral Zn, In, and Sn in germanium, Su and Bre-
brick' found values of 3.47, 1.95, and 0.83 eV, respec-
tively, per impurity atom. Our values from Table IV of
4.85, 2.34, and 0.36 eV exhibit the same chemical trend as
well as the same general magnitude as the experimental
data. For comparison the predictions of Harrison and
Kraut were 6.06, 3.91, and 1.12 eV, respectively. This
indicates that the new pair repulsion 1/d and 1/d' is
not only of importance for a correct prediction of the lat-
tice distortion but also for the substitution energies. The
general comparison of the substitution energies from Ref.
24 with our values (cf. Table IV) indicates the same
chemical trends but considerable differences with respect
to the magnitude of E„s(X„).

The differences of E„~(X„)(without lattice relaxation)
and E„~(Xz) (with lattice relaxation) can be extracted
from the corresponding values in the neighboring
columns of Table IV. They vary between 0.0 and 2.7 eV.
Usually these so-called lattice-distortion energies are
rather small. Large values are only obtained if very small
atoms (like Be and C in Si) or rather large atoms (like Te
in Si and In in GaAs) are substituted in the host system.
A comparison with experiment is only possible in the
case of Si in GaAs and A1As. The corresponding values
from Table IV are 0.03 and 0.00 eV, respectively. These
energies are in good qualitative agreement with the value
obtained from photoionization of the DX center in lightly
doped Si impurities in A1Q 33Gao 67As (Ref. 11) as well as
the Franck-Condon shifts estimated by Talwar et al. to
be 0.02 eV (GaAs) and 0.03 eV (A1As).
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