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Interplay of surface misfit and monatomic steps on crystal surfaces.
III. Model for the (110) surface of an anisotropic bcc crystal
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This paper generalizes the model that has been introduced in part I of this series to describe the
interplay between surface misfit [limited to the surface monolayer (ML)] and steps on the cube faces
of isotropic crystals with simple cubic structure, to the I 110I surfaces of anisotropic bcc crystals.
The generalization involves (i) modeling of the ML crystal periodic interaction in terms of a trun-
cated Fourier series containing a scale factor W to allow for a variable strength of interaction, and
coefficients F;, all adapted to yield a meaningful description of the activation energy Q of surface
adatom migration, and (ii) the introduction of anisotropic elasticity to model the atomic interaction
within the ML. The primary objective of modeling the surface stresses associated with steps on

I 110I bcc surfaces has been accomplished. The results have been expressed in terms of the dimen-
sionless parameters cr = Q/W and (anisotropy ratio) A, and a crystal parameter G, depending on
geometry and the stiAness constant c44. The application of certain consistency requirements has
yielded valuable relations for the F;. The significance of these results lies in the fact that they are in
great demand in the description of a wide variety of surface phenomena. For isotropic crystals, Q is
shown to be given by the simple relation Q =3G. This yields for I 110} tungsten a value of Q =1.1

eV in good agreement with the empirical value of 0.92 eV. Although the model is somewhat crude,
it is a sound phenomenological one and is believed to yield predictions which constitute useful
guidelines for more accurate calculations.

I. INTRODUCTION

The phenomenon of surface misfit, its consequence for
the formation of a monatomic step on a crystal surface
with quadratic symmetry (the cubic face of a crystal with
simple cubic structure), and a phenomenological model
for its description have been dealt with in detail previous-
ly. ' Use was made of the techniques applied to
boundary-value problems ori linear elasticity theory. A
primary problem had been to construct the boundary
conditions; specifically the expressions for the relevant
surface stresses. These comprise the shear stresses ~ and
~', associated with the upper and lower terraces on either
side of the step, and a normal stress N.

The derivation of ~ employed the theoretical tech-
niques developed by Frank and van der Merwe and van
der Merwe to describe the behavior of epitaxial mono-
layers (ML's) on surfaces with rectangular and quadratic
symmetries, treating the ML s as isotropic elastic sheets.
In this paper we consider the I 110I surface of a bcc crys-
tal, i.e., a surface with rhombic symmetry. We allow for
elastic anisotropy with principle stiffness constants c»,
el&, and c44 and anisotropy ratio A. The construction of
~ now involves the generalization of the more complicat-
ed analysis, introduced by van der Merwe and his co-
workers for the isotropic rhombic case, to the anisotrop-
ic rhombic case.

The initial goal is again to express the distribution of
surface stresses in terms of the relevant parameters: (i)
the stiffness constants, providing for anisotropy, (ii) the
surface misfits (f„andf within, and f, normal to, the

I 110I plane), which we limit to the surface ML, and (iii)
the symmetry and bond strength of the ML-substrate in-
teraction which we embed in a truncated Fouri|.r series
V. The bond strength is included through the introduc-
tion of a scale factor 8', approximately proportional to
the energy of desorption Ed„. In order to be physically
meaningful, certain constraints could be imposed on the
fourier coefficients F;. ' There are to be only three sta-
tionary values: an absolute minimum, an absolute max-
imum, and a saddle point. The latter defines the activa-
tion energy Q of surface migration.

As to atomic interactions, we assumed that the crystal
surface layers could be approximated by a truncation of
the bulk. This implies that the shear modulus that one
obtains for the t 110I bcc surface from a transformation
of the cubic stiff'ness constants be (nearly) equal to that
which one may derive from V. By combining these con-
sistency relations with the constraints imposed on V, it is
possible to derive some useful relations for the F, and the
scale factor W. All quantities could be expressed in terms
of Q (or W), o =Q/W, A, and the materials parameter
G =Qc44/4m, in which 0 is the volume per atom in the
ML. The introduction of interaction ratios L and L, as
measures of the relative ML-atom —ML-atom to ML-
atom —substrate interactions, also came as a natural
consequence of the analysis. L and L„differ, because of
anisotropy and rhombic (deviating from quadratic) sym-
metry.

The considerations are dealt with in the paper as fol-
lows: the construction of V and its properties in Sec. II,
the anisotropic elastic description (including the transfor-
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mation to local coordinates in the t 110} plane) in Sec.
III, the construction and solution of the equations
governing the atomic displacements in the ML of the
upper terrace in Sec. IV, the definitions and derivation of
the interfacial shear moduli and surface stresses in Sec. V,
and considerations on surface parameters, including the
Fourier coefficients, in Sec. VI. The results are discussed
and summarized in Sec. VII.

II. SUBSTRATE INTERACTION POTENTIAL

The combination of misfitting monolayer (ML) of the
upper terrace and the underlying crystal is equivalent to a
misfitting epitaxial ML on a crystalline substrate. ' The
ML-atom —substrate interaction V must display the two-
fold symmetry of the rhombic unit cell of the ( 110}bcc
atomic plane displayed in Fig. 1. This symmetry may be
built into a Fourier representation of V that has previous-
ly been written in the truncated form

V(u, v) = W(1 —8 Icos[a(v +u )]+cos[m(v —u)]

+C, cos(2m u ) +C2cos(2~v ) }),

V(0,0)=0, minimum,

V(1,0)= V, maximum,

V( —,', —,
'

) =Q, saddle,

V(0, v') = V', cos(mv') = —1/2Cz .

(3a)

(3b)

(3c)

Q is the activation energy of surface migration. Equa-
tions 3(a)—3(c) yield, in conjunction with (la), the rela-
tions

are more simply carried out in terms of the separate pa-
rameters W, 8, C, and C2.)

The topography of the potential surface is of interest.
The relations 8V/Bu =0=0V/BU, determining the sta-
tionary values of V, yield the simultaneous equations

sin(mu )[cos(mv )+2C, cos(m. u )]=0,
sin(harv )[cos(mu )+2C2cos(harv )]=0 .

These equations suggest the following possible extrema
for V(u, v):

8=1—cr/2, (C, +C~)=2(cr —1)/(2 —cr), (4a)

xIk=(1+ulk)a /2, ylk=(k+vlk)a~/2,

I, k =0,+1,+2, (lb)
o =Q/W, 0.4&cr & —', (4c)

V =48W=2(2 cr ) W—', Q/V =cr/2(2 —o ), (4b)

a„=2asina, a~=2a cosa, tana=V'2 . (lc)

» Eqs. (1) (x&„,ylk ) are the Cartesian coordinates of the
ML atom (I, k), enumerated from a position (0,0) of per-

the minimum of V, and (

the components of displacement of this atom from the
corresponding trough (I, k). For simplicity we have writ-
ten l, k, u, v, B, C&, and C2 insteadofl, k, u, U, 3/3, c&,
and cz, respectively, as were used in Ref. 5. Note that the
scale factor 8 that defines the strength of interaction is
also the constant term in the Fourier series. The prod-
ucts 8'B, 8'BC„and O'BC2 are the coefficients of the
higher-order harmonic terms. (The ensuing calculations

in terms of the important parameters Q, W, and cr.
Also, in view of our assumption that V(0, 0)=0 and

V(1,0)= V are, respectively, the absolute minimum and
absolute maximum of the interaction potential V(u, v) in
Eq. (la), the assumption that V' in (3d) is an intermediate
extremum requires that C; (i =1,2) be simultaneously
greater than —,

' and less than —
—,'. This assumption is

therefore inconsistent and rules out the possibility of an
additional stationary value. This is also topographically
evident. The assumption that V( —,', —,')=Q is the saddle

value, i.e., that 0& Q & V, implies, as may be seen from
Eqs. (4), that 0 & cr & —', . We believe that o is not far from

unity; bounded above by o.=—', and below, possibly by
about 0.4.

S
(g-i, k+
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R

0
(g+s, k+s ]

8
)f

2

III. STRAIN ANALYSIS FOR
I 110}bcc MONOLAYER

0
a~ —ax ao —a=f„= = =r —1, r=a /a

aa

The main objective of this section is to find a descrip-
tion of the elastic relaxation of the surface ML resulting
from the interplay of surface misfit and steps. The main
purpose is to derive an expression for the relevant surface
shear stress' ~„.The misfits are defined by the ratios"

f, =(a, —a, )/a, . (5b)

P
(t,k)

+x
2

FICi. 1. Diagram displaying the (110) bcc surface unit cell,
having side length b, diagonal lengths a and a~, and vertex an-
gle a. The atomic positions are defined by the integers I and k.

The superscripts in a„and a designate the equilibrium
lateral spacings for a ML, when the substrate interaction
is cut off and a, the relaxed interlayer spacing. It has
been assumed that the equilibrium overlayer has the same
symmetry (a =a) as the truncated crystal. Thus f„and
f are equal, though different from f„which is deter-
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3 —2C44/(C] ] C]2 )

for the anisotropy ratio. ' ' The transformation matrix
T from the cube axes to the local axes (x,y, z) on the (110)
plane (see Fig. 1) has been given as

T=(rtJ )

—I /3/2 I /&2 0
0 0 1, I j=123, orxyz.

I /&2 I /~2 0

Although the details for other planes in the set [110I will
be different the results are equivalent.

The stiffness constants c,.~k&, constituting a fourth-rank
tensor, accordingly transform as

CIJKL tII' tJ& tKk tLI CIjkl

yielding in contracted notation

(8a)

Cll C33 (Cll +C12+2C44)/2

c}2 c]2y c]3 (c],+c]2—2c44)/2

C22 C] ] ~ C44 C66 C44, C55 (Cl1 C]2)/2

(8b)

All other elements are either zero or determined by the
symmetry cIJ =cJI.

In the considerations below we need expressions (in lo-
cal coordinates) for (i) the shear stresses o]3= „rnda-
o23—=r~„acting on the (110) crystal plane, (ii) the ten-
sions T and T (per unit length) in the ML, and (iii) the
strain energy e per ML atom. We have the following.

(i) Using Hooke's law otJ Ctjxt Fxt

mined by the multilayer relaxation. Also, the present
considerations are aimed at cases in which the surface
misfit is small and r = 1. %'e accordingly take r = 1 unless
it appears as r —1, for example, in f above.

We adopt the conventional notation c», c,2, and c44
for the contracted stiffness constants, referred to the cube
axes, and

E=—2'Q(D»e +D22e~+2D]2e„e~+D331 y )

D]]=(c ]]—c ]3)/c]], D22 —(C]]C22 C 12)/C]]

D2] =D]2 —(c]]c]2—c]3C]2)/C]]) D33 C«

A=a„aa, /2=a a /4=2a sin a cosa,

(10a)

(10b)

(10c)

(Vl, k+2 VT k 2f )

2r

y(R) y(P) a- —
ey— a'ay

y y=[x(R) x(P)]/ay+[y(Q) y(S)]/a

(ul, k+2 u]k )s na + (V]+1,k+1 V] —l, k+1)
2r cosa 2r sana

(12)

We take r =1 in accordance with the "small-misfit" as-
sumption.

In the analysis below use will be made of the continu-
um approximation, in which, for example,

u]+] k+, =u(l+l, k+1)

=u(l, k)+ +

+1 Bu+2 Bu Bu
2 ])l2 c}IBk

and second- or higher-order derivatives are neglected, as
needed. In Eqs. (12), for example we retain only first-
order derivatives and obtain

where 0 is the volume per ML atom and we have written
e,e, . . . for the strains c.», c.z2, . . . .

(iii) Using the stresses in combination with Hooke's law

T =a, (D],e +D»e~),

T~ =a, (D22e~+D]2e ),
T~y aza 33 yxy

The subsequent analysis also requires that the strains
be expressed in terms of the atomic coordinates defined in
Eq. (1). These may be written down in the local system,
most simply, with reference to Fig. 1, as

x(g) —x(S)—a„(u]+]k+] —u] ] k+] —2f)
e =

a.' 2r

+xz C55 Xxz & yz C447 yz (9)
1 Bu

e
r Bl

1 BU
e =— f, r=l-

r Bk
(13)

(ii) Using conventional expressions for the strain ener-
gy density, and ignoring the z dependence for the ML,

tana Bu cota BU r= 1
r Bk r Bl'

IV. GOVERNING EQUATIONS AND RELEVANT SOLUTIONS

The equations governing the equilibrium displacements of ML atoms are approximately given by the minimization of
the total energy

E„,= g ( V+ C. )] k
I, k

(14)
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with respect to the components of atomic displacements u and U, after having substituted from Eqs. (1), (10), and (12).
We obtain for a specific atom (I,k), by differentiation with respect to ui k, and after some simplification, the result

0=2m B'B[sin(muzak)cos(~U&k)+C, sin(2muik)]

—(0/4r ) tD»(u&+z k
—2u++u& z k)+D33[(u& k+z 2u—i k+ui k z)tana

+(Ul+), k+1 Ul —1,k+1 Ul+I k I+VI 1 k j)Co A]I (15)

77
[sin( sru ) +C, sin(2~u )],

2L
(16a)

U

dk
[sin( ~U ) +

Cousin(

2' U )],
2L

(16b)

where we take r =1. The analogous equation for the y
component V&I, may be written down by symmetry con-
siderations.

For a ledge normal to the x direction, the y component
UI& is constrained to the value vII, =—0. In the continuum
approximation the governing equation (15) and its coun-
terpart for the y direction thus become

du /dl = —[(2D, )'» /2L„]rru,
mu = —4(D&)' exp[ —P„(l+lo)],
13 =(~/L )(D, /2)'»

(19a)

(19b)

(19c)

O=T (uo)=2a,
(2D, )'" D„

m.u o f — —f
X r

The ledge located at l =0 [with u(lo)=uo] constitutes
a free boundary of the strained ML. It accordingly fol-
lows for the boundary, using Eqs. (11), (13), and (19a),
that

QD ii QD22
L 2— L 2— r=1 .

4 WBr 4WBr

As before, ' we assume that the misfit f is subcritical,
so that we need to consider only single dislocation solu-
tions. Equation (16a) can be integrated twice, ~'I yielding
the results

This gives

duo= rL„(2/D—, )' (D„+DU )f /D„, r =1 .

Since u is a continuous function of l it may be inferred
from (19b) and (20) that

dQ

dl
1+2C,cos

1/2
1TQ

sin
2

(18a)
exp( ~xto)=rL„(Dii+Diz)f/2(2) D, D~~ .

This is a relation defining lo.

(21)

(2D i
)'» m (I + lo)

L„
[1+2C,cos (vru /2)] —(D, )'i cos(mu /2)= —ln

[1+2C,cos (nu/2)]'» +(D, )'» cos(nu /2)

(18b)

D] = 1+2C] . (18c)

The minus signs are a consequence of considering a
"step-up" ledge when going in the positive x direction as
in Fig. 1 of Ref. 1. Analogous results may be written
down for v by replacing, respectively, u, l, x, C&, and Di
by U, k, y, C2, and D2. Furthermore, ' the origin for the
variables l and k are taken at the ledge so that, if a com-
plete dislocation existed, its center u = —1 would be at
l = —lo.

We again limit ourselves to cases in which the misfit is
small; so small that also the ML atomic displacements
are everywhere small enough for the approximations

sin(vru/2)=mu/2, cos(vru/2)=1 —vr u /8

to be acceptable. Equations (18a) and (18b) then approxi-
mate to

V. INTERFACIAL MODULI
AND SURFACE STRESSES

The corresponding relation for I', for a ledge normal to
the y axis, is evident. We may now define the shear stress
(force per unit area) 7, by

XZ

2I' SmWB
[sin(m u )+C, sin(2rru )],

a„a~ ax a

(23)

where a„a/2 is the area per ML atom, as may be in-
ferred by inspection of Fig. 1.

In this section we define and calculate the force com-
ponents (F,F» ), experienced by a ML atom in the field V

emanating from the substrate. We use these to define the
shear stress components (r „r»,) induced by the relaxing
ML on the crystal surface underneath. In view of the
constraint v —=0 for a ledge normal to the x direction we

may write, ' using Eqs. (1),

2 BV
a BQ

[sin(~u )+C, sin(2vru )] .4' WB
(22)
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If we introduce the small-misfit assumption employed
in Eqs. (19), Eq. (23) reduces to

xz

S~WBD1
'7TQ

Qx Qy

Sm' WBD1 2Q, Q u

Q„Q Q 2 Q

Sm WBD1
3'xz

Qx Qy

(24a)

(24b)

P; =Sm 8'BD1/Q Q (25)

In Eq. (241) a u /2 is the ML atomic displacement paral-
lel to the crystal surface, and Q, the height of the atom
above the underlying atomic plane. These define
(a u/2)/a, as the shear strain y„.In the present, some-
what crude approximation, we take Q, =Q, . We also ap-
ply this approximation to Q and Qy, unless their
differences, as in Eqs. (5), are involved. By Eq. (lc), also
2a/a„=l. In accordance with Hooke's law, Eq. (24b)
thus defines an interfacial shear modulus

I', =yP,xQ, = a, /2 —a, /2
PxzQZ

We obtain

X0=mp, a f, /16 . (301)

As in Ref. 1 we assume that b-Q . Furthermore, we

may identify p,„with c5& in Eq. (8),

(2%0/b )sin(2+x /b ) when ~x ~

& b /2

0 when ~x~) b/2,

and find No from the requirement that the integrated
force per unit length,

F~=j X„dx,
0

of the couple defined by N„must balance with the shear
force per unit length

We likewise obtain Pzx C5) ~ (30c)

PIy
Sm 8'BD2 2Q,

Qx Qy Q

Sw WBD2
3

Qy

(26a)
VI. SURFACE PARAMETERS

(26b) Important goals for this section are to relate the vari-
ous unknowns and to select appropriate independent
variables. The main unknowns are the four parameters
contained in the interaction potential V(u, u) in Eq. (1),
i.e., the scale factor W as a measure of the strength of the
ML-crystal interaction and the Fourier coeKcients ex-
pressed as the products WB, WBC„and WBC2 of the
quantities W, B, C„and C2. The activation energy Q of
surface migration is an observable, and hence Eqs. (3a)
and (31) provide two equations, relating the four un-
knowns. Two more equations, though not independent
(see the end of this section), follow from the requirement
of consistency, namely, that the r, and y, of Eqs. (9)
are, respectively, the same as r, and y„,in Eq. (241).
This implies that c55 in Eqs. (9) and p; in Eq. (25) be the
same, and likewise for c«and p;~ in Eq. (27a). Hence, on
using Eq. (Sb), we obtain

D2=1+2C2 .

Furthermore, by substituting from Eqs. (19b) and (21)
for au into (24a), it follows that

(27a)7„=—~0„exP(—P l),
=Sm(2D, )' WBL (D»+D, 2)f /D»axa~ .

We likewise find

(271)

—r0 exp( —P k), (28a)

(28b)+0 ~ 2D2) WB (D12+D22)f 22

Py =(~/Ly )(D2l2)' ' . (28c)

We still need to find expressions for the shear stress w'

induced by the ML of the lower terrace, and the normal
stress X„,induced by the "multilayer relaxation. " As in
Ref. 1 we write Svr WBD, /a, a =(c» —c,2)/2,

8~ WBD2/Q =c44 .

(31a)

(31b)
(r0„/d )cos(mx /d ) for ix i

~ d /2
x 0 for ~x~ &d/2. (29a) For convenience we rewrite Eqs. (31) in the forms

~ Q

(D„+D,2)f, r=l . (29b)

We also assume that d —Q .
As in Ref. 1 we write

The quantity ~o is defined by the requirement, that the
integrated value of ~' must balance that due to ~ „or
simply by T far from the step, i e., at
u =0=du/d1=v=dujdk. We obtain from (11), (13),
and (29)

D2

D1

1+2C2
1+2C1 C11 C12 2

(32a)

WBD2= WB(1+2C2)=Ac«/4m —=G . (32b)

The anisotropy ratio 3 and the volume 0 per ML atom,
have been defined in Eqs. (6) and (10c) and G is an impor-
tant materials parameter depending on geometry and
stiffness.

From Eqs. (4), (6), and (32), we solve for W, B, C„and
C2. We write the results, together with L,x and Ly, given
in Eqs. (17), as
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w= —,Q=Q 2+A cr
G, B=l——,

0 2
(33a)

Ci= Ao. +6o.—2A —4
2(2 —o )(2+ A )

3A o. +2o.—2A —4Cq=
2(2 —o )(2+ A )

(33b)

C44 2 C44 2 g 0
rr'D „7r'D„'(2 —cr )(2+ A)

(33(l)

C, &&0 for o &&cr, ( A ) =2( A +2)/( A +6),

Cz&0 for cr&(rz(A)=2(A+2)/(3A+2),

(34a)

(34b)

I/2I Ci I
) 1 for 0 & cr & o. , ( A ) =2( A +2) /( A +4),

(35a)

I/2~C2~ ) 1 for 0&a &crz(A)=(A +2)/(A +1) .

(35b)

Curves of the boundary lines are displayed in Fig. 2. The
allowed values, according to Eqs. (35), fall within the
shaded region. It is seen that the extreme allowed values
of o., namely 0 and —', , are exactly those specified in Eq.
(4c). Of further interest is that C, and C2 are equal but
opposite in sign for o. = l, i.e.,

C, = —C2 = (2 —A ) /2 A, cr = 1, (36)

as may be seen from Eqs. (33). Three-dimensional
displays of V( u, U) in Eq. (1) for ( A, cr ) = ( 1, 1) and (2, —,

'
)

are shown in Fig. 3.
Whereas the anisotropy ratio 2, is a specified quantity

for a given material, the parameter o. is unknown, except

The result Q =(2+ A )G/A is an exciting one in that it
relates observable quantities and accordingly allows an
assessment of the reliability and accuracy of the ap-
proach. The relations in Eqs. (33) must, however, be
viewed with some caution. They are based on Eqs. (31),
which firstly assume that the ML is a true truncation of
the macroscopic crystal, ignoring the reasons for surface
misfit, and secondly, derives the force constants p,, and
p,» in Eqs. (25) and (26), as second-order derivatives
[compare Eqs. (22) —(24)] of a potential which is truncated
at second-order harmonics. For the latter procedure, it
has been shown that several higher-order harmonics
have to be included in order to obtain reliable values.
We, nevertheless, believe that the results are accurate
enough to be useful.

In order to establish the nature of the solutions it is
necessary to determine the boundary lines o. i(A) and
crz(A) in (A, o. ) space between positive and negative
values of C, and C2, respectively, and the regions in
which 1/~2C, ~

and I/~2Cz~ exceed unity so that no sta-
tionary values of the kind defined by Eq. (3d) exist. It fol-
lows from Eq. (33b) that

I I I I I I I I I I I I I I I I I I I I I I (05 1.0 1.5 2.0 2S

FIG. 2. The diagram displays the boundary {solid) lines in
( A, o ) space where C& and Cz change sign [see Eqs. (34a) and
(34b)]: curve E for C, , i.e., cr, (A) and curve F for Cz, i.e.,
cr2(A). It also displays the region of allowed values [see Eqs.
(34c} and (34d)]: within the shaded area [below both of the
dashed curves: 6 for o, ( A) and H for o2( A)] there are no oth-
er stationary values in V [Eq. (1)] other than the absolute max-
imum, the absolute minimum, and the saddle point [see Eq. (4)].
On the dashed-dotted line o = 1, C2 = —Cz [see Eq. (36)].

that it is limited to the interval 0& o. & —,, or more precise-
ly, the shaded area in Fig. 2. That o. is a variable param-
eter rejects the fact that the four equations are not fully
independent; the left-hand sides of Eqs. (32) are
eA'ectively derivatives of the same function, namely the
potential V in (la). The fact that they are not indepen-
dent also demonstrates the consistency of the considera-
tions. If the truncation were at higher-order harmonics
there would have been more undetermined parameters.
With the present Fourier truncation we need one more
observed (or calculated) quantity, e.g. , W'or C, or Cz, in
order to specify uniquely a value of o.. Calculated values
of the Fourier coeScients as obtained from 8', O'B,
8'BC&, and JYBCz, as well as the interaction ratios L„
and I.», for a number of bcc metals (for which the
stiffness constants are known) are tabulated in Table I for
selected values for o. in the range 0.4——', .

VII. DISCUSSION AND CONCLUSIONS

The primary aim of this paper had been to derive the
surface stresses needed to calculate the stress and strain
fields due to the interplay of surface misfit f and atomic
steps on I110I surfaces of anisotropic bcc crystals. We
have accomplished this goal for the case in which f is
limited to the surface ML. We have expressed the sur-
face stresses [see Eqs. (27)—(30)] in terms of the
transformed stiffness constants and f, providing for la-
teral, as well as, normal misfits.

The analysis has two legs. The one is to develop a
truncated Fourier series V for the ML-substrate interac-



39 INTERPLAY OF SURFACE MISFIT AND. . . . III. 5023

V

w

3-

0-

2g)
V

2-
W

0-

I

1-0
U

(a)

2.0

' ' i )(II ii&I: II I, &

.-.::///( iIii'«~-& r) () qq&~-=--- i.~o -=--.

—~~-) =::::—~oo 'o

—:---'~ ~ i('(-&= ~'~i'i (~)~==-=-=.i"I'
i

( . (
- ~~~"'( ii ( // ~~ =

10-M - m . g

---~-;://(& ill(:.y~
/)

'0 g

00 D 1 00
—--1 PP

(//. j-.:.~ii':ql (//yi --= ~..q))LI ii((,:()(-
3 I I t. il i i(((;(((w

O.O OB 1.5

'. ( I«I. I ('.«~ »~r:iraI( 7((»((i i

--=:-v~gp///////::( I i .--

1.5

.:=~i~~i& ~ ~'
i

—==- i:://)&i~~~:=~ ' ( ~:~~
l:libel/I//f

):i..lf. () j(J:
I

I i ./! il:, iitE«

:=-j&ggJ//)///. '
i

& —-- /) I:.
,'I'y-. 4~',iX~j&&". -=-

' /((((/Py. jPpg& 2, p~pX&&yy=i ii::////iiiiiii~iii~=. ~.„j,g, :$I,
) i i i'(I(((((II((((iijFiii ~Xi':I, ,

i':.
,I I)i('

&ao cis

FlG 3 Three dimensional display of the dependence of the interaction potential V [Eq. (1)], in units of W; on disp»cement (»&)
within a unit cell (a) for A = 1 =g i.e., Q = gi' and (b) for A =2, o = —', i.e., Q =2&. Correlate points P (minimum), D (saddle), and

M (maximum) with corresponding points in Fig. 1.

tion. V contains a scale factor 8' to tune the strength of
interaction. The Fourier coefficients as given by 8, 8 B,
8'BC„and 8'BC2 are chosen such that there are only
three stationary values; one absolute minimum, one abso-
lute maximum, and a saddle point. The saddle defines
the activation energy Q of surface migration. The other
leg is to model the atom-atom interaction within the ML
in terms of anisotropic elasticity (harmonic approxima-
tion) with stiffness constants c», c,z, and c44 and anisot-

ropy ratio A.
Apart from finding expressions for the surface stresses,

the analysis has led naturally to deriving valuable rela-
tions for the coeKcients I, in terms of the physical prop-
erties of the ML-crystal system. The relations [see Eqs.
(33)] are expressed in terms of the variable parameter
o =Q/W, the anisotropy ratio A in Eq. (6) and the pa-
rameter G in Eq. (32).

Important details of the predictions, summarized in
Fig. 2, are (i) the allowed values of A and o which are
limited to the shaded area; (ii) the regions of positive and
negative values of C, and C2 —below line o, ( A) both are

negative, between cr, ( A) and crz( A) they are of opposite
sign, and above o 2( A ) they are both positive; (iii) on the
line o. =1, C, and Cz are equal but of opposite sign, and
(iv) the positions of the metals for which the stiffness con-
stants, and accordingly 3, are known, fall on the vertical
line through the corresponding value of A (so that any
special values of cr can be identified).

A very important result is the relation

Q =(2+ A)G/A for the activation energy of surface mi-
gration Q in terms of the crystal parameters A and G.
Since all three quantities are observables this relation can
be used to assess the reliability and accuracy of the ap-
proach. For I 110I W, Q has been measured as 0.92 eV. 10

Otherwise, by substituting for 6 and 3, we obtain 1.1 eV.
This is as good an agreement as one can hope for with
such a rather crude model. More data is needed, of
course, to make a true assessment.

In Table I we have tabulated values of the Fourier
coefficients F, (expressed in eV), the activation energy Q,
and the interaction ratios L and L (expressed in terms
of the value 2~, estimated for surfaces with quadratic
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Fe
(2.427)

Ta
(1.56)

W
(1)

V
(0.78)

Mo
(0.775)

Nb
(0.55)

0.4
1

1.1

0.4
1

1.1

0.4
1

1.1

0.4
1

1.1

0.4
1

1.1

0.4
1

1.1

0.986
0.395
0.358

1.340
0.536'
0.487

2.842
1.137'
1.033

1.840
0.336'
0.305

2.412
0.965'
0.877

0.968
0.387'
0.352

0.789
0.196
0.161

1.072
0.268
0.219

2.274
0.568
0.465

0.672
0.168
0.137

1.929
0.483
0.395

0.775
0.194
0.158

—0.305
—0.001

0.008

—0.386
0.016
0.041

—0.758
0.094
0.146

—0.215
0.368
0.052

—0.617
0.107
0.150

—0.235
0.055
0.072

B8'Cg

—0.286
0.001
0.027

—0.418
—0.016

0.030
—0.947
—0.094
—0.043

—0.289
—0.368
—0.021

—0.830
—0.107
—0.062

—0.345
—0.055
—0.037

TABLE I. Calculated values of (i) the anisotropy ratio 3 en-
closed in parentheses, (ii) the Fourier coefficients as given by the
products 8, WB, 8'BC» and HBC2 in units of eV, and (iii) the
interaction ratios L, and L» expressed in units of 2m [the value
obtained for cube faces of a simple-cubic crystal (Ref. 1)] for
values of o ( =0.4, 1, and 1.1). At tr =1, W= Q [see Eq. (33a)].
The stiffness constants are taken from Ref. 9.

The findings may be summarized thus.
(1) The goal, expressing the surface stresses for the

I 110I surface of an anisotropic bcc crystal in terms of the
surface misfit and other crystal parameters, has been ac-
complished.

(2) Valuable relations for the Fourier coefficients F, of
the surface-monolayer —substrate-crystal interaction V
have been obtained some of which have been summarized
in the diagram of Fig. 2. Because of the great variety of
surface phenomena that depend on V this result is of
great significance.

(3) When the activation energy Q of surface self-
dift'usion is known empirically or otherwise, the I'; are
known in terms of the crystal parameter G, determined
by crystal geometry and elastic properties and a variable
parameter o. =Q/W. The latter can only be determined
if additional data become available.

(4) A valuable result is that Q =(2+ 2 )6/A, which re-
lates observables and can accordingly be used to assess
the reliability and accuracy of the approach. The fact
that this predicts a value of Q = l. 1 eV for a I 110]
tungsten surface, as compared to the experimental value
of 0.92 eV, is very encouraging.

(5) Although it is a somewhat crude phenomenological
model, it has a sound physical basis, and is believed to
offer excellent guidelines for more accurate calculations.
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