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Variational and fixed-node Green's-function Monte Carlo calculations have been performed to
find the ground-state properties of the two-dimensional electron gas in the density range
1~ r, ~ 100. Our calculations predict a Wigner crystallization at the density r, =37+5. The elec-
tron system is found to be in the normal- (paramagnetic) fluid state below the transition density, but
the fully polarized state is very close in energy. We have tabulated the values of pair distribution
function g (r), the static structure factor S(k), and the momentum distribution n (k) at several den-

sities of interest both in the normal and the polarized phases. An estimate of the spin susceptibility

g is also given.

I. INTRODUCTION

The two-dimensional (2D) electron gas is both a funda-
mental model in many-body physics and has several im-

portant applications. First, the electronic motion in the
copper-oxide planes are suggested to explain the high-
transition-temperature superconductivity in new classes
of superconducting materials. Secondly, the experimen-
tal study of the pure 2D electron gas is realized either by
trapping electrons on the surface of liquid helium or
more recently by trapping them on a film which is on a
solid dielectric material. ' Although in the former group
of experiments the densities and temperatures have not
been such as to study the quantum regime, it is possible
that the quantum regime may be reached in the latter
type of experiments. Finally, localized 2D electron states
exist at the interface between GaAs and Ga& Al As or
at the interface of a metal oxide and a semiconductor [a
metal-oxide-semiconductor (MOS) structure]. Such in-
terfaces constitute important electronic devices and in a
strong magnetic field display the integer and fractional
quantum Hall effect.

Therefore, it is valuable both from theoretical and ex-
perimental standpoints to predict the properties and
phases of an electron system for a complete range of den-
sities and temperatures. This paper is concerned only
with the zero-temperature properties of the electron gas.
The ground-state properties of the 2D electron gas have
been studied under various approximations such as the
random-phase approximation (RPA), summation of
ladder diagrams, and coupled-cluster method by several
authors. ' One of us has performed variational Monte
Carlo (VMC) calculations to determine the energy of
correlated wave functions. There also was a path-integral
Monte Carlo calculation of the high-temperature crystall-
ization density of the 2D electron gas. '

In this paper we report the results of more accurate
variational (VMC) and Axed-node Green's-function
Monte Carlo (FN-GFMC) calculations of the ground-
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II. METHODOLOGY

The basic idea of a VMC simulation is that in order to
estimate the ground-state average of any observable (most
notably the ground-state energy), assuming a trial wave
function with the correct symmetry gT(R), one samples
the configurations drawn from the probability density
function,

J «lq «)I', (2)

state properties of the 2D electron gas in the liquid and
solid phases. More specifically, we calculate the ground-
state energy for the normal and fully-spin-polarized
liquid phases and for the crystal phase. This enables us
to determine the density at which the electron gas be-
comes a Wigner crystal, the energy versus density, the
compressibility, and estimates of the magnetic suscepti-
bility. We also calculate the radial distribution function,
the static structure factor, and momentum distribution of
the various phases of the electron gas.

The electron gas is a system of charged spin- —,
' fermions

interacting with a Coulomb (1/r) potential to which a
uniform background is added for charge neutrality. The
system at T=O is characterized only by the dimensionless
density parameter r, =a/ao, which is defined in terms of
Bohr radius ao=A /me and the radius of the circle that
encloses one particle on the average a = 1/&~p and p is
the number density. At small r, (i.e. , high density), the
electrons form a weakly coupled Fermi liquid, while at
large r, they undergo a phase transition and crystallize.
Energies in this paper are in units of rydbergs/electron, 1

Ry—=me /2A, while lengths are in units of a. The Ham-
iltonian of the interacting system of X electrons in these
units is

39 5005 1989 The American Physical Society



5006 B. TANATAR AND D. M. CEPERLEY 39

in which R stands for the 2' particle coordinates and is
called a configuration. The Metropolis algorithm' is
then used to carry out the sampling of this distribution.
The estimate of the energy is an upper bound to the exact
ground-state energy and, as will be shown, a good bound.

The second and more accurate method that is used to
calculate ground-state properties is the fixed-node GFMC
method. The Schrodinger equation is solved by treating
it as a diffusion equation. ' First, the Schrodinger equa-
tion is written in imaginary time, and multiplied by a trial
function,

V;(V;f fV;lng—)

where v(k)=2rte /k is the Fourier transform of the
Coulomb potential, So(k) is the static structure factor for
the system of noninteracting fermions,

So(k) =—[sin 'y +y (1 —y )' ],
y =k/2kF, and the Fermi wave vector is kF ——v'2 (in the
unpolarized case) in these units. The above pseudopoten-
tial u possess properties which the optimal pseudopoten-
tial has, such as the cusp condition,

du (T)
s

t/iT(R ) =D (R )exp
]+i (j~N

u(fr, —r /) (4)

Here, D (R) is the Slater determinant of single-body or-
bitals which antisymmetrizes the trial wave function.
There are two separate determinates for the spin-up and
spin-down electrons, and the polarization parameter is
defined as g=(X& —Xt )/X. In a liquid phase the orbit-
als are chosen to be the set of plane waves with wave vec-
tors less than or equal to the Fermi wave vector for a
given spin state.

The pseudopotential u (r) correlates the electrons. We
use the pseudopotential that minimizes the variational
energy in the RPA as first derived by Gaskell. ' In Ref.
6 this was shown to give lower energies than the
parametrized Yukawa forms. Note that we are not mak-
ing the RPA in evaluating the energy, but possibly taking
a nonoptimal form for u which will only affect the statist-
ical error of the energy in a GFMC calculation since the
nodes of the trial function are unaffected by the pseudo-
potential. This pseudopotential for a liquid reads

1/2
1 1 + 4v(k)m

So(k) So(k) A'~k
2u RpA(k) =—

—(g 'Hp ET)f—,

where ET is the trial energy. In the GFMC algorithm
f (R, t) is interpreted as the probability distribution in
configuration space, and an initial ensemble of
configurations with probability density

~ gT(R )
~

is
evolved forward in time. When the convergence is
reached at sufticiently large t, the probability distribution
of points in the ensemble is given by P(R)QT(R) and it is
called the mixed distribution Her.e, P(R ) is an eigenvalue
of the Hamiltonian with the fixed-node boundary condi-
tions, P(R) =0 when QT(R) =0. The fixed-node approxi-
mation is made to avoid the negative weights that would
be otherwise generated by antisymmetric states. The
fixed-node energy is an upper bound to the exact energy,
but usually lies well below the variational energy. In cal-
culations of the 30 electron gas we have found the fixed-
node energy to be an extremely good upper bound. Full
discussion of these methods is found elsewhere. '

The form we choose for the trial wave function, a
Slater-Jastrow or pair-product function, has been previ-
ously ' used for the two- and three-dimensional electron
gas and found to be accurate,

and the long-range form necessary to have the correct
plasmon dispersion,

1/2
~s

lim [u (r)]=1.48

In the crystal phase the orbitals in the Slater deter-
minant D (R) are chosen to localize the electrons on the
lattice sites. The centers of the orbitals Zk are a two-
dimensional hexagonal lattice which has the lowest
Madelung energy for 20 charged particles. The single-
particle orbitals are chosen to be Gaussians,
P(r) =exp[ —C (r —Zk ) ], where the Zk are a set of lat-
tice sites, and the crystal pseudopotential is

' 1/2
4C + 1 + SC + 4mv (k)
k k Ak

The width of the Gaussian orbitals C is a density-
dependent variational parameter previously optimized.
Two-dimensional crystals at finite temperatures will al-
ways have defects which destroy the long-range transla-
tional order; however, we expect that a two-dimensional
crystal in the ground state will be free of defects. This as-
sumption could be checked by either GFMC calculations
at zero temperatures of path-integral Monte Carlo calcu-
lations at finite temperatures.

III. SIZE DEPENDENCE

The energy of delocalized fermions depend very strong-
ly on the number of particles or, equivalently, the size of
the simulation cell. We must correct for this dependence
in order to extrapolate to the thermodynamic limit.
Ewald sums and periodic boundary conditions are used to
eliminate the largest surface effects. However, substan-
tial size effects remain. In the liquid phase we employ an
extrapolation scheme based on the Fermi-liquid theory.
According to Landau, the energy of a system can be
written as an energy functional of occupation numbers of
quasiparticles, which behave just like an ideal Fermi gas.
For small excitations from the ground state the function-
al can be linearized and is characterized by a few Fermi-
liquid parameters. Consider how the energy of such an
ideal Fermi-liquid changes when one goes from a finite
system in periodic boundary conditions to an infinite sys-
tem. For a finite system the allowed values of momentum
lie on a lattice reciprocal to that of the simulation cell
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TABLE I. Size dependence in the VMC method of normal electron Quid at 1 r, 50 and g -fit parameters. Also shown are the

GFMC energy and the correlation energy E,(r„0). 6 is the difference between the fixed-node energy and the variational energy.

Numbers in parentheses are the estimated errors (one standard deviation) in the last decimal place.

N= 26
N= 42
N=58
N=74
N= 114

r, =1.0
—0.370(1)
—0.4451(7)
—0.3905(3)
—0.4156(8)
—0.3965(8)

r, =5.0
—0.2937(1)
—0.2960(1)
—0.2940(3)
—0.2947(1)
—0.2937(1)

r, =10.0
—0.168 66(5)
—0.168 99(5)
—0.168 51(5)
—0.168 58(4)
—0.168 46{3)

r, =20.0
—0.091 73(2)
—0.091 76(2)
—0.091 65(4)
—0.091 69(1)
—0.091 65(1)

r, =30.0
—0.063 31(2)
—0.063 35(1)
—0.063 309{6)
—0.063 324(8)
—0.063 293(8)

r, =50.0
—0.039 318(8)
—0.039 308(6)
—0.039 301(5)
—0.039 301(5)
—0.039 296(4)

EVMC

b, ( „0)
b, (r„O)
x'
EGFMC

58
EGFMC

10 AMC

E,(r„o)

—0.4008(8)
1.11(1)

—0.41(4)
6.4

—0.4092(6)
—0.420(1)

19.2
—0.217(1)

—0.2936(1)
0.041(2)

—0.047(5)
2.4

—0.2998(1)
—0.2996(1)

6.0
—0.0955(1)

—0.168 34(4)
0.007(1)

—0.016(2)
1.3

—0.171 05(8)
—0.170 89(9)

2.56
—0.060 85(9)

—0.091 62(1)
0.0013(3)

—0.0042(7)
0.2

—0.092 73(2)
—0.092 68(2)

1.06
—0.035 16(2)

—0.063 291(1)
0.0007(2)

—0.0015(6)
1.7

—0.063 934(7)
—0.063 92(1)

0.63
—0.025 02(1)

—0.039 290(5)
0.000 03(1)

—0.0007(2)
0.1

—0.039 525(6)
—0.039 512(8)

0.22
—0.015 904(8)

and the ground state is obtained by filling successive
shells of these lattice points. (A shell consists of all lattice
points related to each other by symmetry. ) In the liquid
phase, the number of electrons is chosen so that a shell is
always filled. Then the only Fermi-liquid parameter
which should enter is the effective mass. This implies
that the size corrections of the interacting system should
be proportional to the size correction of the noninteract-
ing system, at least for large enough systems. The
difference in energy per electron between an infinite and a
finite ideal Fermi gas of N electrons in periodic boundary
conditions is of order 1/N, with a coefficient which varies
between +1 as N changes.

For charged systems, in addition to this number-
dependent effect on the kinetic energy, there is also an
effect on the potential energy, since the potential is long
ranged. To the 1lr interaction between two electrons is
added the interaction between an electron and all of the
images of the other electron. To maintain charge neu-

trality, an electron must also interact with all of its own
images which form a square lattice. Thus, in calculating

the potential energy, one term out of N is appropriate to
a perfect lattice, not to a Fermi liquid, as it should be.
This intuitive result is supported by both Hartree-Fock
calculations, valid at small r„and harmonic lattice calcu-
lations, valid at large r„which shows that the size depen-
dence of the potential energy of the electron gas is pro-
portional to 1/N.

Taking these contributions into account, the energy
per particle for a finite system is assumed to be related to
the bulk energy by

b, (r„g)
E~ =E +b, (r„g)b,T~+

Here, AT& is the difference between the kinetic energies
of ¹ noninteracting electrons and the infinite system at
r, = 1. The density-dependent parameters E, b &, and b2
were determined by a least-squares fit to VMC calcula-
tions at different values of N. Specifically, we took¹=26,42,58,72, 114 for the normal Quid and
¹ 21,37,57,69,113 for the fully polarized fluid. The

TABLE II. Size dependence in the VMC method of fully-spin-polarized electron Quid at 5 (r, ~ 75 and g -fit parameters. Also
shown are the GFMC energy and the correlation energy E,(r„1).

N=21
N= 37
N=57
N= 69
N= 113

EvMC

b, (r„1)
b, (I„1)
x'

EG™
57

EGFMC

10 ~Mc
E,(r„1)

r, =5.0
—0.2901(2)
—0.2863(1)
—0.2845(1)
—0.2862(1)
—0.2843(1)

—0.2845(1)
0.066(5)

—0.03(1)
11.5

—0.285 81(9)
—0.2858(2)

14.0
—0.0263(2)

/, =10.0
—0.169 84(9)
—0.168 81(8)
—0.1678(1)
—0.168 24(6)
—0.167 93(4)

—0.1676(1)
0.010(4)

—0.032(6)
5.4

—0.168 53(5)
—0.168 07(9)

5.0
—0.0183(1)

r, =20.0
—0.092 67(3)
—0.092 29(2)
—0.092 14(5)
—0.092 17(1)
—0.092 06(1)

—0.091 97(2)
0.0026(7)

—0.011(1)
0.5

—0.092 37(2)
—0.092 23(2)

2.6
—0.0123(2)

r, =30.0
—0.063 93(1)
—0.063 774(1)
—0.063 65(1)
—0.063 705(8)
—0.063 643(6)

—0.063 62{1)
0.0024(3)

—0.0032(6)
1.2

—0.063 826(8)
—0.063 79(1)

1.8
—0.009 42(1)

r, =40.0
—0.048 867(9)
—0.048 757(8)
—0.048 72(1)
—0.048 751(4)
—0.048 711(4)

—0.048 711(7)
0.0018(3)

—0.0008(5)
2.0

—0.048 841(2)
—0.048 844(7)

1.34
—0.007 653(7)

r, =75.0
—0.026 914(2)
—0.026 876(1)
—0.026 855(1)
—0.026 861(1)
—0.026 849(1)

—0.026 841(2)
0.000 35(7)

—0.001 08(1)
0.3

—0.026 947(3)
—0.026 932(3)

0.91
—0.004 652(3)
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TABLE III. Size dependence in the VMC method of the electron crystal at 30 ~ r, ~ 100, and the g-
fit parameters. Also shown are the GFMC energies.

N= 16
N= 30
N=56
N= 80
N= 120

r, =30.0
—0.063 76(3)
—0.063 65 (2)—0.063 64(1)
—0.063 63(1)
—0.063 64(1)

r, =40.0
—0.048 82(1)
—0.048 767(9)
—0.048 749(8)
—0.048 752(6)
—0.048 756(6)

r, =50.0
—0.039 622(9)
—0.039 558(7)
—0.039 578(8)
—0.039 566(5)
—0.039 567(7)

r, =75.0
—0.026 985(4)
—0.026 960(2)
—0.026 951(1)
—0.026 946(2)
—0.026 941(1)

r, = 100.0

—0.020 496(4)
—0.020 474(3)
—0.020 477(1)
—0.020 476(1)
—0.020 472(1)

EVMC

e(r, )

—0.063 614(8)
—0.007(2)

2.0

—0.048 745(4)
—0.0047(7)

2.5

—0.039 560(4)
—0.0033(7)
10.8

—0.026 942(1)
—0.0030(2)

4.2

—0.020 473(1)
—0.0014(3)

7.6

EGFMC
56

EGFMC

10'~MC

—0.063 778(5)
—0.063 760(9)

14.6

—0.048 863(5)
—0.048 852(6)
10.7

—0.039 621(3)
—0.039 613{5)

5 ' 3

—0.026 988(1)
—0.026 981{2)

4.6

—0.020 489(1)
—0.020 486(2)

1.6

VMC energies and the g of the fit as a function of r, are
shown in Table I and Table II for normal and polarized
Auids, respectively. The g of the fit is reasonable, indi-
cating that size dependence is well described by Eq. (10).
In some cases the corrections are 60 times larger than the
statistical errors, so the g test is quite severe.

To extract the infinite system GFMC energies, we as-
sume that the size dependence for the variational and the
diffusion MC runs are the same. We did GFMC runs
only at %=58 in the case of normal Quid and %=57 in
the case of polarized Quid. We then use the previously
determined parameters b& and b2 to determine E
In order to check our assumption that the VMC and
GFMC runs obey the same finite-size scaling, we have
carried out similar calculations with the GFMC method
at selective density points, and, indeed, within the statisti-
cal errors, found agreement.

To obtain the size dependence of the MC energies in
the crystal phase, we use the formula

c(r, )VMC+ s
N oo ~3/2

which becomes valid in the strong-coupling limit
(viz. , r, ))1). We have performed VMC runs at
X= 16,30,56,80, 120 to determine the parameter c (r, ) and
used the aforementioned procedure to extract the infinite
system energies in the GFMC method. The results are
shown in Table III.

IV. GROUND-STATE ENERGY

1+aux
E,(r„g)=ac

1+a,x +a2x +a3x
(14)

where x =(r, )' and the parameters a, (g) in this Pade
approximant are determined by a nonlinear least-squares
fit to the MC data at the density values
r, =1,5, 10,15,20,30,50 for the normal fluid phase and
r, = 1,5, 10,15,20,30,40,50,75 for the spin-polarized Quid.
This Pade form behaves like -a+br, as r, ~0, which
has the correct high-density expansion short of the r, lnr,
term, and admits the asymptotic form

a b cE —+ + +-
3/2 r2

S s S

(15)

as r, ~~. The parameters giving the best fit for the nor-
mal and fully polarized liquids are given in Table IV.

There is a discrepancy in the earlier calculations ' of
the correlation energy at r, =0, E, (0,0), and a prediction
for this quantity is provided by means of our fitting pa-

TABLE IV. Parameters of the Pade approximants [Eq. (14)]
to the correlation energy determined by least-squares fitting for
normal and polarized Auids (Tables I and II) and parameters of
the fit [Eq. (15)] to the energy of the crystal phase.

1+~' 4&a
EHF(r„g)= 2

+ [(1+/)'~ +(1—g)'~ ] . (13)
r 3&r

In order to fit the energy to a functional form, we assume
the correlation energy, E„can be approximated by

Having determined the finite-size corrections to the
MC energies, we now turn to the problem of obtaining
the equation of state of the electron gas. The ground-
state energy of the interacting-electron system in the
liquid phase as a function of the density parameter r„
and the degree of polarization g, can be written as

E (r„g)=EHF(r„g)+E, (r„g),
where the Hartree-Fock energy consists of the kinetic-
energy term and the exchange energy,

ao
Q]

Qp

Q3

e]

—2.2122

Fluid
Normal

—0.3568
1.1300
0.9052
0.4165

Crystal

1.6284

Polarized

—0.0515
340.5813
75.2293
37.0170

e2

0.0508
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rameter ao in Eq. (14). We calculate ao= —0.357 (see
Table IV), which is in agreement with the Rajagopal-
Kimball result of —0.38+0.04 and close to the coupled-
cluster ladder-approximation value of Freeman' of—0.39. On the other hand, Isihara and Toyoda find the
correlation energy at .infinite density to be—0.6258+0.002. If in the Pade approximant [Eq. (14)]
we fix the value of ao to be —0.39, the resulting y in-
creases from 6.6 to 9.0 with very little change in the
remaining parameters a;. Thus our results are well fitted
by the assumed functional form even when the Freeman
value at high density is used as a constraint.

The calculated MC energies at several densities are
compared with other theoretical calculations in Fig. 1.
Our calculated ground-state energy is consistently lower
than the cluster-expansion calculation of Sim et al. ' (in-
dicated with the dotted line). They use a parametrized
g (r) in the hypernetted-chain approximation, along with
the Wu-Feenberg expansion for the trial wave function.
%'e also display two calculations by Freeman ' —one
based on the ring approximation (which is rather poor),
the other on the coupled-cluster and ladder approxima-
tions. The calculation of Jonson is an application of the
Singwi-Tosi-Land-Sjolander (STLS) scheme to the two-
dimensional case. The Ioriatti-Isihara calculation
(dashed curve), where they use analytical continuation to
obtain the intermediate- to low-density expansion gives a
much higher energy than any other calculation. The
fixed-node approximation made here gives an upper
bound to the ground-state energy. Thus any result with
an even higher energy can be ruled out. None of the oth-

C1 C3/2 C2
E(r, )= +

3
+ 2+ (16)

where the harmonic coefticient is known to be '

c, = —2.2122 and the second coeNcient is approximately
c3&2=1.63. Using a constrained least-squares fit to the
Mc energies in the crystal phase, we determine the
coeScients of the higher-order anharmonic terms. The
MC points used to extract c3/2 and c2 in Eq. (16) are at
r, =30,40,50,75, 100. Our value for c3&2 is 1.628.

Our calculations were done with like spins in alternat-
ing lines. Since the triangular lattice is not bipartite,
such an arrangement is not antiferromagnetic. %'e tried
some other arrangements of spins such as bosons (no an-
tisymmetry) and a ferromagnetic arrangement. All ar-
rangements of spins had the same energy at r,.=40 within
the statistical errors. Path-integral calculations of the
tunneling frequencies of electrons in a 2D Wigner crystal
similar to those recently done with solid He are in pro-

er theoretical calculations are very accurate for r, )2,
where the potential energy dominates. Note that, at low
density, calculations can give rather similar correlation
energies and stiH be inaccurate since the largest part of
the correlation energy will be a static Madelung term.
Instead, energy differences at low densities should be
compared to relative to a typical kinetic energy in the
problem; we prefer the zero-point energy of a harmonic
lattice, which is 1.63m,

The energy in the crystal phase is expected to have the
form

1 .68

1.66

M

~ 2

3

t/)

1.G4

Q

I

1.62
/

/

/
/

l

—.4 1.60
120

FICx. 1. The correlation energy, E, ( r„0) (in units of
Rydbergs/per electron) of the 2D electron gas in the normal
fluid phase (solid curve) compared with other theoretical calcu-
lations. The dashed (———) curve is from Ioriatti and Isihara
(Ref. 9). The short-dashed curve is that of Sim et al. (Ref. 12).
Also shown are the results of Freeman in the ring approxima-
tion ( , Ref. 7) and coupled-cluster ladder approximation (0,
Ref. 10). X indicates the STLS calculation of Jonson (Ref. 3).

FIG. 2. The ground-state energy, E(r„g) of the electron gas
in the normal (dashed) and the fully-spin-polarized fluids (dot-
ted), and in the crystal phase (solid) as a function of the density
parameter r, . c& is the Madelung constant. We have subtracted
out the Madelung energy and multiplied by r, . The MC
points with associated error bars are indicated as follows: o,
crystal; , normal fluid; +, polarized fluid. The curves are
fitted to the points with Eqs. (14) and (16).
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gress. Roger has predicted that the lowest-energy ar-
rangement of spins is ferromagnetic since he expects that
three-electron exchange will dominate.

In Fig. 2, T=(E —c, lr, )r, ~ is plotted for all three
phases at low density. Here, c

&

= —2 2122 is the
coefficient of the static energy term in Eq. (16); thus, T is
proportional to the difference in energy from the static
Madelung energy divided by the typical kinetic energy.
We observe from the graph that the electron system crys-
tallizes at the density r, =37+5, and this transition
occurs between the normal Quid phase and the crystal
phase. This is an electron density of 8.3X10' /cm .
From Tables I and II we notice that E™(r„0)and
E c(r„1 ) intersect in the region 10~ r, ~20, which is
consistent with earlier VMC results. The more accurate
GFMC calculation does not predict a transition to the
ferromagnetic state. There is no transition from the nor-
mal Quid (paramagnetic) phase to the polarized fiuid (fer-
romagnetic) phase since Wigner crystallization occurs at
roughly the same density. Note, however, that all phases
have approximately equal energies at r, =40. Very in-
teresting behavior of the 2D electron gas may occur near
this density as a function of temperature and magnetic
field. Of course, the present calculations cannot resolve
the nature of the phase transitions or predict exactly
which phase will be stable at r, =37, since, first of all,
finite system effects are important, and secondly, the
fixed-node approximation has been used.

Our crystallization density is consistent with that
found at finite temperatures by Imada and Takahashi. '

They did path-integral simulations of spinless fermions at
temperatures down to 20 K, which corresponds to an en-

ergy in our units of 2X10 Ry. Their method of treat-
ing fermions did not allow them to examine the fermion
liquids at lower temperatures.

Tables I—III gives the difference between the variation-

1.0

.6

.6

4

1. O

FIG. 4. The spin susceptibility yo/g of the electron gas as a
function of the density parameter r„calculated using interpola-
tion based on the correlation energy, Eq. (18) (dashed line), and
using interpolation based on the total energy, Eq. (20) (solid
line). Dotted line is the Hartree-Fock result.

al energy and the fixed-node energy in the three phases
we have examined. In the high-density liquid the Jastrow
wave function picks up 90% of the correlation energy in
the unpolarized liquid and 95%%uo in the polarized liquid,
while the crystal trial function picks up 98% of the zero-

—482

1.0
—404

p0

~486
0

IÃ

O

—488

5
—490

4 .6

—1.0

FIG. 3. The compressibility ~o/sc of the electron gas as func-
tion of density parameter r„calculated using Eq. (17). Dashed
line is the compressibility in the Hartree-Fock approximation.

FIG. 5. The ground-state energy as a function of polarization

g at r, =40. Shown are the GFMC points (o ) at polarizations
of 0%, 69%%uo, and 100%, and VMC points (+) at polarizations
of 0%, 28%, 55%%uo, and 69%. The dotted curve is obtained by
interpolating the correlation energy of the two end points and
the solid line is obtained by interpolating on the total energy.
The curves do not go through the circles at g'=0 and l because
they are computed using Eq. (14), which is fitted to the energies
at other densities as well.
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point motion. Roughly speaking, the polarized trial
function is twice as good as the unpolarized trial func-
tion, while the crystal trial function is best of all; it is
twice as good as the polarized-liquid function. In gen-
eral, it is easier to write down a good trial function for an
ordered phase than for a disordered one. Because of this,
phase-transition densities computed with variational
methods can be quite different from the exact values.

Having obtained the equation of state [i.e. , E(r, )] of
the normal liquid, we calculate the compressibility using

Kp V 2' rq=1— + (17)
8 dr2

1.4

1.0

Here, Kp='TTr /2 is the compressibility of a noninteract-
ing system (see Fig. 3). In the above formula, the
compressibility becomes negative around r, —2.03, in
contrast with the Hartree-Fock result of 2.22. Stability
at low density is achieved in physical systems by the
background.

The total spin susceptibility may be expressed as

Xp &2 r, d E,=1— r, +
2 Qg~ g

—p
(18)

where yp is the noninteracting susceptibility. The last
term also defines the spin-stiffness coefficient,

t3 E,(r„g)
a, (r, )=

Qg
2 (19)

It is difficult in the Monte Carlo method to directly cal-
culate the spin susceptibility, since for a simple calcula-
tion of the finite-size effects one must Aip an entire shell
of spins and the polarization will change by a large
amount (say 25%). At high density one expects that the
correlation energy should interpolate smoothly between
zero polarization and full polarization. Then one can ob-
tain an estimate of the susceptibility from the MC-
determined energies by assuming that the correlation en-
ergy is a quadratic function of the polarization and apply-
ing Eq. (19). That is shown as the dashed line in Fig. 4.
It shows a minimum around r, =3.5 and then grows at
large r, . Also shown in the same figure is the Hartree-
Fock approximation to gp/g.

On the other hand, at large r, the Hartree-Fock refer-
ence state is very different from the true ground state, so
one does not expect the correlation energy to have much
relevance. So another estimate of the susceptibility
comes from assuming that the total energy is a quadratic
function of the polarization,

.2

tion could have lower energies than either fully polarized
or unpolarized systems. The result is shown in Fig. 5.
Shown in the same graph are the results of VMC calcula-
tions for partial polarizations /=0. 28,0.55,0.69, and a
CiFMC calculation at /=0. 69 (i.e., X& =49, K& =9 in a
58-particle system). The MC energies are corrected for
the finite-size effects by interpolating between the values
at zero and full polarizations:

b, (r„g)=b;(r„O)+g [b, (r„l)—b,.(r„O)] . (21)

It is seen that the partially polarized energy lies between
the result obtained by interpolating on the correlation en-
ergy or on the total energy. However, the energy of in-

I

1.4

1.0

.8

, 4

8
r/a

FIG. 6. The extrapolated pair distribution function g(r) of
the electron gas in the unpolarized fluid phase, at densities
r, = 1,5, 10,20. The larger r, values have larger oscillations.

=r, [E(r„l)—E(r„O)] . (20)
.2

This is shown as the solid curve and will vanish at r, =37
since the polarized and unpolarized liquids have the same
energy (see Fig. 2).

At the freezing density we have performed some calcu-
lations at intermediate polarizations to determine which
method of interpolation is more accurate at low density,
and to examine the possibility that intermediate polariza-

B
r/a

FIG. 7. The extrapolated pair distribution function g(r) of
the electron gas in the fully-spin-polarized fluid phase, at densi-
ties r, = 1,5, 10,20.
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termediate polarization is higher than the other two (in-
terpolation on correlation energy and total energy), indi-
cating that the electron gas in two dimensions does not
pass through a phase of partial polarization. We suspect
that this ordering holds at all densities, so the two
methods of determining the spin susceptibility will give
upper and lower bounds, and that the true result is
roughly halfway in between. Figure 5 also shows that
variational Jastrow calculations will predict that the elec-
tron gas would be ferromagnetic at r, =40. This is analo-
gous to the situation in liquid He.

V. STATIC PROPERTIES

The variational and Green's-function Monte Carlo
methods yield information about other microscopic prop-

1.6

1.4

1.0

.6

TABLE V. The extrapolated radial pair distribution function
g(r) for the densities r, =1,5,10,20 in the normal fluid phase.
The errors are between 0.01 and 0.005.

2
r/a

0.025
0.125
0.225
0.325
0.425
0.525
0.625
0.725
0.825
0.925
1.025
1.125
1.225
1.325
1.425
1.525
1.625
1.725
1.825
1.925
2.025
2.125
2.225
2.325
2.425
2.525
2.625
2.725
2.825
2.925
3.025
3.125
3.225
3.325
3.425
3.525
3.625
3.725
3.825
3.925

r, =1.0

0.176
0.197
0.243
0.289
0.338
0.387
0.447
0.484
0.540
0.605
0.649
0.710
0.763
0.796
0.834
0.867
0.902
0.938
0.950
0.972
0.979
0.987
1.013
1.001
1.007
1.002
1.010
1.010
1.007
1.001
1.003
1.000
0,933
0.990
0.996
0.993
0.995
0.995
0.998
0.992

r, =5.0

0.009
0.014
0.030
0.051
0.085
0.137
0.208
0.279
0.369
0.452
0.554
0.659
0.743
0.828
0.888
0.947
1.002
1.017
1.035
1.034
1.045
1.028
1.031
1.025
1.012
1.008
0.996
0.998
0.988
0.997
0.992
0.982
0.994
0.993
0.999
0.988
0.991
0.996
0.996
1.002

r, =10.0

0.000
0.003
0.006
0.011
0.023
0.058
0.097
0.166
0.249
0.334
0.462
0.593
0.715
0.829
0.926
1.002
1.057
1.091
1.101
1.114
1.089
1.071
1.059
1.018
1.000
0.990
0.962
0.974
0.971
0.963
0.982
0.966
0.993
0.993
1.009
1.007
1.017
1.016
1.018
1.008

r, =20.0

0.000
0.000
0.000
0.001
0.005
0.014
0.039
0.073
0.133
0.225
0.344
0.476
0.636
0.786
0.929
1.082
1.157
1.217
1.226
1 ~ 196
1.187
1.130
1.069
1.014
0.967
0.924
0.905
0.900
0.912
0.920
0.941
0.976
0.989
1.025
1.035
1.038
1.043
1.093
1.027
1.016

FIG. 8. The extrapolated pair distribution function g(r) of
the electron gas in the crystal phase (solid), fully polarized fluid
phase (dashed), and normal fluid phase (dotted) at r, =40.

S(k)=1++J dre'"'[g(r) —1] .
2

(23)

Strictly speaking, the radial pair distribution function,
gM(r), calculated with the converged (mixed) distribution

1.4 i I
I

I

FIG. 9. The static structure factor S(k) of the electron gas in

the normal fluid phase at r, =1. The circles are the direct MC
evaluation of the structure factor [Eq. (27)], the solid curve is

the Fourier transform of the pair correlation function [Eq. (26)],
and the dashed curve is the MSA 5 (k) [Eq. (29)].

erties of the system as well, most notably, the radial pair
distribution function,

g(r)= —y. (&'(r; —rf —r)&,1

i j =1
(i&j)

and its Fourier transform, the static structure factor
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P(R )itj(R ) in the GFMC method, lies somewhere between
the variational distribution function gi, (r) and the exact
(fixed-node) one. Assuming that the trial wave function is
su(anciently accurate, gM(r) should be halfway " between
gv(r) and exactg(r):

I ]
I

g (r) =2gM(r) gv—(r) . (24)

This expression is correct to first order in P(R )
—P(R).

The pair correlation function g (r) as calculated in the
MC simulations is fitted to an assumed functional form,

—m r2

g„(r)= 1+mi cos(m3r +m4), (25)

TABLE VI. The extrapolated radial pair distribution func-
tion g(r) for the densities r, =1,5,10,20 in the spin-polarized
Quid phase. The errors are between 0.01 and 0.005.

g(r)

ka

0.025
0.125
0.225
0.325
0.425
0.525
0.625
0.725
0.825
0.925
1.025
1.125
1.225
1.325
1.425
1.525
1.625
1.725
1.825
1.925
2.025
2.125
2.225
2.325
2.425
2.525
2.625
2.725
2.825
2.925
3.025
3.125
3.225
3.325
3.425
3.525
3.625
3.725
3.825
3.925

r, =1.0

0.000
0.007
0.030
0.057
0.124
0.177
0.252
0.342
0.445
0.541
0.639
0.729
0.813
0.870
0.927
0.968
0.996
1.015
1.014
1.016
1.004
1.001
0.994
0.989
0.981
0.979
0.973
0.982
0.982
0.984
0.993
0.991
1.005
1.010
1.002
1.006
1.001
0.998
0.999
0.996

r, =5.0

0.000
0.003
0.007
0.020
0.040
0.084
0.135
0.224
0.312
0.411
0.527
0.629
0.752
0.851
0.935
1.003
1.036
1.086
1.071
1.068
1.060
1.049
1.028
1.004
0.977
0.960
0.957
0.959
0.962
0.967
0.985
0.993
1.004
1.009
1.007
1.024
1.023
1.019
1.014
0.999

r, =10.0

0.000
0.000
0.001
0.002
0.014
0.036
0.074
0.127
0.212
0.314
0.429
0.587
0.697
0.845
0.945
1.038
1.137
1.174
1.149
1.148
1.126
1.058
1.051
0.992
0.981
0.940
0.924
0.912
0.935
0.960
0.964
0.992
1.003
1.014
1.026
1.048
1.034
1.032
1.029
1.016

r, =20.0

0.000
0.000
0.000
0.001
0.001
0.007
0.025
0.062
0.126
0.208
0.321
0.463
0.629
0.807
0.952
1.102
1.195
1.263
1.275
1.259
1.194
1.113
1.071
1.001
0.929
0.908
0.892
0.877
0.888
0.895
0.938
0.967
1.011
1.033
1.053
1.070
1.069
1.059
1.034
1.024

FIG. 10. The static structure factor S(k) of the electron gas
in the normal Auid phase at densities r, = 1,5, 10,20.

to determine the large-r behavior and to Fourier trans-
form it.

We show the pair distribution function g(r) for the
electron gas in the normal Quid phase in Fig. 6, and in the
fully polarized phase in Fig. 7, at densities r, =1,5,10,20.
We have also tabulated the numerical values of g(r) at
these densities in Tables V and VI. Also shown, in Fig. 8,
is the g (r) of all three phases, at r, =40 near the Wigner
melting. Although the energies of the three phases are
virtually the same, the pair correlations differ by about
5%.

The static structure factor is then calculated by
Fourier transformation,

I
(

I

1.4

1.2

1.0

.8
R

ka

FIG. 11. The static structure factor S(k) of the electron gas
in the fully-spin-polarized Quid phase at densities r, = 1,5, 10,20.
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S(k)=—y &p'„. p„. )
1

cT I, F2

(27)

using the configurations generated by the MC runs where
the density operator is

(28)

and the agreement between this direct S(k) and the one
constructed by the Fourier transform is good, as can be
seen in Fig. 9. On the same figure we also show the struc-
ture factor proposed in the mean spherical approximation
(MSA),

1 U(k)
S (k) A' k

—1/2

(29)

which gives the correct behavior for small k [i.e., in the
RPA limit S(k)—k ]. The MSA structure factor and

S(k)=1+2mp J dr rJo(kr)[g(r) —1],
where Jo(kr) is the zeroth-order Bessel function of the
first kind. S(k) is also calculated directly by

the MC structure factor agree up to the Fermi wave vec-
tor (kF =&2) at this value of r, . At low densities (i.e.,
r, )) I) the MSA structure factor is adequate only for
smaller values of k.

The computed structure factors are displayed in Figs.
10 and 11 for the normal and spin-polarized electron
gases at densities r, =1,5, 10,20. The numerical values of
S (k) at these densities are shown in Tables VII and VIII.

Another quantity of interest is the one-body density
matrix,

p, (r) = (f(r, +r)lg(r ) )

= J g*(r, +r, r2, . . . )g(r, , rz, . . . )dr, dr~, (30)

where the average is taken over the configurations R and
over the electron to displace the diagonal. The rnomen-
tum distribution n (k) is then the Fourier transform of
the one-body density matrix:

n(k)=p J drp, (r)e'"'. (31)

This is calculated by inserting a ghost electron at random,
uniformly in the box, and determining how the wave
function changes. ' However, n(k) may also be evalu-
ated directly according to the formula

TABLE VII. The extrapolated static structure factor S(k) of
the normal Auid phase for four densities. These were deter-
mined by extending the radial distribution functions according
to Eq. (25) and Fourier transforming.

S(k)

(32)

TABLE VIII. The static structure factor S(k) of the spin-
polarized fluid phase for four densities.

S(k)

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
'l.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3 ' 8
4.0
4.2
44
4.6
4.8
5.0
5.2

,.5.4
5.6
5.8

r, =1.0
0.030
0.080
0.140
0.206
0.284
0.364
0.449
0.538
0.625
0.708
0.783
0.847
0.898
0.936
0.962
0.977
0.984
0.986
0.986
0.987
0.988
0.989
0.991
0.993
0.995
0.997
0.998
0.999
1.000

r, =5.0
0.014
0.039
0.074
0.115
0.165
0.222
0.286
0.354
0.425
0.501
0.581
0.668
0.762
0.850
0.918
0.963
0.992
1.011
1.022
1.028
1.031
1.030

. 1.027
1.023
1.019
1.014
1.009
1.005
1.002

r, =10.0

0.010
0.028
0.053
0.083
0.121
0.165
0.217
0.273
0.336
0.404
0.480
0.564
0.660
0.768
0.884
0.991
1.066
1.102
1.107
1.096
1.081
1.065
1.050
1.038
1.027
1.018
1.011
1.005
1.000

r, =20.0

0.007
0.019
0.034
0.056
0.083
0.116
0.155
0.199
0.251
0.311
0.381
0.464
0.564
0.685
0.832
1.003
1.171
1.277
1.285
1.225
1.154
1.095
1.053
1.022
1.007
0.996
0.989
0.983
0.984

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1 ' 8

2.0
2.2
2.4
2.6
2.8
3.0
3.2
34
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8

r, =1.0
0.028
0.073
0.140
0.178
0.240
0.308
0.378
0.445
0.508

0.567
0.624
0.680
0.738
0.797
0.855
0.906
0.949
0.980
1.000
1.011
1.016
1.017
1.016
1.016
1.014
1.012
1.009
1.006
1.003

r, =5.0
0.014
0.038
0.069
0.111
0.158
0.209
0.267
0.332
0.398

0.466
0.538
0.610
0.680
0.755
0.831
0.910
1.002
1.088
1 ~ 125
1.103
1.065
1.042
1.029
1.019
1.015
1.012
1.008
1.006
1.005

r, =10.0

0.009
0.023
0.045
0.077
0.115
0.160
0.212
0.267
0.328

0.391
0.459
0.532
0.611
0.701
0.808
0.938
1.089
1.195
1.203
1.153
1.105
1.069
1.044
1.028
1.017
1.010
1.006
1.002
1.000

r, =20.0

0.007
0.020
0.039
0.061
0.089
0.121
0.159
0.202
0.250

0.304
0.365
0.436
0.521
0.627
0.770
0.963
1.208
1.382
1.365
1.260
1.166
1.093
1.048
1.017
0.997
0.985
0.976
0.973
0.974
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TABLE IX. The variational momentum distribution n (k) of
the normal Quid phase for the densities r, =1,5,10 as calculated
using Eq. (32).

8.0

1.5

1.0

0 p 0
0 OP p Opp

1.0
ka

o
)

B.O

ka

0.00
0.32
0.45
0.64
0.72
0.91
0.96
1.01
1.16
1.28
1.32
1.36
1.43

r, =1.0
2.00
1.97
1.96
1.94
1.91
1.89
1.88
1.89
1.86
1.88
1.87
1.87
0.06

.n (k)
r, =5.0

1.69
1.70
1.70
1.65
1.58
1.54
1.52
1.54
1.33
1.38
1.22
1.32
0.35

r, =10.0

1.16
1.16
1.23
1.32
1.36
1.32
1.47
1.41
1.21
1.06
1.09
0.87
0.42

FIG. 12. The momentum distribution n(k) of the electron
gas in the normal Quid phase at densities r, = 1 (0 ), 5 ( + ), and
10 (+). The solid line represents the Fourier transform of the
one-body density matrix at r, = 10.

where r' is the position of the ghost electron. These two
methods do not give identical results in finite systems be-
cause Fourier transforming and sphericalizing do not
commute. In Fig. 12 and Table IX we display and list the
momentum distributions for the unpolarized-electron
liquid calculated variationally for an %=122 particle sys-
tem at densities r, =1,5, 10. Also shown is the Fourier
transform of the one-body density matrix for r, = 10, and
we observe that the agreement with the direct calculation
is good. The normalization is such that for an ideal un-
polarized spin —, liquid the momentum distribution will

be 2 for states inside the Fermi wave vector and zero out-
side. Our computed momentum distribution at r, =1 is
close to the ideal distribution. At r, =2 the discontinuity
at the Fermi surface has dropped considerably. At

r, = 10 there is a very unusual situation in which low-
rnomentum states have a lower occupation than ones
near the Fermi surface. There is still a rapid falloff of the
momentum distribution at the Fermi surface, but the
discontinuity is probably only 20% of its free value. It
will be interesting to examine what the momentum distri-
bution looks like with more exact calculational methods
in which nodes can change from the Hartree-Fock form.
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