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Conjugate gradient minimization of the energy functional:
A new method for electronic structure calculation
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A new robust iterative method for electronic structure calculations based on a convenient adapta-
tion of the conjugate gradient minimization of the energy functional is presented. The method is
compared with some other techniques using the direct minimization of the density functional and
with a more traditional Davidson approach. Numerical results for silicon and carbon are used to
compare the different schemes. The new method is shown to be rapidly convergent, irrespective of
the system under consideration, thus providing an eKcient solution to a variety of large-scale elec-
tronic structure calculations.

I. INTRODUCTION

There is great current interest in large-scale electronic
structure calculations, based on the local-density approxi-
mation (LDA) of density-functional theory (DFT).'

Within DFT the electronic ground state is given by the
minimum of the energy functional and is usually obtained
by solving the Kohn-Sham (KS) equations, i.e., the Euler
equations associated with the minimum problem. In the
conventional numerical approaches the KS equations are
converted into self-consistent matrix eigenvalue equa-
tions, which are then solved by repeated matrix diagonal-
ization. Such an approach is rather costly in large-scale
problems, since it requires O(M ) Aoating-point opera-
tions for each diagonalization of a matrix of order M. M
is the size of the basis set used to expand the electronic
wave functions and can be very large, particularly, in
plane-wave pseudopotential calculations. In order to
achieve self-consistency the diagonalization must be re-
peated for a number of I„ofiterations. Using an
ellicient mixing scheme such as e.g. , Ref. (3) I„canvary
from —5 up to a few tens, depending on the system under
study.

In order to reduce the calculation to more manageable
size, two different approaches have been followed. Both
of them exploit the fact that only the lowest X occupied
KS orbitals are required to find the ground-state energy
within DFT. Usually, and particularly in plane-wave
schemes, X is much smaller than M.

The first of these approaches retains the self-consistent
structure described above but replaces the full matrix di-
agonalization, yielding all M eigenstates, with a partial
diagonalization scheme which yields only the lowest N
eigenstates. This is acheived by iteratively improving
some trial eigenfunctions which are usually provided by
the previous self-consistent iteration. In this way the nu-
merical cost of the diagonalization can be made as small
as O(1V M) for very large systems in plane-wave pseudo-
potential calculations. Various such methods have been
proposed which differ among themselves mainly in the
way in which they compute the corrections to the trial

wave functions. ' In general, such schemes have compa-
rable eSciencies even though some may be more effective
in particular applications. We take as representative of
this class of methods the block Davidson iterative scheme
(DI) as implemented for LDA plane-wave pseudopoten-
tial calculations by one of us (S.B.).

A different approach has been recently proposed by,
two of us (R.C. and M. P.) in the wider context of per-
forming molecular-dynamics (MD) simulations with in-
teratomic forces having LDA accuracy. Such an ap-
proach regards the minimization of the energy functional
as an optimization problem and will be referred to hereaf-
ter as the MD method. This allows one to achieve simul-
taneously self-consistency and diagonalization. The re-
sulting algorithm grows with size as N M similarly to the
DI approach discussed above. However, the actual nu-
merical cost of the MD scheme can vary significantly, de-
pending on the procedure used to achieve the minimiza-
tion. In its original formulation the MD approach was
mostly focused on the coupled electron-ion problem, and
the optimization procedure was based on the simulated
annealing ideas. This was necessary, since when the ions
are allowed to move, several local minima are possible
and one needs a global search method which allows also
for uphill moves like simulated annealing. This approach
has been highly successful in a variety of applications.
However, if the ions are kept fixed, experience has shown
that only a single minimum is encountered. ' In this case
use of simulated annealing techniques may considerably
slow down the approach to the minimum. It was there-
fore realized that, in the context of total energy calcula-
tions at fixed ionic positions, the e%ciency of the method
improves considerably by adopting an approach based on
very fast quench or on steepest descent (SD)," ' which
allow only for downhill moves and expedite convergence
to the minimum. It is well known that straightforward
SD methods suffer from various drawbacks and can be
improved significantly if one uses minimization tech-
niques that take also into account information on the
second derivatives of the function to be minimized. ' Al-
though not originally formulated in this way, Payne
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et al. ,
"Williams and Soler, ' and some of us' made at-

tempts at including partial information on the second
derivatives. As we shall see, these schemes can be useful
at times but they still retain some of the negative aspects
of SD methods.

We want to propose here that by conveniently adapt-
ing the well-known conjugate gradient (CG) minimiza-
tion method, ' one can construct a powerful scheme that
overcomes the limitations previously described. An im-
portant advantage of CG methods over other approaches
is that they take full advantage of the matrix of the
second derivatives without explicitly inverting or calcu-
lating it. The resulting method appears efBcient and
robust. In particular, it is always more e%cient than
straightforward SD methods and it is usually better than
SD schemes using the Payne et al." ' integration algo-
rithm. The advantage is significant, particularly in
dificult low-symmetry situations, where the CG ap-
proach reduces the numerical cost of the minimization by
an order of magnitude compared to the above methods.
The comparison with the more traditional DI approach is
less overwhelming but still favorable. In fact, the CG ap-
proach usually requires an equal or smaller number of
steps than the DI method to converge and the cost of a
CG step in terms of the number of operations required is
slightly smaller than that of a DI step. Such an advan-
tage is more pronounced in situations that require a large
number of self-consistent iterations I„in the traditional
approach. A further advantage of the CG method is that
it does not require parameters to control the convergence
rate, such as the mixing parameter between input and
output potentials in conventional self-consistent schemes,
or the integration time step in SD schemes.

The paper is organized as follows. The basic notation
is introduced in Sec. II as well as the concepts of the total
energy minimization. Section III contains a description
of the CG method for the electronic minimization prob-
lem. A comparison between the di6'erent schemes based
on various numerical examples is presented in Sec. IV,
which also contains our conclusions. Some numerical de-
tails useful for plane-wave nonlocal pseudopotential cal-
culations are given in the Appendix.

II. TOTAL ENERGY MINIMIZATION

According to DFT, the total ground-state energy
4&[[Rt]] of a system of interacting electrons and ions,
corresponding to the ionic configuration [ Rt ], is a
unique functional of the electronic density n(r). ' If we
express n(r) in terms of N occupied single-particle orbit-
als, i.e.,

OCC

n(r)= g ~P;(r)~

then the ground-state energy can be found by minimizing
the functional E [ [ g, j, [ Rt j ] with respect to the "elec-
tronic degrees offreedom" {g, [, i.e.,

@[{Rt]l= imn [E{g;],[Rt[] .

The functional E [ [ P, j, [Rt ] ] is given by

E [[/;], [R,]]=g fdr/, *(r)(—
—,'V )P;(r)

+ f dr V"'(r)n(r)

, n(r)n(r')
dI dl

ZIZJ+E"'[n ]+
~ ~Rt —RJ ~

(3)

In practical applications the sum over G in Eq. (6) is
truncated to include only M plane waves defined by the
conditions —,'(k + 6) (E,„„wherethe energy cutoff E,„,
determines the accuracy of the calculation.

In the conventional approach for very large systems,
the Hamiltonian matrix is diagonalized via iterative
methods such as DI. The basic ingredient of Davidson-
like schemes is the generation for any trial wave function
P of a correction vector AP and the variational deter-
mination of the mixing coeKcient between them by di-
agonalizing the Hamiltonian in the subspace spanned by
[g, AP]. The correction vectors {hg] are given by

Atomic units e =A'=m, =1 are used throughout the pa-
per. E"'[n] is the exchange-correlation energy' and V'"'
is the total external potential felt by the electrons. In a
pseudopotentia1 formulation V'" is a sum of ionic pseu-
dopotentials and Zz are the charges of the ionic cores.
For simplicity, we will treat here the case of local pseudo-
potentials and leave the discussion of nonlocal pseudopo-
tentials to the Appendix. In Eq. (3) the single-particle or-
bitals [p, ] are subject to the orthonormality constraints:

fdr/, *(r)g (r)=5," . (4)

Note that we are here assuming that all the occupation
numbers can be taken as equal.

The standard way of solving Eq. (2), subject to the con-
straints of Eq. (4), consists in solving the associated
Euler-Lagrange equations, i.e.,

Hg;(r) =E,g, (r),
H= —

—,'V + V'"'(r)+ V (r)+p"'(r),
where V (r) = f dr' [n (r')/~r —r'~] is the Hartree poten-
tial and p"'(r) =5E"'[n]/5n(r) is the exchange-
correlation potential. The Schrodinger-type equations (5)
are called Kohn-Sham equations and provide the theoret-
ical framework of most self-consistent electronic struc-
ture calculations. By expanding the [g;] in terms of a
basis set the KS equations are converted into a matrix ei-
genvalue problem. In the plane-wave pseudopotential
formalism' we have

q, (r) =y„„(r)= y c~"e'" "+o

6

and the Hamiltonian matrix is given by

Hoo. =
—,'~k+G~ 5oo+Vo o +go o+Vo' o
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(H —E, )i)'j, (r),

where s; = (P,. ~H ~ P; ), and Hd is the diagonal part of the
Hamiltonian matrix. A single iteration of the Davidson
algorithm consists of the followng steps: (i) generation of
the correction vectors, where the computationally time-
consuming part is the calculation of Hg; (ii) each correc-
tion vector must be orthogonalized to all the trial vectors
and the remaining correction vectors; (iii) to calculate the
projection of H onto the j l(, b,pJ subspace one has to cal-
culate Hb g, which requires roughly the same cost as step
(i); (iv) the eigenvectors of the projected Hamiltonian
(which are the input for the next iteration) must then be
transformed into the full plane-wave basis set. In the
original Davidson scheme, the dimension of the jg, b,gJ
subspace is increased at each iteration. In the body of a
self-consistent calculation, where high accuracy is not re-
quired, this dimension can be kept as small as 2N and al-
lowed to grow only in the very last self-consistent itera-
tions. The number of operations necessary to perform
the above four steps is alV M plus twice the operations
needed to calculate Hf. The cost of computing
efficiently Hg will be discussed later. It turns out that
a~ —", when the dimensions of the [l(j,hg] subspace is

kept at its minimum (2N).
In what follows, we will focus mostly on a different ap-

proach, namely the direct minimization of the functional
in Eq. (3) without using the KS equations. Perhaps the
simplest way to find a minimum of a function with many
variables is provided by the steepest-descent approach,
which in the present case can be formulated in terms of
the equations

~ 5E
g;(r, t)=—

5$,*(r,t )
(9)

where the dot indicates the derivative with respect to a
fictitious time variable t, and 5 indicates the constrained
functional derivative that preserves the orthonormality.
The orthonormality constraints [Eq. (4)] must be added
to Eq. (9) when an unconstrained functional derivative is
used. Equation (9) defines a trajectory in the space of the
electronic degrees of freedom in which at each step one
moves a little bit down the "gradient" 5E/5$,*. The-
end product is the self-consistent minimization of E. The
"time" dependence is fictitious, since in the SD procedure
only the end product matters and the time is just a pa-
rameter used to label different configurations in the space
of the [g;]. The functional derivatives in Eq. (9) are ob-
tained by adding the orthogonality constraints to the un-
constrained functional derivatives:

5E =Hg;(r, t),
5$,*(r, t )

(10)

where H depends nonlinearly on the [g;J, [Eqs. (5)].
When a minimum is attained at the end of the SD pro-
cedure, [g;=0] and Eqs. (9) are equivalent, within a uni-
tary transformation, to the KS equations. From this
point of view the SD procedure is just an alternative way
of solving the KS equations without treating them as a

self-consistent eigenvalue problem. If one neglects the
constraints, Eq. (9) is formally equivalent to a time-
dependent Schrodinger equation in imaginary time. The
SD procedure can be thought of as a way of projecting
onto the ground state an initial trial state by propagating
it in imaginary time. In practice the SD step consists of
the following:

g;(r, t+b, )=g;(r, t) —b,HQ, (r, t)+constraints . (11)
The elementary time step b, in Eq. (11) is a parameter
that fixes the time scale and therefore governs the conver-
gence rate of the SD scheme: it is the analog of the mix-
ing parameter in a self-consistent diagonalization scheme.
The [g;(r =0)] constitute the initial trial state. This
must be nonorthogonal to the ground state in order for
the SD procedure to work correctly. Also it has been
pointed out that hidden symmetries in (P;(t =0)] cou-
pled to a nonsymmetry breaking orthogonalization
scheme can prevent the system from reaching the correct
ground state, ' This danger can be avoided by either
adding some random component to the wave function or
by adopting a symmetry-breaking orthogonalization
scheme, such as Gram-Schmidt. In general, the final

[ g; ] obtained with the SD procedure do not necessarily
coincide with the KS eigenstates but are unitarily
equivalent to them. This depends on the scheme used to
impose the constraints. In particular, if the Gram-
Schmidt ortho gonalization method is used then the
( g, (t ~~ ) ) coincide with KS eigenstates' and the cor-
responding eigenvalues may be simply calculated by tak-
ing the expectation values of the Hamiltonian H. Note
also that since physical quantities are invariant with
respect to unitary transformations among occupied
states, the orthogonalization scheme chosen is in this
context largely arbitrary.

The basic step in the iterative schemes discussed here
(SD, DI, CG described below) consists of acting on the
[i)'j;] with the Hamiltonian H followed by an orthonor-
malization of the new [l(j;] so obtained. In a plane-wave

approach the action of the Hamiltonian on the wave
functions requires 0 (NM ) (Ioating-point operations,
whereas the orthonormalization requires O(N M). Such
a counting can be improved as follows. The Hamiltonian
H consists of a kinetic- plus a potential-energy term. The
kinetic-energy term is diagonal in reciprocal space so that
its action on the wave functions requires only O(NM)
operations. If the potential is local its action on the
Fourier coefficients of the wave functions is a convolution
that can be conveniently calculated in real space by
means of fast-Fourier-transform (FFT) techniques. This
requires O(NM'log2M') operations, where M'=xM is
the number of points used to evaluate the Fourier trans-
form. The actual value of x depends on the number of
nonzero Fourier cofficients of the potential and on the ac-
curacy that we require for the convolution Vg. Equation
(7) requires a cutoff 2G,

„

for the potential if G,
„

is the
cutoff imposed to the wave functions. Then x -2 is re-
quired in order to obtain exactly the first M Fourier com-
ponents of the convolution product Vg. Note, however,
that the assumption of a unique cutoff 6,

„

for all expan-
sions in plane waves also represents a physically sound
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approximation. ' In such a case, x —1. In the applica-
tions described in the present paper we have always usedx-2: with this choice the results obtained with the
iterative approaches coincide with those of standard diag-
onalization methods using the same cutoff.

The result of all this is that the big dimension M enters
only linearly or via M'logzM' in the count of the opera-
tions. This gives a significant improvement over standard
diagonalization techniques where M enters as M . Of
course for sufficiently large systems the terms growing as
X M dominate and the numerical cost of the algorithm
still grows as the cube of the system. An additional ad-
vantage of the iterative techniques (SD, DI, and CG) is
that the Hamiltonian H is never explicitly required. One
needs only its action on the wave functions, permitting a
significant saving in memory occupation. If the FFT
techniques described above are employed, the SD pro-
cedure requires the storage of the wave functions, i.e.,
XM words, plus the storage of the potential, which re-
quires M' words for a local pseudopotential. In the Ap-
pendix we show that only an additional yM words are re-
quired for the nonlocal pseudopotential, where y ~ 10 in
typical applications.

The eSciency of the SD scheme that we have just de-
scribed is controlled by the number of steps that are
necessary to achieve convergence. This can be quite
large, especially in low-symmetry situations, as will be
shown in Sec. IV. The straightforward SD method is
known not to be the most efficient minimization algo-
rithm, ' and it may be improved in several ways. An ob-
vious limiting factor is the maximum time integration
step b, that can be safely used in Eq. (11). In order to in-
crease it and therefore accelerate convergence, one may
exploit some properties of the total energy minimization
problem, such as the fact that the Hamiltonian matrix is
diagonally dominated for sufficiently large G. If we as-
sume it to be diagonally dominated for all G*s then in Eq.
(9) we can separate the action on the wave functions of
the diagonal part of the Hamiltonian from that of the
off-diagonal part. We obtain

c o — ( —, Ik+Gl + Vo o —e )co —g Vo o co.
Q'~G

(12)

In Eq. (12) we have subtracted a constant s' from the di-

agonal part of H. By explicitly integrating the diagonal
term and treating the off-diagonal one as a perturbation
we obtain

co(t+b, )

similar to the minimization scheme of Payne et al. ,
"who

calculate the ground-state electronic energy by perform-
ing a very fast quench with the MD equations of Ref. 7.
In some cases the MSD method constitutes a definite im-
provement over the SD scheme, by allowing a
significantly larger time integration step 6 and requiring
a consistently smaller number of steps to converge. How-
ever, in many important cases and particularly in low-
symmetry situations the MSD algorithm does not im-
prove over the SD algorithm and it may even result in be-
ing less stable as we shall show with numerical examples
in Sec. IV. This may be a consequence of the rather
crude assumption of diagonal dominance of H for all 6's.
A better approximation can be obtained as follows. We
write H=HD+H&, where Ho contains the diagonal part
of H plus the ofF-'diagonal elements up to some maximum
6 =G. 6 is supposed to be much smaller than the cutoff
that fixes the size of the plane-wave basis set. All the
remaining o6'-diagona1 elements are part of H, . Typical-
ly the diagonalization of Ho will require the diagonaliza-
tion of a "small" matrix of order mX, where m is a small
integer of order unity. Then the scheme of Eq. (13) can
be easily generalized by integrating "exactly" the time
dependence due to Ho and by treating H] as a perturba-
tion. Such a procedure is reminiscent of that followed in
the DI scheme, and we expect that it should improve
significantly the e%ciency of the MSD algorithm. How-
ever, we have not implemented it and therefore in the nu-
merical comparison between the various methods that
will be presented in Sec. IV only the simpler version of
the MSD scheme will be considered.

We remark that the Hamiltonian matrix H coincides
with the matrix of the second derivatives of E with
respect to the electronic degrees of freedom if the depen-
dence of the self-consistent potential on the [ P, ] is
neglected. From this point of view the MSD method is
an attempt to include information on the second deriva-
tives within the SD approach.

III. CON JUGATE GRADIENT MINIMIZATION
OF THE ENERGY FUNCTIONAL

We summarize here the basic idea of the CG minimiza-
tion technique. Let us suppose that the function to be
minimized is roughly approximated by a multidimension-
al quadratic form around some point P taken as the ori-
gin of the coordinates

(14)

=exp( eood, ) [co(t)+(R—/coo)[1 —exp(noh)]]

+constraints . (13)

where

&=(xi &2 ~ ~ xL ) c=f(P) b —= Vf lp
(15)

It is convenient to use e' =(g;(t)lH(t)lg, .(t)). Equation
(13) replaces Eq. (11) of the ordinary SD. Such a pro-
cedure was suggested by Williams and Soler' and by two
of us, ' by adapting to the SD scheme an idea originally
introduced by Payne et al." for the MD equations of
Ref. 7. We call the algorithm of Eq. (13) the modified
steepest-descent (MSD) scheme. In practice it is very P( +&)—P( )+g( )P( ) —0 (16)

with a symmetric positive-definite L XL Hessian matrix
A. An iterative minimization procedure is then defined
by the sequence
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where A,
'"' is a scalar and h'"' is a vector in multidimen-

sional space. In SD schemes one chooses

h (n) py( p(n)) (17)

and A,
'") is either a fixed scalar sufficiently small to ensure

convergence or it is chosen in such a way as to minimize
the function f along the line defined by the direction h '"'.
The procedure defined in Eqs. (16) and (17) is usually far
from being optimal even with functions that are nearly
quadratic. The reason is that SD steps are often orthogo-
nal or nearly orthogonal to one another and this may
easily result in the need for very many steps in the case of
canyon-shaped functions. ' Such a drawback can be
avoided by using the information contained in the matrix
of the second derivatives A, since in this case a single
operation is sufficient to minimize a perfectly quadratic
function. However, for large I it is impractical to deal
with the large matrix 3 both in terms of storage and
computer time. In the CG method information on A is
only used implicitly to define an optimal set of directions
h'"' in the sequence of Eq. (16), where the scalar A.

(") is
obtained by a one-dimensional minimization along the
line defined by h ".The directions h '"' are given by

(.n)

h (n) (18)'"'+ '" "h'" " n =1,2, 3, . . .

where

(20)

This property guarantees that each step is actually an im-
provement over all the preceding ones. By virtue of Eq.
(20) the difficulty of SD with a canyonlike quadratic func-
tion is overcome. Notice that the Hessian matrix 3 is
never explicitly required. The CG method is widely used
in optimization problems: the simple CG step defined in
Eq. (16) is not much more costly than the SD step but the
method is much more efficient. The efficiency is in fact
roughly the same as in methods using explicitly the Hes-
sian matrix A, like Newton or quasi-Newton methods. '

We have seen in Sec. II that the electronic minimiza-
tion problem within DFT can be successfully solved by
means of SD methods. It is therefore natural to apply the
CG procedure to it. A difhculty arises in this respect be-
cause of the existence of orthonormality constraints in
the electronic problem. These originate forces of con-
straint that must be taken into account when the line
minimizations are done. In order to deal with such con-
straints it is convenient to reformulate the electronic
problem in terms af linearly independent but not ortho-
normal orbitals I q&,. I. The orthonormal orbitals I 1t; I

may be related to the [(p, I via

(n) py(p(n) )
(19)

(n+1)~ (n+1)
&(n) g

(n)~g(n)
&

The directions h'"' are said to be conjugate. One can
show' that for a quadratic function like the one in Eq.
(14), the following conjugacy property is satisfied:

+ Jdr V'"'(r)n(r)+ ,' J—drdr'

ZI ZJ+E"[n]+—,
' g', , IR, —R, l

Then, for orthonormal I q&; ], one obtains

6E
fiy,*(r )

=Hg;(r) g&y—~H~(((); &q (r) . (23)

Initially orthonormal orbitals become nonorthonormal
after a CG step. Although in principle irrelevant, it is
numerically convenient to reorthonormalize the Ip;I at
any step. This will ensure that the S matrix remains non-
singular and allows the use of Eq. (23). The orthonormal-
ization procedure leaves the value of E unchanged and
therefore does not afFect the final results. Obviously the
orthonormalization ean be done in many difFerent ways.
In our numerical implementation of the CG scheme we
have used the Gram-Schmidt procedure. Equation (23)
defines the "gradient" g'"' from which one obtains the
conjugate direction h '"' using Eq. (18). A one-
dimensional minimization of the functional E along h'"'
allows us to compute A,

'"' and to accomplish the CG step
defined in Eq. (16). In order to keep things simple in the
one-dimensional minimization we proceed as in non-self-
consistent calculations and instead of E we minimize E
given by

&(~'"')= g &q'"'"IHIP''"'"&S,;""+", (24)

where qr';" "=(p',"'+A.'"'h(") and H=H[Iy(. ")I ]; in other
words V and p"' are not varied as A,

'"' is changed but
are instead determined by the density corresponding to
Iy,'"'I. This approximation becomes progressively better
as the minimum is approached. However, there might be
cases where one has to take into account self-consistency
in the line minimizations. This was not the case for the
examples considered in Sec. IV.

The computation of E(A,(")) requires the evaluation of
the following matrices: &y~H~q&&, &y~H~h &, &h~H~h &,

&y~h &, and &h~h &. O(NM'log2M') operations are re-
quired to compute Hy and Hh, when using a local pseu-
dopotential. O(N M) operations are required to com-
pute each one of the above matrices, whereas O(N )

operations are required for each inversion of the matrix
S. In addition 0 (N M ) operations have to be performed
to reorthonormalize the wave functions at the end of
every CG step. Putting all the operation counts together,
taking into account the symmetry properties of the ma-
trices, and retaining only the most time-consuming terms
we obtain 21''logzM'+41V M. We see that in the size
range ~here the multiplication of H with the wave func-

y
—y S—1/2

J

where S;J=&pJ~y;& is the overlap matrix. In terms of
the [gr; I the functional E in Eq. (3) can be rewritten as



5002 I. STICH, R. CAR, M. PARRINELLO, AND S. BARONI

tions dominates, the approximate cost of the CG step is
the same as the DI step and twice the SD or the MSD
step. In the asymptotic regime dominated by the X M
operations, the CG step is slightly more econonomical
than the DI step (4N M versus —",N M), but may be
significantly more costly (up to a factor of 8) then the
simpler SD or MSD step. In such situations, SD
methods may be comparable or even more convenient
than the more sophisticated approaches based on CG or
DI methods. The above considerations hold for a local
pseudopotential scheme. When nonlocal pseudopoten-
tials are used, operations of the kind X M are also re-
quired to compute Hy, as explained in the Appendix. In
this case, the SD step is still more economical than the
CG or DI step but the difference in cost is greatly re-
duced and is more than counterbalanced by the better
efficiency of the latter method.

0

0
QJ 2

t

LLI

3
CAa

-5 I

10 20

I
I

1
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No of steps
30

IV. NUMERICAL TESTS AND CONCLUSIONS

We have performed a number of test calculations in or-
der to study the numerical efficiency of the various
methods for large-scale electronic structure calculations
introduced in the preceding sections. Few simple struc-
tures consisting of Si and C atoms were used as test sys-
tems. In all cases we used nonlocal norm-conserving
pseudopotentials' and adopted the parametrization of
Ref. 19 for exchange-correlation effects. The size of the
test systems was not too large and always in the range
where the computationally most relevant operations are
products of the kind Hy.

The first system considered was crystalline silicon, as
described by a periodically repeated simple cubic super-
cell with eight atoms arranged in perfect diamond lattice
positions. The value of the experimentally observed lat-
tice constant (a = 10.26 a.u. ) was taken as the unit-cell di-
mension. The above structure is referred to as ordered.
A different structure, referred to as disordered, was ob-
tained by randomly displacing the atoms from their dia-
mond lattice sites. Small displacements having maximum
amplitude of 0.2 a.u. were used. We performed plane-
wave calculations for both ordered and disordered Si
structures with an energy cutoff of 7 Ry. The Brillouin-
zone integrals were approximated either by the point
k = (0,0,0) or by the point k = ( —', —', —') (Baldereschi
point ). The initial trial wave functions, used in all cal-
culations, were obtained by filling the lowest-energy
states resulting, from a diagonalization of a small Hamil-
tonian matrix constructed by assuming a uniform valence
charge density and an energy cutoff of 2 Ry for the wave
functions.

We measure the efficiency of the different schemes for
electronic structure calculations by the number of steps
necessary to achieve convergence in the total energy.
The results obtained for both ordered and disordered Si
structures are given in Fig. 1, which shows the variation
of the total energy with the number of steps for the vari-
ous schemes. The total number of steps that were neces-
sary to achieve convergence in the different cases are re-
ported in Table I. MSD, DE, and CG have comparable
efficiencies for the ordered structure. The search for the

Q —2
LLI

I

LLI

3
Qla

100

No. of steps

I

'150 200

FIG. 1. The rate of convergence of the total energy E in SD,
MSD, CG, and DI methods for (a) an ordered [k=(0,0,0)] Si
system and (b) a disordered [k=(0,0,0)] Si system. Fo indicates
the converged ground-state energy.

TABLE I. Comparison of several tested methods in number
of steps for the silicon system. Convergence in seven significant
figures is assumed. If not given otherwise, the time step
6=0.16 for the SD and MSD methods. For the DI method, the
number of self-consistency cycles, I„is given in parentheses.

SD MSD DI

ordered Si [k = (0,0,0)]
disordered Si [k=(0,0,0)]
disordered Si [k= ( —', —', —' ) ]

42
251

73

13'
222b

203

10(3)
39(9)
26(6)

11
23
16

'Time step 6=0.63.
The calculation was discontinued when convergence in only six

significant digits was achieved, because at this point signs of nu-
merical instability were beginning to appear.

minimum appears to be considerably more difficult in the
disordered case, where all the methods require a larger
number of steps to converge. In this case the conver-
gence of SD and MSD slows down by almost an order of
magnitude, whereas DI and CG still retain a satisfactory
rate of convergence; the latter being, however,
significantly faster. MSD is almost as efficient as CG or
DI in the case of the ordered structure, but fails badly in
the case of the disordered system, due to the presence of
numerical instability even when the same time step 6 of
SD is used.
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In order to study the eSciency of the various schemes
in a different situation, we have applied them to graphite.
Owing to its quasi-two-dimensional structure, in ordinary
electronic structure calculations, a larger number of
iterations I„than in the case of Si is required to achieve
convergence for graphite. We have represented the ex-
perimental graphitic structure with a periodically repeat-
ed orthorhombic supercell containing eight atoms and
having dimensions a =4.65, b =8.05, and c =12.00 a.u.
The eight atoms are arranged in two planes containing
four atoms each and having the appropriate stacking.
We use an energy cutoff of 18 Ry. As in the case of Si,
we approximated the Brillouin-zone integrals either by
k=(0, 0,0) or by k=( —,', —,', —,'). The initial trial wave func-

tions were obtained by diagonalizing a Hamiltonian ma-
trix corresponding to an energy cutoff of 15 Ry and a uni-
form charge density. The results are summarized in
Table II. As in the case of ordered Si, DI and CG have
comparable efficiencies. Instead SD faces serious
di%culties and MSD, which we have not included in the
table, shows the same signs of numerical instability as in
the disordered Si case.

Notice that in order to obtain the results given in
Tables I and II for the DI method, it has been necessary
to be careful in deciding the convergence schedule; name-
ly (i) an efficient mixing algorithm has been used and (ii)
the degree of convergence of each Davidson iterative pro-
cess has been tuned: as a general rule we found it con-
venient to stop the DI scheme when the difference be-
tween two sucessive estimates of the eigenvalues is less
than one-hundredth of the mean square deviation be-
tween the input and output potentials of the previous
iteration.

From the above and other calculations not reported
here, the CG scheme seems to be the more robust and the
less sensitive to a poor choice of the initial trial wave
functions; namely wave functions whose projection onto
the ground state is rather small. In summary, we can
draw the following conclusions. We have compared a
number of methods for ground-state electronic structure
calculations based on direct minimization of the energy
functional and nonstandard diagonalization techniques.
All of them exploit the fact that only the lowest N occu-
pied KS orbitals are necessary for finding the ground-
state energy within DFT. Since with plane-wave basis
sets usually N «M, all the above methods largely reduce
the calculations. In particular, we have introduced a new
computational tool by conveniently adapting the well-

TABLE II. Comparison of several tested methods in number
of steps for graphite. Convergence in seven significant figures is
assumed. For the DI method, the number of self-consistency
cycles I„is given in parentheses.

known CG minimization method to the problem of elec-
tronic structure calculations.

When the convergence rate is measured in terms of the
number of steps needed to achieve convergence, the CG
scheme is definitely better than any SD technique and it
compares well with the more traditional DI approach,
even though in this case the gain with the CG method
may not be as substantial. However, an important advan-
tage of the CG method compared to both SD and DI is
the absence in the CG scheme of any convergence con-
trolling parameter (such as the mixing parameter in DI
or the time step b, in SD). In general, the convenience'of
the CG scheme is more pronounced in dificult low-
symmetry situations. When the number of operations per
time step is also taken into account, the better eSciency
of CG compared to SD methods may be in part compen-
sated by the lower number of operations required in the
simpler SD step, particularly for very large systems when
using local pseudopotentials. We feel, however, that in
most situations the CG approach should be significantly
superior to any SD-based approach.

Given the eKciency and the robustness of the CG
method, one may think of using it to calculate the
Hellman-Feynman forces needed in a MD scheme for the
ions. This would provide a means to search for the global
minimum via dynamical simulated annealing. However,
we have found that such a formulation is significantly less
convenient than the generalized Lagrangian formulation
of Ref. 7.
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APPENDIX: NONLOCAL PSEUDOPOTENTIALS

The usual expression for the total pseudopotential of
the crystal can be written as V, (r)=g~v, (r —R~),
where the ionic pseudopotential is usually taken as

(Al)

where P& is the projector onto the lth angular momen-
tum. The infinite sum in Eq. (Al) is evaluated by assum-
ing that u&(r)=u*(r) for l~l. A natural choice which
has been followed here and in Ref. 11 is to take
u*(r)=v&(r)., This allows one to rearrange (Al) in the

form

k=(0,0,0)

'Time step 6=0.083.
Time step 6=0.030.

SD

213'
40'

+ 135

DI

22(5)
25(7)

26
21

(A2)

where Av, (r) = v&(r) —u&(r).
The first term u&(r) in Eq. (A2) is purely local and can

be treated as described earlier. The nonlocal contribution
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comes from the second term in Eq. (A2), when summed
over all the atoms in the system: this is most convenient-
ly written in Fourier space as

1 —1

b, V„t(q,q')= g g exp( —iq Rt)hut(q, q')
I 1=0

and by approximating the radial integral

f dr r b, vt(r)Jt(qr)JI (q'r)= g ~j t(qr; )jt(q'r ), (A7)
Xexp(iq' Rz), (A3)

where

&ut(q, q')= (2l+1)Pt(q q')
Q

X f dr r Avt(r)jt(qr)jt(q'r) . (A4)
0

In Eq. (A4) Pt and jt are Legendre polynomials and
spherical Bessel functions, respectively. q and q

' are unit
vectors in directions q and q', respectively, and Q is the
unit-cell volume. A straightforward application of the
matrix to the wave function in Fourier space requires
NM operations and substantial storage.

In order to reduce the number of operations required it
is very useful to rewrite Eq. (A4) in a separable form

but(q, q') = g W;(q) 8;*(q') . (A5)

This can be achieved by making use of the addition
theorem for spherical harmonics

where r, and w; are nodes and weights of an appropriate
Gauss integration scheme. In our application, b.v~(r) has
a Gaussian behavior, and it is therefore convenient to use
a Gauss-Hermite integration formula. The number of in-
tegration points NGH depends on the cutoff 6 „:we
found that a number of integration points NG~ equal to 6
and 8, for Si and C, respectively, provided a very accu-
rate approximation to the integral in Eq. (A4). The use
of this approximation leads to a total number of opera-
tions (L)NGHNINM where Nt is the total number of
atoms and L =+I t(2l +1). Clearly, this approach be-
comes useful only for (L)NGHNt (M.

In the same spirit the use of potentials of the form pro-
posed by Kleinman and Bylander ' (KB) has recently
been suggested, these being separable by construction.
The count of operations is in this case equal to ours with
NGH=1. The saving is therefore substantial, and thus
the KB pseudopotential is to be used in all the cases
where it is safe to do so.
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