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An analysis is presented for the local field and electromigration driving force in mesoscopic sys-

tems, i.e., systems in which the dimension along the transport direction is smaller than the electron
mean free path due to inelastic scattering. The electromigration driving force is a measure of the
microscopic electric field acting on an impurity, and, in general, consists of two contributions,
namely, the "electron-wind force" and the "direct force." The local transport field also consists of
electron-wind and direct contributions. Detailed analyses are presented for the local fields, forces,
and resistivities in the following mesoscopic systems: (i) one-dimensional (1D) disordered conduc-
tors; (ii) an impurity-layer or grain boundary sandwiched between reservoirs; and (iii) an impurity in

the vicinity of a point contact. For the first two systems, the direct force and the associated direct
field vanish, whereas in the point-contact system the wind and direct contributions are comparable.
The net electromigration force on a 1D conductor is a measure of the true potential drop across the
disordered region, and is proportional to the Landauer resistivity. In the case of an isotropically
scattering impurity near a point contact, the wind force is proportional to the impurity-induced
change in the contact resistivity. Inconsistencies are pointed out in the use of linear-response for-
malisrn based upon the existence of an external field in mesoscopic systems.

I. INTRODUCTION

Electron transport in metals containing defects is
characterized by strong inhomogeneities in the micro-
scopic electric field near the defects. The nature of these
inhomogeneities in the transport field was first described
by Landauer in his classic 1957 paper. Besides their im-
portance in the electronic conduction problem, these field
inhomogeneities play a central role in the theory of elec-
tromigration, ' which is the phenomenon of atomic mi-
gration in the presence of electron transport. It is for this
reason that theorists working on electromigration have
delved more deeply into the nature of electric field inho-
mogeneities near defects.

Recently, interest in microscopic electric-field inhomo-
geneities has been reawakened by intense activity in the
study of electron transport phenomena in mesoscopic sys-
terns. ' In such systems, which occupy the middle
ground between the atomic and macroscopic length
scales, the microscopic electric field can, in principle, be
probed experimentally. However, in typical experimental
configurations, it appears that the field measurement is
strongly affected by the voltage probes themselves. ' In
this paper we investigate the nature of the local field in
mesoscopic systems and explore the possibility of using
electromigration as a probe of the local field.

We shall consider the microscopic electric field within
the framework of the local-field method discussed by Chu
and Sorbello. ' The method is based on ideas contained
in Landauer s 1957 paper, with the addition of further in-
sights obtained from electromigration theory. In particu-
lar, we separate the local electric field in the vicinity of an
impurity (or a more general defect) into two parts. One
part is associated with the electronic distribution gk in-

cident upon the impurity and the other part is associated
with the direct action of the long-range electric field Eo at
the impurity. Using electrornigration terminology, ' the
part associated with g& is called an "electron-wind" con-
tribution, and the part associated with Eo is called a
"direct" contribution.

As far as the electromigration force on an impurity is
concerned, there is general agreement that the force due
to the electron wind equals the rate of momentum
transfer to the impurity from the scattered electrons.
The direct force, or the force exerted on the impurity by
Eo, has always been controversial, ' and the most
definitive treatments, whether semiclassical or quantum
mechanical, ' are not easy to follow. In these treatments,
one assumes the existence of a uniform Eo, and effectively
calculates the resulting dynamical polarization in the vi-

cinity of the impurity. The force can be expressed as
Zd e Eo, where Zd is an effective valence for the direct
force. Thus, there are two aspects of the direct-force
problem, namely: finding Eo and finding Zd. We shall
accept out previous determination of Zd, ' and in this pa-
per, we instead focus our attention on Eo. In bulk sys-
tems, Eo can be taken to equal the average or macroscop-
ic field. However, this is not the case in mesoscopic sys-
tems, where one must be very careful in identifying the
appropriate sources of Eo. For example, in the one-
dimensional conductor (treated in Sec. III A), one must
take EO=O despite the existence of an overall average
electric field across the system. The key point is that the
average field is set up by the self-consistently screened
response to the electron wind. There is no direct field in
this case.

In our approach to the conductivity-electromigration
problem, we follow Landauer' and focus on a small re-
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gion of radius R containing the impurities, where R is
substantially smaller than the background mean free
path, l. The various contributions to fields and forces
within this near-field region are calculated from the self-
consistent electronic response to the external field Eo and
to the incident current. In the case of bulklike systems,
one could then describe the conductivity problem from
the bottom up, i.e., the fields generated by sources within
R would then be added together to yield the correct
volume average field, from which the conductivity could
be calculated. ' This is in contrast to the top-down ap-
proach within the usual Kubo formalism, where a uni-
form external field is assumed to be applied across the en-
tire macroscopic system. A Green's function evaluation
of Kubo response formulas causes the close-in details
(within R ) to emerge in various Feynman dia-
grams. ' "" Yet, for all its elegance, the usual Kubo ap-
proach, which assumes a uniform external field, is not
quite rigorous. The major problem (in the case of a
defect-dominated system) is that there really is no exter-
nal field. Rather there is a macroscopic average field aris-
ing from localized dipolar sources at the defects. This is
the central lesson of Landauer's 1957 paper. ' Assuming
a uniform driving field amounts to a kind of mean-field
picture, i.e., the microscopic response is calculated by
taking the average field as the causal agent. We mention
this, not as a criticism of the Kubo approach, but as a
caveat that subtle approximations can be implicitly intro-
duced when employing so-called "exact" Kubo formulas.
Some of the difIicult self-consistency questions with
which one is immediately confronted in the bottom-up
local-field approach are in fact hidden approximations in
the usual Kubo approach. Thus, in principle, the local-
field method is not less exact than a Kubo approach.

In the case of mesoscopic systems placed between
reservoirs in the Landauer configuration (see Sec. III)
the local-field method is easier to apply and more soundly
based than is the Kubo approach. In retrospect, attempts
to rigorously derive the Landauer formula [Eq. (32)] from
the Kubo approach ' ' are less a test of the Landauer
formula than of the Kubo approach. Of course, one can
improve upon the usual Kubo approach and regard the
external field to be microscopically inhomogene-
ous. ' ' ' But unless the latter is replaced by the true
self-consistent field, the approach is again not quite
rigorous. Furthermore, if the unknown selfconsistent
field is employed as a driving force in the Kubo formal-
ism, we are effectively back to the bottom-up local-field
approach. ' In these remarks, we are in agreement with
Landauer's caveat ' ' on the uncritical application of
Kubo formulas.

In the next section we employ the local-field approach
and relate the microscopic electric field to the driving
force for electromigration. A good deal of this is a sum-
mary and critique of the relevant theory for bulk systems.
We do, however, introduce some refinements into the
theory and discuss the modifications that arise in the
study of mesoscopic systems. In Sec. III applications are
made to the following specific systems: One-dimensional
disordered conductors (Sec. IIIA); an impurity layer or
grain boundary sandwiched between reservoirs (Sec.

III B); and an impurity near a point contact (Sec. III C).
Further discussion is given in Sec. IV.

II. LOCAL ELECTRIC FIELD
AND DRIVING FORCE FOR ELECTROMIGRATION

Jo=Eo/po (2)

where po=m /noe ~ is the resistivity, with no being the
conduction electron density and e the magnitude of the
electron charge. We are restricting our attention to tem-
peratures well below the Fermi temperature (s~/kii),
which is the appropriate regime for the metallic systems
under consideration.

We now consider a single impurity placed in the elec-
tron gas. The impurity is exposed to the electron distri-
bution g& and to the electric field Eo. For the moment we
ignore the latter, and consider the effects due to the
scattering of electrons in the distribution g&. The elec-
tron scattering gives rise to an electron density perturba-
tion, 5n (r), where"' '

5n (r ) = g gk ~

P'„'(r )
~

and Pz+'(r) denotes the scattering state wave function for
an electron incident in state k. Note that 5n is an
electron-wind term in that it is set up by the scattering of
electrons impinging upon the impurity. (We shall use the
subscript w to denote quantities associated with the elec-
tron wind. )

The charge pileup described by 5n (r) must be
screened self-consistently. "' Since 5n (r) effectively
acts as a source term in a screening calculation, the final
self-consistent potential 6+ can be related to 6n, via a
linear-response screening kernel. In general

5@(r)=—e JK(r, r')5n (r')d r', (4)

where the kernel K(r, r') gives the self-consistent poten-
tial at point r when a weak point charge is placed at point
r' in an equilibrium electron gas. K is obtained from a
purely electrostatic quantum-mechanical screening calcu-
lation for the system in the absence of transport (but in

Previous work exploring the connection between local
electric fields and electromigration has focused on bulk-
like systems, ' ' ' ' where the length of the system
along the transport direction is much larger than the
electron mean free path. In that case, a steady-state situ-
ation is established in which the electron distribution is
governed by background scattering. Within a free-
electron-gas model, the background scattering leads to an
electronic distribution, gk, of the form

(gk )b ik +evk E05(Ek EF )

where ~ is the electronic relaxation time associated with
background scattering, v& =6k/m is the velocity of an
electron in state k, and c.& =R k /2m is the correspond-
ing energy. m is the electron mass, cz is the Fermi ener-

gy, and Eo is the macroscopic electric field. Within this
model, the electronic charge current Jo is given by



4986 RICHARD S. SORBELLO 39

the presence of the impurity). In writing Eq. (4) we are
only assuming linear response in the strength of the mac-
roscopic field. Henceforth, we shall confine our attention
to this regime in which local fields and forces are linear in
the macroscopic field Eo or transport current Jo. [More
generally, for Eq. (4) to be valid we need only require 5&&

to be a linear functional of g&.]
The response kernel E has yet to be calculated for self-

consistent screening in the presence of a realistic impuri-
ty potential and background scattering. However at dis-
tances beyond a few screening lengths from the impurity,
we can invoke a Thomas-Fermi approximation, in which
case Eq. (4) simplifies to' '

54(r) = ——1 dn
5n (r), (&)

e dE

where dn/dE is the electron density of states at the Fer-
mi level. This is an excellent approximation for the po-
tential averaged over a volume of radius equal to a few
screening lengths about point r. '

In the asymptotic quantum mechanical region, i.e., for
l »r ))k~ ', where k~ is the Fermi wave vector and
3 =Ak~r/m is the mean free path, the potential is readily
evaluated from Eqs. (3) and (5). The result is the Lari-
dauer residual-resistivity-dipole field, namely" '

p cosO
r2

where we have chosen the impurity to be at the origin
and 0 is the angle between r and Ep. The magnitude of
the dipole moment p is given by 3mAJoSp/4kge, -where

Sp is the scattering transport cross section. " Equation
(6) can be obtained from Eqs. (3) and (5) by substituting
into Eq. (3) the asymptotic form of g~z '(r), namely

Pz+'(r)=Q ' [exp(ik. r)+r 'f(8')exp(ikr)]

where 0 is the volume. Subsequent summation over k
and spatially averaging over a window of a few wave-
lengths in size so as to eliminate Friedel oscillations'
leads to expression (6).

Further calculation is required to determine 5@(r) in
- the extreme far-field region where r & /. " No one has
yet succeeded in treating this problem fully, including the
combined effects of coherent and incoherent scattering
away from the impurity. However, for the case of an im-
purity in a bulk system, a semiclassical transport equa-
tion approach" for r ) l again leads to expression (6).
Fortunately, for the mesoscopic systems considered here,
solutions in the region r ) l are not required. In this
respect, a mesoscopic system is simpler than a bulklike
system.

Thus far we have considered the contribution to the lo-
cal field arising from the electron wind, i.e., from the in-
cident g& distribution. We now turn to the role played by
the field Ep at the impurity. We expect Ep to cause some
local polarization of the electron cloud around the impur-
ity, which will modify the local electric field in the vicini-
ty of the impurity. This represents a direct action by the
field Ep, rather than the indirect action of Ep via the es-
tablishment of gi, . Adopting terminology from elec-

tromigration theory, ' we refer to this as a direct-field
effect.

Landauer has described the role of the direct field in
terms of a carrier-density modulation effect. In its sim-
plest form, his idea is that the conduction-electron
screening cloud which surrounds an attractive impurity
in equilibrium (no transport) modulates the net conduc-
tivity of the background scattering by increasing the local
electron density. This results in a local increase in con-
ductivity, which in turn, results in a local decrease of the
E field so that current continuity through the impurity
potential be preserved. The net effect is an overall
correction to the impurity resistivity, or a deviation from
Mathiessen's rule. Note that the local field at the impuri-
ty due to the presence of Ep is on the order of Ep,
whereas the local fields associated with electron-wind
contributions in bulklike systems are usually much larger
than this. This is because wind contributions, being
linear in gi, are of order kblEo [see Eq. (1)], and for good
bulk conductors, kzl &) 1. In mesoscopic systems, on the
other hand, gz is in general no longer given by Eq. (1), so
that these estimates do not apply.

We now consider aspects of the theory of electromigra-
tion which relate to the problem under consideration. To
keep the discussion relatively simple, we describe the im-
purity within the point-core model. That is, the bare
potential V& is taken to be

Ze
Vb(r) =-

lr —rol
' (7)

where rp is the position of the impurity, and Z is the bare
valence. The total self-consistent screened potential in
the absence of transport is denoted by V(r), which for
later convenience we write in terms of an unknown func-
tion H (r, ro) as follows:

where EL (r) is the true local field at position r in the
presence of the impurity at rp. Since we are interested
only in transport fields and forces, F and EL refer to
quantities that are linear in the macroscopic field or
current. Note that the impurity is acting as a built-in
probe of the local electric field EL(r). It must be em-
phasized however that the field probed by the impurity is
the field that exists at the impurity in the presence of the
impurity. If we imagine that Z —+0, then of course the
impurity would measure the field Ep appropriate to the
system in the absence of the impurity. This follows from
the fact that EL (ro) =Eo+0 (Z). In this limit the impur-
ity is acting like the classical external charge probe

V(r)= —Ze H(r, ro)

The point-core model assumes that the core electrons are
confined to a region of dimensions much smaller than a
Fermi wavelength. In the case of hydrogen in those met-
als for which no bound states of hydrogen occur, the bare
potential (7) with Z = 1 is essentially exact.

The force, F(ro), exerted on an impurity ion at position
rp is given by the local electric field acting on the ion.
That is, '

F(r )=ZeE (r)l, (9)
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Q =Ze, where Q —+0, as envisioned in the operational
definition of the electric field in classical electrostatics.

Explicitly, the local electric field depends upon the net
electron density 5n(r) according to

EL(r)=Eo(r)+eV f 5n(r')d r'

fr —r'f
(10)

where the density integral follows from the operator
definition of the electric field. 5n(r) is the net perturbed
density, including wind, direct, and screening contribu-
tions. Combining Eqs. (9) and (10), and the definition (7),
we obtain

elements are b, V(q) =XV&„,(q)/s(q), where e(q) is the
dielectric function. The quantum-mechanical problem is
then solved to all orders in the screened elements 6V(q),
including multiple scattering between screened elements.
In this picture, the 'screening kernel K in Eqs. (16) and
(17) reduces to its linear-response form, namely

Kqq =[4'/q s(q)]5q . Using this Fourier-transform ex-
pression of the kernel in the evaluation of Eqs. (16) and
(17) yields

F (ro)= —f 5n (r) d r,
Bro

8Vb
F(ro)=ZeEo(ro) —f 5n(r) d r,

Bro
F&(ro)=ZeEo —f 5n~(r) d r,BV

Bro
(19)

5n(r)= V' 54&(r) .
1 2

4we
(14)

The use of Eqs. (13) and (14) in Eq. (11) yields the force
expression

F(ro)=F (ro)+Fz(ro)

where

8 V„(r)
F (ro)= f V,K(r, r')5n (r') d r d r' (16)

and

r, (ro) =ZeE,(r, )

avb(r)+ fV,K(r, r')5n~(r') d r d r' .

(17)

These force expressions can be simplified by making
use of the following reasonable scheme for the screening
response. Imagine breaking up V~„, into small elements
5V&„„and allow the electron gas to screen each element
independently. Thus the Fourier-transformed screened

which is recognized to be the quantum-mechanical expec-
tation value of the force operator in linear response.
That is, F(ro) = ( 4'~ —Mf/Bro~+ ) evaluated to first order
in Eo where

~
4 ) is the exact many-body nonequilibrium

state of the system, and & is the system Hamiltonian in-
cluding the interaction with the external field Eo.

The net perturbed electron density 5n(r) can be ex-
pressed as

5n(r) =5n„(r)+5nz(r)+5n, (r),
where 5n„and 5n& are the unscreened densities associat-
ed with wind and direct effects, and 5n, is the addition-
al electron screening density which is induced in response
to 5n +5n&. An expression for the self-consistent poten-
tial arising from 5n„+5n& follows from the extension of
Eq. (4) to include the 5nz contribution, viz. ,

54&(r) = —e fK(r, r')[5n (r')+5nz(r') jd r' .

The density 5n can then be determined from Eq. (13) and
the Poisson equation

where V is the screened response, and, for the point-core
model is given by Eq. (8) with H replaced by K in that
equation. Note, however, that expressions (18) and (19)
are valid for arbitrary impurity potentials within the
screening approximation scheme we have described.
Equation (18) has been the starting point for rather so-
phisticated wind-force calculations.

Equations (18) and (19) are very useful in that they al-
low the force (and the local field) to be calculated from an
assumed form for the equilibrium impurity-potential V
without the necessity of performing a full self-consistent-
screening calculation for 5n(r). The quantities to be cal-
culated are 5n (r) and 5nz(r), which are set up by expos-
ing the screened potential V to an incident electron
current g1, and a field Eo, respectively. Stated another
way, we can calculate the force by treating the electrons
as noninteracting among themselves but interacting with
the external field Eo, the screened potential V, and the
background scatterers. The problem has thus been re-
duced to independent-particle response. Of course, one
could have invoked an independent particle picture at the
outset, and, from it, attempt to deduce Eqs. (18) and (19).
In such a picture V is a prescribed potential seen by
noninteracting electrons, and the force on the impurity
due to the electron response is calculated by assuming
that the impurity is a rigid, neutral entity comprised of
the sources of V (core plus screening charges). In this
picture, 5n and Vb in Eq. (11) would be replaced by
(5n +5n~) and V, respectively, leading at once to Eqs.
(18) and (19). Note, however, that the external force con-
tribution ZeEo(ro) must remain as is in Eq. (11). The im-
purity must not be regarded as a rigid, neutral entity as
far as the external field Eo is concerned. Our detailed
self-consistent screening derivation of Eqs. (18) and (19)
shows that this is the case. Furthermore, by employing a
self-consistent screening approach, we have transcended
the independent-particle picture in that we are able to ob-
tain the true local electric field, E~. The latter is ob-
tained by dividing the force by Ze, according to Eq. (9).
Also, as we shall see, our approach leads to a clearer pic-
ture of the external field Eo. This will turn out to be a
crucial point in our treatment of mesoscopic systems.

The force due to the electron wind can also be evalu-
ated directly from the rate of momentum transfer by the
electrons to the impurity, ' viz. ,
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F (ro)= g fi(k —k')Pq„gi, ,
kk'

(20)

where Pzz. is the transitional probability (probability per
unit time) for an electron being scattered (elastically)
from state k to state k' by the impurity. The equivalence
of expressions (18) and (20) within an independent parti-
cle picture is obvious; these expressions are simply alter-
nate ways of calculating the expectation value of the
force operator (i/A')[p, H], where H=p /2m + V and p
is the electron momentum operator. We remark that ex-
pressions (18) and (20) are equivalent for an isolated im-
purity in a free electron gas. In more general cases, it
may not be possible to express the momentum transfer to
the impurity as in expression (20). This is the situation
when the electrons are not free or when more than one
impurity is involved in the scattering process. In such
cases, however, Eq. (18) remains valid.

The direct force on the impurity ion due to the exter-
nal field is denoted by Fd(ro) and can be written as

Fd(ro) ZdeEo(ro), (21)

where Zd is the effective valence for the direct
force, ' ' '' and Eo(ro) is the "external field" at the posi-
tion of the impurity ion. Here "external" means that the
field Eo(ro) arises from sources external to the impurity in
question, i.e., it is set up by-processes that occur in the
absence of the impurity at ro. Further care is required in
defining Eo(ro) when there is more than one impurity
present in the system. Consider a cluster of impurities,
and let the quantum-mechanical scattering states QI,+'(r)
pertain to scattering by the entire cluster. Now 6n (r)
calculated from Eq. (3), and screened via Eq. (4), contains
the sum of residual-resistivity-dipole fields [see expression
(6)] centered at each of the other impurities and acting on
the impurity in question at ro. Since this total field
represents a properly screened quantum-mechanical
response, it should not be included an additional time as
an external field. We conclude that, in the general case,
Eo(ro) is the electric field at ro due to all agents external
to the quantum-mechanical scattering problem which is
being considered for gI,+'(r). Thus Eo(ro) is the field that
exists when the potential of the impurity cluster is set to
zero. For impurities in a bulk system, Eo can be taken to
be the average or macroscopic field; but, for mesoscopic
systems this is not correct.

The existence of Zd has been a controversial issue in
electromigration theory. Bosvieux and Friedel+' (and
their followers ' ') argued that Zd=0, while others ' '
have argued that Zd=Z. However, as shown by Lan-
dauer in a semiclassical ana1ysis and by Rimbey and Sor-
bello' ' in a quantum-mechanical analysis, the value of
Zd depends on the details of the impurity potentia1 V. In
the weak-scattering limit, it is found that Zd =Z, or more
formally, Zd =Z+O(Z ). For a pseudopotential model
of a scatterer, it is presumably a good approximation to
invoke the weak-scattering limit and take Zd =Z. A gen-
eral quantum-mechanical expression for Zd in terms of
the one-electron Green function for a single impurity is
given in Ref. 14, along with a model calculation for hy-
drogen in metals. Values of Zd on the order of unity

were found. '

The additional resistivity 6p due to an impurity is ex-
pected to be related to the wind force since both quanti-
ties are a measure of the scattering cross section. To ex-
plore this relationship, we cast expression (20) in the form

AkF (ro) X gz
imp

where

(22)

—= g [1—cos(k, k')]Pi,z (23)
1IH p k'

To obtain Eq. (22), we have assumed that P&z. depends
only on the angle between k and k', as is the case for elas-
tic scattering by spherically symmetric impurity poten-
tials. It follows that the impurity-scattering relaxation
time ~; is independent of the k direction.

Performing the sum over k in Eq. (22) gives the Fiks-
Huntington ballistic expression

F (ro) =—mM(ro)
e +imp

(24)

where J(ro) is the electron-charge current density in-
cident upon the impurity. In the case of a bulk system,
J(ro)=Jo=Eo/po and, ignoring small corrections associ-
ated with deviations from Mathiessen's rule, 5p
=m /noe r; „. The wind-force expression (24) now be-
comes

F.Ib lk ~oe&~pJo (25a)

6p= —noes', Eo .
Po

(25b)

The volume factor 0 cancels in the final result because
6p~(~; ) 'oO

The wind-force expressions (25) are more general than
our derivation indicates. They hold, for example, in the
case of isotropic impurity scattering in a thin film having
specular surfaces if the background scattering process is
uniform. ' In fact, wind-force expressions similar to Eqs.
(25) hold for the case of an arbitrary scattering potential
(not necessarily spherically symmetric) immersed in a
medium described by uniform background scattering.
For this case, the generalization of Eq. (25b) is

5p Eo
F lb 1k oeII

Po
(26)

where 6p is the change in the resistivity tensor caused by
the introduction of the impurity. Equation (26) applies to
arbitrary "impurities" such as extended defects or impur-
ity clusters provided that F is understood to refer to the
net wind force on the defect or cluster. A derivation of
Eq. (26) based upon the Boltzmann equation is given in
the Appendix.

In obtaining Eqs. (25) and (26), we have implicitly ig-
nored the renormalization of electron density, velocity,
and density of states, as we11 as changes in the back-
ground scattering rate induced by the presence of a single
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impurity immersed in the electron gas. Such effects lead
to corrections in F that are higher order in (k~l) ', and
therefore need not be considered in calculations of F„,
but they are formally of the same order as Fd. In this
connection, we remark that in the literature ' ' there
are derivations of expressions for the total force F +Fd
which are identical to the expressions (25), which we have
derived for the wind force only. These derivations are
based upon momentum-balance arguments and appear to
be quite general. It is not clear, however, that all relevant
renormalization effects were incorporated in these papers.
Specifically, impurity-induced changes in the back-
ground-scattering rate were neglected in the derivations.
In any case, Eqs. (25) and (26) are valid expressions for
the wind force to leading order in (kr, l).

In the next section, we evaluate F„and Fd for specific
mesoscopic systems and investigate the connection be-
tween F and 6p. The results which we shall obtain
differ markedly from the results for bulk systems. This
difference arises for two reasons: First, g& is not equal to
the corresponding bulk expression (1); and second, the
field inhomogeneities are so great that the average macro-
scopic field is pot representative of the external field,
Eo(ro), acting on the impurity.

III. APPLICATION TO MESOSCOPIC SYSTEMS

A. One-dimensional disordered conductors

Consider a one-dimensional chain of potentials U,

representing a sequence of impurities in a one-
dimensional system at zero temperature. The total po-
tential has the form

V(z)= g v;(z —z;),

g„=b p6(k)5(E„—c. ), (28)

where 6(k) is the unit step function, i.e., 6(k)=1 for
k ~0 and equals zero for k (0. A positive (negative)
value of k refers to electrons travelling to the right (left).
The incident electrons in gk are rejected or transmitted

where z, is the position of the ith impurity. We shall take
the impurity potentials to be localized and nonoverlap-
ping so that V =0 regions exist between impurities.

We consider the Landauer configuration, ' where
reservoirs acting as sources and sinks of electrons are at-
tached to the ends of the chain. The length of the chain
is L, and we assume that L && l, where l is the mean free
path for background scattering and other inelastic pro-
cesses. We can therefore totally neglect all scattering
processes other than the elastic electron-impurity scatter-
ing due to V(x). This greatly simplifies the conductivity
and electromigration problems.

Let the chemical potentials of the reservoirs be p& and
pz on the left- and right-hand ends of the chain, respec-
tively. Since we are concerned with linear response, we
take Ap:—p&

—
p2 to be arbitrarily small and positive.

The reservoirs give rise to an incident distribution of elec-
trons gk where for each electron spin

by the impurity chain, with probabilities R and T, respec-
tively.

Calculation of the potential drop across the chain, us-
ing the one-dimensional forms of Eqs. (3) and (5) gives for
the left- minus right-potential difference

5+L —5N& = —ApR /e, (29)

where we used the one-dimensional density of states
dnldE =2/nkvt;, including both spins. To obtain Eq.
(29), we evaluated 5n (z) as an average of expression (3)
over a window a few wavelengths in width. The effect of
this is to eliminate cross terms in 5n (z) due to the
exp(+ikz) components of P'i,

+ '(z). This procedure is
justified in the conductivity problem, where we are in-
terested in a local average field, i.e., we want the per-
sistent part of M&(r) and not the Friedel oscillations.
This procedure is also consistent with the use of Eq. (5)
rather than Eq. (4).

The net transmitted particle current j, is given by

1 Ap

k

(30)

~A' R
p (32)

The Landauer formula is appropriate when the voltage
probes measure the self-consistent potential 5@(z) across
the sample. ' ' In the experimental configurations thus
far achieved, this is apparently not the case. Rather, it
has been argued' that in a standard two-probe mea-
surement between voltage pads, the relevant quantity is
the chemical potential difference Ap of the pads and not
the electrostatic potential difference across the disordered
region. In this case, the new resistivity p, which includes
the contact resistances at the conductor-reservoir inter-
faces, is given by'

(Ap/e)/L ~—A 1
p —ej, Lq2 T (33)

Now consider the electromigration force F' on the ith
impurity in the chain, which we write as the sum of
direct and wind forces, i.e., F'=Fd+F„'. According to
our discussion after Eq. (21) it follows that the external
field Eo(z, ) vanishes. Consequently, by Eq. (21),

Ed=0 . (34)

The vanishing of the direct force means that the im-
purity senses only the wind force. The latter is now eval-
uated from the momentum Aux on the ith impurity. Con-
sider an electron incident onto the chain in state k, and
let aL+(k) and aL (k) be the plane-wave amplitudes for
the electron scattering state immediately to the left of the

The resistivity p of the chain equals the average field
divided by the charge current, i.e.,

—(5&L —54~ )/L
p (31)

Cjt

which, after substitution of expressions (29) and (30),
gives the celebrated Landauer formula
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—/a+(k)/ —/a„(k)/ j . (35)

Expression (35) can also be obtained from Eq. (18), rather
than by the present momentum-transfer analysis.

The wind force I'' bears no direct relationship to the
additional resistivity due to the ith impurity. However,
the total force on the impurities is related to the total
resistivity. To see this, use the global form of Eq. (35) for
the entire system, in which case, the factor in parentheses
in Eq. (35) equals 2R /L, and we obtain

2kF~P
(36)

where F"'=g, F' .

Upon comparing Eqs. (29) and (36) we deduce that

2ekFF"'=— (5@L—M&~ ) .
7j

(37)

Thus, the total electromigration driving force directly
measures the self-consistent potential drop across the
conductor. We can recast Eq. (37) in terms of the Lan-
dauer resistivity (32). By inspection, we have

I '"=—n eLpJ

where n02k~/ iisrthe equilibrium 1D carrier density
and J0= —ej, is the charge current. Note the striking
similarity between Eq. (38) and the result (25a) for a bulk
system. In the case of a single impurity between reser-
voirs, F"' is the wind force on the impurity, and p be-
comes the additional resistivity due to that impurity.
Then Eq. (38) becomes the 1D form of Eq. (25a), despite
the fact that Eq. (25a) refers to a bulk system dominated
by background scattering.

B. Impurity layer between reservoirs

We now consider the mesoscopic system consisting of a
layer of impurities sandwiched between two reservoirs.
The impurity layer is modeled within a jellium picture as
a uniform slab bounded by the surfaces z =+I/2. This
model can also be applied to the description of a grain
boundary within a jellium picture. Admittedly, the
model is rather crude in that it neglects the discrete
structure of the impurity atoms (or the grain boundary,
in the second application). Nonetheless, it offers some
valuable insights into the conduction-electromigration
problem.

The Landauer configuration of Sec. IIIA is again as-

impurity. Specifically, aL and aL are the coefficients of
the exp(ikz) and exp( —ikz) components, respectively, of
itj'k+'(z). Similarly, define a~+(k) and a~ (k) just to the
right of the impurity. For a given incident k, the
momentum/sec transferred to the impurity is found by
calculating the product of the number of electrons/sec in-
cident onto the impurity and the momentum carried per
electron. The result is then summed over L,R, and
+, —,taking into account direction of momentum Aux.
Finally a sum over k is performed. The result is

F' = ggkmUI, [lal+(k)~ + ~aL (k)~
k

sumed, with the reservoirs having chemical potential p,
and p2 lying at z & L /2 and z )L /2, respectively. As be-
fore, L is much less than the mean free path due to back-
ground scatterers. In previous work on the conductivity
of such systems a multichannel Landauer formula was
employed. Here we approach the problem more directly,
by means of the general framework described in Sec. II
and Sec. III A. The major difference between the present
system and that of Sec. III A is the three-dimensional na-
ture of the distribution of electrons emitted by the reser-
voirs. In place of Eq. (28), we now have

gk=bpe(k, )5(Ek —EF) . (39)

Since the scattering potential in the system is indepen-
dent of x and y, and vanishes for ~z~ )d/2, the scattering
properties can be specified in terms of reAection and
transmission coefficients, R (8) and T(8), respectively,
where H=cos '(k, /kF) is the angle of incidence, and
R (8)+T(8)= 1. For k, )0, the scattering states outside
the impurity layer have the form

P„'+'(r)=, [e'""+r(8)e'" '] z & ——

d
~1/2

t(8)e'"' z )— (40)

where ~r(8)~ =R (8), ~t(8)~ =T(8), and k* =(k, k»,—k, ). For k, &0, the two forms in Eq. (40) switch
domains.

The potential drop across the impurity slab can be
found from Eqs. (3), (5), (39), and (40). Again, as dis-
cussed in connection with Eq. (29), we discard the
Friedel-oscillation terms in gz+'(r) ~, and obtain

541 —54~ = — f d cosHR(8) .hp, (41)

1

2g f d cosHR (8)
2 2 f d cosHcosHT(8)

0

(43)

The resistivity corresponding to expression (33), with the
voltage reckoned with respect to the chemical-potential
difference of the reservoirs, is

2m A' 1

f d cosHcosHT(8)
(44)

We now consider the net electromigration force on the
impurity layer. Although electrornigration of the layer

The net transmitted particle current density j, is given
by

1

k

APkF=z f d cosHcosHT(8) .
2~'fi

The resistivity p due to the impurity slab is found from
Eqs. (31), (41), and (42). The resulting generalization of
the Landauer formula (32) is
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Pki, . = vFcosO[R (O)5„,„,+ T(O)5k i,],0 7

where 2 is the area of the impurity layer. This leads to

kF~P 1F =z f d cosO cos OR (O) . (46)

Because of the different cosO weight factors in the in-
tegrands of expressions (41) and (46), there is no longer
any direct connection between F„and 6+I —6Nz. Con-
trary to the results for the bulk and 1D systems, i.e., Eqs.
(25a) and (38), respectively, F is not proportional to the
product of J0 and the impurity resistivity.

We now turn to the problem of an impurity layer in a
bulk system which is dominated by uniform background
scattering. Using expression (1) for gk, we find that for
this case, Eqs. (41) and (46) are replaced by

1

54&~ —5@~= 2rvFEO f—d cosOcosOR(O) (47a)
0

and

2 AkF e~UFE0F =z f d cosOcos OR(O),
~2 0

(47b)

respectively, where we have chosen E0 along the negative
z direction. The voltage drop (47a) occurs in the immedi-
ate vicinity of the impurity layer (within an electron
screening length). Recently, Kirtley, Washburn, and Bra-
dy~' have made scanning-tunneling-microscope (STM)
measurements across a grain boundary in a current-
carrying film. From their measurements they deduce
that the local potential 54(r) does drop in the immediate
vicinity of a grain boundary. Such behavior in M&(r) is
consistent with our analysis and with earlier work by
Landauer. ' ' ' We caution, however, that it has yet
to be demonstrated that STM measurements provide a
direct measurement of 54(r).

An interesting feature of the problem of a smooth im-
purity layer in bulk is that the extra voltage caused by the
introduction of the layer is not totally localized at the
layer. There is an additional voltage which is caused by
the injection of the scattered electrons from the layer into
the resistive background medium. The corresponding ad-
ditional potential builds up over a length scale on the or-
der of a mean free path, l, on either side of the layer. In
the terminology of residual resistivity dipoles, " the
close-in dipole has a different strength than the far-field
dipole. A similar result was obtained for an impurity in a
thin film. ' Following the analysis of Ref. 17, it is easy to
show that the total far-field potential drop across the bar-
rier is given by

involves the motion of individual atoms within the layer,
we treat the layer as a single impurity entity. From the
discussion following Eq. (21), it follows that the external
field at the layer vanishes. Consequently, we again find

Fd=0 .

The net wind force on the layer can be calculated from
Eq. (20), using the explicit form of Pki, for the layer,
namely,

1

(54L —5@&)„,= 6—rv~Eo d cosO cos OR(0) .
0

(47c)

C. Impurity near a point contact

Consider the standard theoretical model of a point con'-

tact as a circular aperture, of radius a, on an opaque
plane, z =0, which separates two halves of an electron
gas. A negative potential difference —40, is applied
across the contact from the left-hand side (z (0) to the
right-hand side (z & 0). This raises the Fermi level of the
electron gas on the left-hand side by an amount Ap =e +0
with respect to the Fermi level on the right-hand side,
thereby causing a net Bow of electrons through the aper-
ture, from left to right. The spreading of electrons as
they emerge from the aperture gives rise to local varia-
tions in the electron density, current, and potential.

The aperture acts as a bottleneck to electron Aow, and
gives rise to the so-called "spreading resistance" or Shar-
vin resistance for a point contact, namely

The close-in potential drop (47a) is essentially complete
within an electron screening length of the layer, while the
asymptotic drop (47c) is essentially complete within a
mean free path of the layer. Superimposed on this local
potential field is the linear potential —r.E0 due to the
uniform background field. The extra resistance due to
the impurity layer arises from the extra potential drop
(47c) measured across the sample. For the case of weak
scattering [R (O)((1], the Boltzmann equation analysis
of the Appendix applies. We would therefore expect that
the extra resistivity arising from the layer is related to the
wind force [Eq. (47b)] according to Eq. (26). This expec-
tation is readily verifiable from Eqs. (47b) and (47c). We
emphasize that the resistivity of a bulk system containing
a weakly-scattering impurity layer is not equal to the sum
of the background resistivity and the Landauer resistivity
associated with the close in volt-age drop, Eq. (47a). This
Landauer resistivity is given by expression (43) with an
additional factor of cosO appearing in the integrands due
to the bulk form of gk appropriate to this system. The
lack of additivity of close-in Landauer resistivity and
background resistivity is contrary to the result for one-
dimensional systems.

If we were to consider an atomistic model for an im-
purity layer, rather than a smooth barrier-potential mod-
el, the potential would be quite different. In a simple
model consisting of dilute scatterers randomly distributed
within a layer, we ignore multiple scattering within the
layer. The resulting 54(r) equals the sum of dipole fields
of the form (6) centered at each impurity. The random
arrangement produces an average field which is charac-
teristic of a localized dipole sheet. However, unlike the
case for the smooth-layer model, there is no crossover to
another value of the potential at distances on the order of
a mean free path from the layer. (The close-in and far-
field dipole strengths are identical. ) For a physical im-

-purity layer or grain boundary we would expect both
specular and atomistic scattering features to be present.
The specular, or smooth-layer model, is most applicable
to ordered impurity layers; the atomistic model is most
applicable to very disordered layers.
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4~%
Sharvin

e kFa
(48)

M& (
—r)= —5N (r).

The loca1 charge-current density at point r is given by

Equation (48) holds in the regime where background
scattering is negligible and the aperture diameter is sub-
stantially greater than an electron wavelength, so that
wave-diffraction effects at the aperture can be neglected.
We shall also restrict our analysis to this regime. By
neglecting quantum-mechanical diffraction and interfer-
ence effects, we shall be excluding from our considera-
tions the recently observed phenomenon of conductance
quantization at point contacts. Such effects are con-
tained in our approach through the presence of the exact
scattering wave functions 1t&+'(r) in expression (3) for
6n (r) Ca. lculation of these wave functions for small
apertures is a dificult task, and will be considered in a fu-
ture study. Here we restrict attention to the case of
apertures much larger than the electron wavelength, so
that the waves incident upon an impurity near the axis of
the aperture can be approximated by plane waves.

To apply the method of Sec. II, we need the electron
distribution function. For definiteness, consider a point r
in the z &0 region. There is an excess distribution of
electrons at this point gk(r) over and beyond the equilib-
rium distribution that would exist in the z )0 region if
no aperture were present. The excess is due to the addi-
tional electrons from the z &0 region that can reach
point r by propagating ballistically through the aperture.
(Recall that we are in the regime where wave diFraction
and background scattering are neglected. ) Thus,

gk(r) = b,p5(sk —sF ) for k & Q0(r), (49)

where A0(r) is the solid angle defined by the sheaf of all
straight-line trajectories emerging from the point r after
having come through the aperture. [When r is on the
axis of the aperture, Q0(r) =2~(1—z/+a +z ).]

The unscreened local electron pileup due to gk(r) is
denoted by 5n (r), the superscript zero indicating that
the perturbation is for the pure contact, without any im-
purity. Evidently,

p 1 dn &0(r)
5n (r)= —ggk(r)=by

k dE 4w
(50)

The perturbed electrostatic potential due to 5n (r) is
denoted by 54 (r), and, from Eqs. (5) and (50), we have

M& (r)=- 00(r)
(51)

e 4n.

fl0(r)
5%„„(r)= 1— (52)

2e 2&

where 6+„, is the total self-consistent potential for z &0.
The z (0 potential follows from the symmetry relation

Since expression (51) represents the excess potential over
the background averaged potential in the z )0 region,
the total potential for z &0 is obtained by adding to ex-
pression (51) the applied potential, which we choose to
have the odd-parity form, namely —,'40sgn(z). Thus we
rederive the standard result

J(r) = ——g gk(r)vk,
k

(53)

which yields, after substitution of expression (49), the re-
sult

eAPkFJ(r)= —— I dQkk .
4m A " o" (54)

Evaluation of the net charge current I through the aper-
ture using Eq. (54) gives I =eh@a kF/4mb. The Sharvin
resistance (48) immediately follows from R =N0/I.

We now consider the effects of an impurity at position
rp near the point contact. The two quantities of experi-
mental interest are the resistivity change 6R and the elec-
tromigration force F.

To determine 6R we need to And the change in the
electron charge current 6I caused by the impurity. 6I is
due to those electrons in the distribution gk(r0) that are
backscattered through the aperture. Using the conven-
tion that 6I is positive if it is in the same direction as the
original current I, we find

gk(ro)~kk'
kk'

k E+o(ro]

(55)

where 00(r0)=00( —r0) is the solid angle subtended by
the aperture when viewed from the impurity at rp. Thus
only final states k' headed in the direction of the aperture
are included in Eq. (55). Using the explicit form of Pkk,
in terms of the T matrix for impurity scattering, namely:

kk (56)

we can write Eq. (22) in the form

0
&I = — dS„„dS„,I T„„,I',

16~ g U
" o[ o k'&n*(r )F o o

(57)

5R = —(M/@0)R s„„„„. (58)

The electromigration force on the impurity contains
the direct-force contribution of Eq. (21), namely:

Fd =Zde[ —VM&„,(r)], (59)

Since Eq. (52) implies that the potential drop —C&0 occurs
over a distance on the order of 2a across the aperture, the
direct force is on the order of

c'o
F„=-Z„e z

2Q

for an impurity within a distance on the order of a from
the aperture.

The wind force on the impurity follows from momen-

where the integrations are on the Fermi surface
(Ikl =lk'I =k~). The impurity causes the point-contact
resistance to increase by the amount
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turn transfer expression (20), which leads to

ApAF (rp) =
16m R UF

(61)

Zd =Z and the calculated value of K for aluminum from
Ref. 5, we find that Eq. (65) gives Fd- —'F—for self-

electromigration in aluminum when a =14 A. This is in
marked contrast to the case of bulk free-electronlike met-
als where

(62)

where Oo=cos '[zo/(a +zo)' ] is the half-angle sub-
tended by the aperture. Thus for zo ))a, F (zo)/~5I~ in-
creases as (zo/a) . We remark that for isotropic scatter-
ers, F is proportional to 6I even in the off-axis case.

The wind force can also be expressed in terms of the lo-
cal current density J(ro) incident upon the impurity. The
derivation leading to Eq. (24) also holds for the point-
contact system. Thus,

—m QJ(ro)
F (ro)=-

e ( +imp )bupc
(63)

where J is given Eq. (54) and (r; )b„i„ is the relaxation
time for impurity scattering in bulk, and is given by Eq.
(23).

Equation (63) shows that the wind-force scales with
current density just as for the bulk system. When an im-
purity is very near the aperture, therefore, the actual
current density at the aperture is the relevant quantity,
and we can estimate the wind force as

F =K I
ma

(64)

where E =F ~b„ik/Jb„i„. The approximation (64) is ex-
cellent for an impurity in the aperture (z =0).

Because of the huge current densities that can be sup-
ported at a point contact, the wind force can be several
orders of magnitude greater than in the bulk case. For a
small aperture, the direct force is even more greatly
enhanced with respect to bulk values because the external
electric field Eo at the aperture is proportional to current
density and inversely proportional to a. Using Eqs. (60)
and (64), we can estimate the relative importance of these
forces. We find

Zde

e'k'a

where we have used @O=IRsb„„;„and expression (48).
Note that, in principle, ~Fd~)F is possible when a is
sufficiently small (provided that kFa ))1 so as not to con-
tradict our neglect of diffraction at the aperture). Using

where the surface integrals are on the Fermi surface.
Note that electron scattering to all final states k' contrib-
utes to F, whereas, according to Eq. (57), only the scat-
tered electrons heading back toward the aperture contrib-
ute to oI. Consequently, ~5I~ decreases more rapidly
than F„as the impurity moves away from the aperture.
In particular, we find that for isotropic scattering
(Tkk =const) by an impurity at position zo on the axis of
the aperture, Eqs. (57) and (61) imply that

F (zo) kF sin 00

(1 —cosoo)

bulk

Zdepo

K
(66)

Calculation of electrical conductivity and electromigra-
tion forces in mesoscopic systems is tractable within the
common framework of the local-field method, which
derives from basic ideas contained in Landauer's 1957 pa-
per, and which is described in Sec. II. The problem is
simplified considerably for the mesoscopic systems con-
sidered in Sec. III because of the absence of background
scattering and the choice of the Landauer reservoir
configuration. ' For such systems, the basic expres-
sions of Sec. II are, in retrospect, relatively transparent.
In particular, one need not resort to Kubo formulas, den-
sity matrices, etc. , to establish them. Of course, the eval-
uation of the direct-field quantity Zd [or in general
5nd(r)] does require more sophisticated approaches than
discussed here; these have been given elsewhere. ' '

In this paper we have delved further into the self-
consistent-screening aspects of the conductivity/
electromigration problem and have shown that under an
approximation on the screening-response kernel K in Eq.
(4), one can establish the very useful force expressions
(18) and (19). We remark that the treatment of self-
consistent screening based on Eq. (5) is equivalent to the
approach used in multichannel theories, where the po-
tential is deduced from the local chemical potentials for
incoming and outgoing channels. Equation (4) is more
rigorous, however, and it yields the true local potential
field including Friedel oscillations and the effects of local
inhomogeneities to all orders in the impurity potential.

The relationship (26) between the wind force and the
resistivity change for arbitrary scattering complexes im-
mersed in a bulklike medium is a generalization of ex-
pression (25a). The derivation in the Appendix makes it
clear that the validity of Eq. (26) hinges upon the domi-
nance of uniform background scattering, so that the bulk
distribution function (1) can be taken as incident upon
the scattering complex. If the background scattering
processes were anisotropic, resulting in a k-dependent re-
laxation time in Eq. (1), the connection between F and
5p would be broken.

In mesoscopic systems there is, in general, no immedi-
ate connection between the electromigration force on an
impurity and the resistivity change due to the impurity.
However, for the 1D disordered conductor, the total elec-
tromigration force on the entire impurity chain is given
by F"'= noeLpJO, accor—ding to Eq. (38). Thus, F'" is
a measure of the Landauer resistivity p rather than the

Evaluation of this expression using values appropriate to
nearly-free-electron conductors yields ~iFd ~

values which
are typically much smaller than F values even at high
temperature.

IV. DISCUSSION
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resistivity p' of Eq. (33). On comparing Eqs. (29) and
(36), we deduce that F"' is a direct probe of the total
self-consistent potential drop across the disordered re-
gion.

In the point-contact system, the wind force F, and the
additional resistance M due to an impurity in the system
are both a measure of the impurity-scattering T matrix,
as can be seen by comparing Eq. (61) with Eqs. (57) and
(58). F and M involve different weight factors over
scattering direction, with 5R being more sensitive than
F to backscattering. However, for isotropic (s-wave)
scatterers, F„ is proportional to 6R, as can be seen from
Eq. (61) and Eqs. (57) and (58).

In our treatment of the direct force we have been care-
ful to define the external field Eo(ro) which appears in Eq.
(21). In the general case of an impurity cluster of size
much less than the background mean free path, Eo(ro) is
the field which would exist at ro in the absence of the im-

purity cluster. For the 1D disordered system of Sec.
III A and the impurity-layer system of Sec. III B, there is
no background scattering; the only scattering arises from
the impurity cluster. Consequently, both Eo and 6nd
vanish, and along with them, the direct force.

Our treatment of the direct field suggests a paradox.
Consider a single impurity placed at ro in a bulk medium
where the background scattering is not truly uniform, but
rather, arises from a random distribution of N; impurities
per unit volume. If one regards the system as a giant
cluster of N;0+1 impurities, one is tempted to argue
that even for this case, Eo(ro) vanishes and there is no
direct force. In a technical sense, this is correct, but in
this picture the resulting electron-wind problem is in-
tractable, i.e., it would require solution of the quantum-
mechanical multiple-scattering problem for N, 0+1 im-
purities. It is more reasonable to employ the standard
picture, which regards all other impurities as comprising
a uniform-scattering background and which treats the
scattering problem of a single impurity immersed in the
background and exposed to (gk)b„,„ofEq. (1). From this
viewpoint, Eo(ro) does exist, and the direct force is non-
vanishing. To resolve the apparent paradox concerning
the existence of Eo(ro), note that an electron-wind contri-
bution corresponding to Eo(ro) is contained in the giant-
cluster approach. Eo(ro) is effectively setup by the elec-
tron waves that are scattered by the background impuri-
ties, giving rise to dipole fields of the form (6) centered at
each impurity. The volume average of these dipole fields
is Eo(ro). Thus, for this example, depending on whether
one considers background scattering in the usual macro-
scopic view, or in a (hopelessly) detailed microscopic
view, the direct force does or does not exist. . In the latter
case, the direct force has been transformed into a wind-
force contribution. This chameleonlike behavior of the
direct force and wind force, along with their associated
fields, is a fundamental aspect of electron transport in
impurity-dominated bulk systems which has been unack-
nowledged in previous studies. An understanding of this
point requires a local-field description of the system; it is
totally missed in the conventional independent-particle
picture, even if the Kubo formalism is invoked.

With regard to the discussion in Sec. I concerning the
Kubo formalism versus the local-field method, we point
out that an uncritical application of the Kubo linear-
response theory based upon the existence of a uniform
external field E„,fails to give the correct local field in the
case of the mesoscopic systems described in Sec. IIIA
and III B. Within such a linear-response theory, the local
field is obtained from Eq. (10) with Eo replaced by E,„,.
The result is

EL(ro)=E,„,—J6n(r)V, u(r)d r

(( V,, ; )) E,„,=E„,—lim (67)
co—+0 l CO

where we have defined u(r)=e/~r —ro~. In the second
line, the double angular bracket denotes the usual Kubo
correlation function, which results here from processing
5n(r) within Kubo formalism. ' ' If we now identify
E„, to be the external field associated with the voltage
drop bp/e between the reservoirs which are at the ends
of our mesoscopic system, we would set E„,=hp/eL.
The calculated local electric field of Eq. (67) now errone-
ously contains a uniform contribution from this E„„
leading to an erroneous direct force ZdeE„, . In reality,
for these systems there is no external field, and no direct
force. In fact, for 1D mesoscopic systems, the 1ocal elec-
tric field between scatterers vanishes when averaged over
a few wavelengths so as to wash out Friedel oscillations.

A number of points should be made concerning the
possible use of electromigration as a practical probe of
the local transport field in mesoscopic systems. First, the
electromigration driving force measures the local field at
the impurity in the presence of that impurity. Hence,
electromigration is not an ideal, noninvasive probe of the
pre-existing transport field. Second, there exists at least
one other probe, namely, the STM, which can be applied
to mesoscopic systems. This has been demonstrated by
Kirtley, Washburn, Brady, ' but further work is needed
to establish the usefulness of the STM as a probe of the
local transport field. Third, low temperatures are re-
quired in studies of most mesoscopic systems to ensure
that the inelastic mean free path is greater than the
length of the sample. (The impurity layer and point-
contact systems are exceptions. ) At these low tempera-
tures, atomic diffusion is extremely slow, and therefore,
electromigration is extremely difficult to observe. Final-
ly, electromigration experiments may be difIicult to inter-
pret. Inferring the strength of the electromigration driv-
ing force from the measured migration rates, and com-
paring with theory, requires some knowledge of the
diffusion kinetics and structural inhomogeneities which
inAuence them.

Despite the aforementioned difficulties in using elec-
tromigration as a practical probe of the local transport
field, experimental studies of electromigration in mesos-
copic systems would be interesting in their own right.
Perhaps the most interesting of the mesoscopic. systems,
as far as electromigration experiments are concerned, is
the point-contact system. Our analysis of Sec. III C
shows that the wind force can be greatly enhanced in this
system due to the very high current densities which can
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be made to Aow through the contact. We also found that
the direct force can be enhanced by an even greater
amount when the contact radius, a, is sufticiently small.
In the case of aluminum, the magnitude of the direct
force is approxim'ately 50% of the magnitude of the wind
force when a =14 A. This suggests that point contacts
may be an effective probe of the most controversial and
fundamental aspect of electromigration theory, namely:
the direct force. Recent experiments suggest that elec-
tromigration through a point contact in a metallic mi-
crostructure has been observed.¹teAdded. Equations (18) and (19) are more general
than our derivation in Sec. II indicates, and, in fact, can
be derived from Eqs. (16) and (17) without making any
approximations to the kernel K or the screened potential
V. [R. S. Sorbello (unpublished). ]

5gk — r X (gk gk )Pkk
k'

(A2)

where gk= —revk. Ep5(sk EF), and r =gkPkk,0 —1 p

which is the scattering rate associated with background
scattering. 5gk gives rise to a current change 6J, where

»; = „X5gk(vk);
k'

(A3)

The corresponding change in the conductivity tensor o. is
defined via

smaller than Pp ~ We can easily solve for gk in this
P((Pp limit by writing gk=gk+5gk, where gk is the
solution appropriate to background scattering only, and
5gk is first order in P. We find that
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APPENDIX: DERIVATION OF EQ. (26)

The expression (26) relating wind force and impurity
resistivity for a bulklike system can be derived from the
Boltzmann equation

k Ep5( Ek EF ) g (gk gk )( kk' '+Pkk' )
k'

(A 1)

where Pkk is, as before, the transitional probability ap-
propriate to a general scattering potential V, and Pkk. is
the transitional probability for the background scatter-
ing, which is assumed to be isotropic (independent of the
directions of k and k').

For a single impurity, or for an extremely dilute con-
centration of impurities, we can regard P to be much

Substitution of (A2) into (A3), and subsequent compar-
ison with (A4) leads to

7 e
5rr, = —"g(vk —vk. )J(vk);Pkk 5(sk —eF) .

kk'
(A5)

Comparing (A5) and (A6), and using the Onsager symme-
try relation 60; =50. ;, we find

50.,(F );=npeQ g Ep (A7)
Op

where op=npe r/rn. Since we are effectively assuming
one impurity per unit volume, 5o.;. &&op, and we can
then take 5o; /rrp= —5p; /pp in (A7), thereby obtaining
Eq. (26).

Now the ith component of the wind force of Eq. (20) is

(F );= g g@k—k');Pkk't: —«(vk), Ep, 5(sk —sF)1.
j kk'

(A6)
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