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Universality classes of the 8 and 8' points
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We address the problem of obtaining reliable statistical information on two tricritical points of
recent interest, the 0 point (conventionally modeled by the self-avoiding walk with nearest-neighbor
attractive interactions) and the 0' point (the self-avoiding walk with nearest-neighbor interactions
and a subset of the next-nearest-neighbor interactions). Specifically, we show how two very special
walk algorithms can provide sufficient statistical information to elucidate fully the multicritical
properties. We carry out a Monte Carlo calculation of the exponents at the 0 and 0' points using

these special walk algorithms. We also examine the crossover behavior along a critical surface that
contains both points. Our numerical results suggest that the universality class is changing continu-

ously along this critical surface, so that the 0 and 0' points belong to distinct universality classes.

I. INTRODUCTION

The self-avoiding walk (SAW) is known to describe the
critical properties of a long linear polymer in a good sol-
vent, where interactions between segments of the polymer
are negligible and the excluded volume repulsion is the
dominant constraint. ' As the temperature T is lowered,
the attractive interactions between monomers become
comparable to kT and as T reaches a special temperature
0, the linear polymer undergoes an abrupt change from
the expanded conformation for T ) 0 to a fully compact
conformation for T (0. Exactly at T=0 the chain takes
on a well-defined conformation intermediate between the
conformations above and below 0. The point T=0 is a
tricritical point, termed the 0 point.

The properties of such a tricritical point are quantified
in the following by three exponents v, y, and P.

(i) The correlation length exponent v is defined by

(RN)-N ",
where ((R~))' is the rms end-to-end distance of a po-
lymer composed of N monomers.

(ii) If we represent the linear polymer by an ¹tep
nonintersecting random walk on a lattice with coordina-
tion number q, then we define the enhancement factor ex-
ponent y by

C~-p N~

where Cz is the number of nonintersecting random walks

of N steps, and the connective constant p plays the role of
an effective coordination number (p ( q

—I ).
(iii) The crossover exponent P is defined by the

tricritical-point scaling relation

(R~) -N "f(rN~),

where f is a scaling function and r:(T—0) IO. —

II. MODELING INTERACTING POLYMERS

We model the polymer conformations near the 0 point
for dimension d =2 with the configurations of noninter-
secting random walks. The relations given in Eqs. (l) —(3)
are defined asymptotically as N~ ~. We would there-
fore like to study the configurational properties of very
long walks. However, the number of distinct
configurations increases rapidly with N. Because of the
quantity of computer time required, exact enumeration
algorithms to generate and catalog all configurations by
computer have been limited to very short walks (e.g. ,

N ~42 on the honeycomb lattice ). We will therefore em-

ploy a Monte Carlo approach, in which we randomly
select a representative sample from the set of all walk
configurations. As this random subset becomes larger,
the statistical error implicit in this method becomes
smaller. We will focus on three algorithms, termed
SAW, SKW, and KGW (to be defined below); first we dis-
cuss (a) straightforward sampling and later we discuss (b)
importance sampling.

(a) Straightforward sampling SAW configuratio. ns may
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be generated by computer with a very simple algorithm
which achieves straightforward sampling of
configurations from the set of all nonintersecting random
walks. One simply launches a random walker on a lattice
and, for each successive step, randomly chooses one of
the available forward directions. The probability associ-
ated with each step is therefore 1/(q —1). The probabili-
ty associated with generating a given configuration, c, of
N steps, Pz (c), is the product of these single-step prob-
abilities,

(c)=(1/q) Q
1

2 q
—1

(4)

where the second equality applies to the honeycomb lat-
tice. The walk is terminated whenever the walker en-
counters a portion of itself, and thus violates the self-
avoiding condition. Since all steps are taken with equal
probability, all walks of N steps have the same total prob-
ability of being generated, regardless of their particular
configuration. This simple algorithm therefore realizes
straightforward sampling of nonintersecting random
walks since configurations are selected without bias.

We now connect the probability for generating walk
configurations in the above algorithm with the probability
with which polymer configurations occur. The probabili-
ty of observing a polymer chain to have a configuration c
is proportional to a Boltzmann factor, exp[ E(c)/kT—],
where E(c) is the energy associated with c. We must
therefore decide how to assign the energy E(c) to the
configuration c. There are two contributions to E(c): (i)
The contribution due to excluded volume (the hard-core
repulsion of chain segments) requires that a configuration
which is not self-avoiding should have an infinite energy,
and thus occur with zero probability; this is accounted
for by considering only self-avoiding configurations; (ii)
the contribution due to the effect of attractIUe van der
Waals forces between monomers is reflected in the assign-
ment of an energy Jzz (0 to each nearest-neighbor (NN)
contact in the chain and neglecting all longer-range in-
teractions. If there are N~z such NN contacts in
configuration c, then E(c)=N&&J&z. The Boltzmann
factor for this configuration is, therefore,

exp[ E(c ) /k T ]= ex—p[ —Xzz J~~ /k T ] . (5)

Since the Boltzmann factor in (5) is proportional to the
probability of observing a polymer chain in the
configuration c, then all configurations would occur with
the same probability if J].~ /kT =0.

The SAW algorithm described above has been used to
obtain an ensemble of configurations suitable for model-
ling linear polymers: The self-avoiding property of the
SAW's mimics the excluded volume effect, and the value
of N~~ for each SAW configuration can be calculated
and used to evaluate E(c). In the limit kT » J~~, or

J~~/kT~O (SAW),

the condition needed for the monomer-monomer attrac-
tive interactions to be sufficiently significant to approxi-
mately balance the effective repulsion due to the excluded
volume. Hence, lower-energy configurations with many
NN contacts are expected to contribute most to the prop-
erties of the 0 point. However, the SAW algorithm is
found to produce very few configurations with any
significant number of NN contacts. The reason is that
when such a NN contact occurs, 1/(q —1) of the walks
terminate due to self-intersection on the next step. As a
result, to obtain accurate statistical information for a po-
lymer chain when T-O, enormous numbers of SAW's
must be generated. Furthermore, the probability of pro-
ducing a SAW of length N decreases exponentially with
N. Hence enormous numbers of walk "attempts" must
be made to obtain a statistical1y useful set of long walks
(i.e. , X) 50). We conclude, therefore, that straightfor-
ward sampling of walks with the SAW algorithm is not a
very efficient way to simulate 0 point polymers.

(b) Importance sampling. We would prefer to have a
walk generation algorithm which does not suffer from the
high attrition rate of the SAW algorithm. We would also
like to preferentially sample those configurations which
have large numbers of NN contacts; that is, we wish to
realize "importance sampling. " A special type of non-
intersecting random walk, called the smart kinetic uralk
(SKW), has exactly these properties. '

The SKW is a special walk which avoids all self'-

intersections, with the single exception that the walk may
intersect itself at its own origin, to form a ring. Consider,
e.g. , the honeycomb lattice. The walk is begun by choos-
ing an origin site, and randomly stepping in one of the
three directions available (see Fig. 1). We establish the
rule that whenever a step is taken in a certain direction,
we will place an "X" in the hexagonal cell on the left-
hand side of the step, and an "0"in the cell on the right-
hand side. The symbol in any cell may not be changed by
subsequent steps. Deciding the direction of any given
step therefore reduces to randomly choosing an X or 0
(with equal probability) to fill the cell directly ahead of
the previous step. The walk grows such that an X is al-
ways on the left and an 0 is on the right. As the walk
continues to grow, it often finds that the cell directly
ahead has already been assigned a symbol. In this cir-
cumstance no random choice is required; it must move in
the direction which keeps opposite symbols on either
side. We will call such a step a "forced step:" a forced
step is taken with a probability p of unity, whereas

p = 1/(q —1)= —,
' for an "unforced step" [Fig. 2(a)].

the ensemble of configurations generated by the SAW al-
gorithm describes the properties of a polymer in a good
solvent. '

At the 0 point, we expect ~J~~~/kT-1, since this is

FIG. 1. The first three steps of a typical SKW on the honey-
comb lattice. Note how the walker is building a wall of X's on
its left, and a wall of 0's on its right.
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These special rules prevent the walk from ever inter-
secting itself, since this would require the walker to make
a disallowed step through the "protective wall" of X's or
0's that surround the walk. These rules also prevent the
walker from entering cul de sacs—that is, those struc-
tures of the walk itself from which the walker could not
exit once entered [see Fig. 2(b)j. Thus we have a walk
with the strong "survival" characteristic which we
desired, and large numbers of walks with lengths of
several thousand steps may be produced (2 orders of mag-
nitude larger than with straightforward sampling). Note,
however, that the rules do not protect against self-
intersections at the origin, and in such a case the walk is
terminated [see Fig. 2(c)]. Figure 3 shows a typical SKW
of 5000 steps, generated in this way.

From Figs. 1 and 2 we see that those forced steps taken
to avoid direct self-intersections are in 1:1 correspon-
dence with all NN contacts of the walk with itself. On
the other hand, those forced steps taken to avoid cul de
sacs correspond to a subset of all the next-nearest-
neighbor (NNN) contacts which occur in the walk, as
shown rigorously in Ref. 9.

To calculate the probability with which SKW
configurations are generated we must take into account
the details of how the SKW algorithm preferentially gen-
erates walks with large numbers of forced steps. Each
unforced step is taken with probability p =

—,'; each forced
step is taken with p =1. The total probability P&, (c) of
generating a given SKW configuration of X steps is,
therefore,

(c)=(—')( —') (2)

where Nf (c) is the number of forced steps in the
configuration c. Note that Nf =N&N +N NzN, where
1VNN is the number of NN contacts in the SKW, and

FICx. 2. (a) A forced step in a SKW, taken to avoid self-
intersection. The last step shown could not have been taken
otherwise, since this would have violated the restriction against
moving between two cells of the lattice containing the same
symbol. (b) The last step shown here was also "forced, " but
would not have led to self-intersection if it had been taken oth-
erwise. However, it would have led to the walker entering a
"cul de sac, " which would have eventually caused termination
of the walk. Note that the forced step shown here leaves from a
site P which is a NNN of the site a; the subsequent step is not
forced and leaves from 6, which is a NNN of y. Hence, the
forced steps taken to avoid cul de sacs are a subset of the NNN
contacts. (c) An example of how the SKW algorithm can form
a ring without violating any of its rules.

FIG. 3. A typical SKW of 5000 steps, on the honeycomb lat-
tice.
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=P,~,
" (c)exp[Nf (c)ln2] .

We can establish a connection between P~ (c) and
the Boltzmann factor for the polymer configuration c, if
we assign interaction strengths J~N, for the NN contacts
in the polymer chain, and JNNN, for the special subset of
NNN contacts. If we set JNN =J~NN =Jf, then
E(c)= Jf(NNN +NNNN ) =JfNf, and

exp[ —E(c)/kT]=—exp( Nf Jf—/kT) .

Comparison of (8) and (9) shows that when we define the
energy of a polymer chain as above, then the SKW algo-
rithm generates walk configurations with the same rela-
tive probability as for polymer configurations when

Jf /kT= —ln2 (SKW) . (10)

Thus for the SKW (10) is the analog of (6) for the SAW.
Using the SKW algorithm to generate an ensemble of
walks therefore realizes our desired high-efficiency impor-
tance sampling of nonintersecting walk configurations:
An ensemble of SKW's is generated with the same statis-
tics as an ensemble of nonintersecting random walks with
a nonzero interaction energy Jf /kT= —ln2.

There is one difficulty with using the SKW algorithm
to generate configurations. Since an SKW never enters a
cul de sac, SKW configurations with either endpoint in
such a cul de sac are never generated. In other words, an
SKW of X steps always has the potential to form a ring at
some subsequent time. However, the set of all noninter-
secting walks of cV steps includes such configurations with
a trapped endpoint. The set of all SKW's is, therefore,
not in 1:1 correspondence with the set of all nonintersect-
ing walks because the SKW algorithm excludes the possi-
bility of generating walks with endpoints in cul de sacs.
For this reason, it is not possible to calculate certain of
the properties defined in Eqs. (1)—(3) from an ensemble of
SKW's.

There exists another special type of walk which does
not suffer from the above defect, known as the kinetic
growth walk (KGW). ' This walk is an extension of the
SAW algorithm discussed above. To make a KGW, the
random walker "looks ahead" one step as it walks, and
chooses randomly from only unoccupied NN sites for the
destination of its next step. In this way, direct self-
intersection, including ring formation, is avoided, but
trapping in cul de sacs occurs. Hence, the KGW
configurations are in 1:1 correspondence with the set of
all nonintersecting walks. However, since the KGW
suffers from attrition due to trapping in cul de sacs the
KG& algorithm is not as efficient as the SKW algorithm
in producing long walks; typically, meaningful numbers
of KGW's up to only a few hundred steps may be gen-
erated in two dimensions.

We can calculate the probability with which an N step
KGW is generated. On the honeycomb lattice we find
that

XN~N is the number of the special subset off NNN con-
tacts. From Eq. (4), (7) becomes

Pz (c)=( —,
' )( —,

'
) 'exp[Nf(c)ln2] .

PKGw(c) (
& )( 1 )+ '(2)
3 2

=P~ (c)exp[NNN(c) ln2],

where NNN(c) is the number of forced steps taken to
avoid direct self-intersection, and which therefore corre-
spond to NN contacts.

To relate Pz to the Boltzmann factor for the poly-
mer configuration c, we assign an interaction strength
JNN to each of the NN contacts in c. Hence
E(c)=JNNNNN and

exp[ E(c—) lkT] =exp[ —
NNN JNN /kT] . (12)

This means that the KGW algorithm generates walk
configurations with the same relative probability as for
polymer configurations when

JNN lkT= —jn2 (KGW) . (13)

For the KGW (13) is the analog of (10) and (6). Thus the
KGW algorithm also realizes importance sampling of
nonintersecting walks, albeit less efficiently than does the
SKW. An ensemble of KGW's are generated with the
same statistics as an ensemble of nonintersecting random
walks having an interaction energy of JNN /kT= —ln2.

Our discussion is summarized in Fig. 4 and Table I.
Figure 4(a) shows a phase diagram with three points indi-
cating where each of the above algorithms generates the
correct ensemble. Figure 4(b) shows the relative
efficiency of each algorithm in producing long walks on
the honeycomb lattice.

III. TRICRITICAL EXPONENTS

The 0 point is conventionally modelled with noninter-
secting random walks in which only NN interactions of
strength JzN contribute to the energy of the chain. How-
ever, the exact value of the critical NN interaction energy
JzN/k0 is not known; neither are there exact values for
the critical exponents which characterize the properties
of the NN interacting chain at T=0 except above the
critical dimension d, =3.

Given the efficiency of the SKW in generating long
walks, it would seem reasonable to model 0-point
configurations with SKW's. We have shown that the
SKW algorithm generates an ensemble of configurations
weighted according to NN and a special subset of NNN
contacts, such that Jf /kT= —ln2. The SKW algorithm
does not generate the full set of nonintersecting walks,
but it has been shown by Duplantier and Saleur" (DS)
that if each member of the full set of SAW's (which is in
1:1 correspondence with all nonintersecting walks) is
weighted by exactly

exp[ —
(NNN+NNNN )Jf lkT]=exp(Nf ln2),

then the resulting ensemble possesses critical exponents
which put it in a different universality class from that of
the dilute (T~ ~ ) or collapsed (T~O) polymer chain.
This critical interaction energy Jf /KT= —ln2 therefore
defines a higher-order critical point which has been called
the 0' point, to distinguish it from the 0 point where
only NN interactions are considered.
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In this paper, we address the question of whether the 0
and 0' points possibly belong to the same universality
class. This question is of particular recent interest be-
cause DS have found exact expressions for d =2 for the
three tricritical exponents of the 0' point ~ If the 0 and 0'
points were in the same universality class, then the DS re-
sults would apply to the 0 point as well, and hence would
be directly relevant to experiments on quasi-two-
dimensional polymers. ' DS proposed that the 0 and 0'
points do indeed belong to the same universality class,
but their proposal has been questioned' ' because the
NNN interaction is of a very special sort and because of
results' on the analogous branched polymer problem.

First we calculate for each point the three tricritical
exponents v, y, and P defined in Eqs. (I)—(3). DS have
argued that the exact values of the tricritical exponents at
the 8' point are' vz. =—', , y&, = —', , and Pz. = —,'. In order to
test these predictions, and to make a comparison to the 0
point, we exploit the special nonintersecting walk algo-
rithms described earlier.

0.2

R, X.,
Xxx,

A A vQYV~~AA A A A

100 200 300 400 500 600

FIG. 4. (a) Phase diagram for the two systems treated in this
paper, the 0' point and the 0 point. The critical value ~e, ~

of the
interaction parameter

~ e~
—=

~ JNN ~
IkT of the 0 point is near uni-

ty, based on calculations reported in the text and Fig. 6. Also
located are the points where the three special walk algorithms
described in the text generate the correct ensemble of
configurations; note that the point of the SKW algorithm coin-
cides with the 0' point. The line L labels a critical surface
which includes both the 0 and 0' points; ei and e2 label the two
relevant scaling field axes at the 0' point —one tangential to L
and one perpendicular. (b) A plot of S(N), the probability that
a walk has not terminated by its Nth step, vs N, for the SKW
(+ ), KGW ( X ), and SAW ( A ) algorithms.

A. The 8' point

At the 0' point, the SKW is clearly the best model
since it efficiently produces configurations with exactly
the correct weights for the 0' point. However, the SKW
algorithm does not generate configurations with end-
points in cul de sacs, raising the question of which critical
exponents can be calculated from an ensemble of SKW's.
Since it is not clear how the number of SKW's of X steps
is related to C~, we cannot find y from a SKW ensemble.
We will show, however, that it is possible to find v and P
for the set of all nonintersecting walks from an ensemble
of SKW's.

Consider the fractal dimension df =1/v. If we take a
section from a very long walk which is far from either
end of the walk, then this middle section will necessarily
not have its ends within cul de sacs. Due to the self-
similarity of nonintersecting random walks, '" this middle
section will have the same fractal dimension as the entire
walk from which it was extracted. Therefore, the subset

TABLE I. A comparison of the three algorithms described in the text for generating self-avoiding
configurations. The first line indicates the location in the phase diagram of Fig. 4(a) where each algo-
rithm generates the correct ensemble of configurations for modelling interacting polymers.

SAW KGW SKW

Interaction
[cf. Fig. 4(a)]

Typical maximum
walk length

Attrition
mechanisms

Comparison with
SAW

JNN /kT =0

Direct self-
intersection

Trapping in
cul de sacs

JNN /kT = —ln2

1000

Trapping in
cul de sacs

All SAW
configurations
present

JNN /kT =J~~N /kT= —ln2

10000

Direct self-
intersection at
origin (ring
formation)

Some SAW
configurations
missing
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of nonintersecting walks produced by the SKW algo-
rithm, which do not have endpoints in cul de sacs, may be
used to calculate the exponent v for the full set of nonin-
tersecting walks. The above considerations apply for any
value of r, and so the exponent P may be found from an
ensemble of SKW's.

(a) To find v6 using the SKW algorithm, we calculate
& R~. ) for a large number of SKW's and make a log-log
plot of &Rv) versus N, shown in Fig. 5(a). The asymp-
totic slope gives 2v&', we find v& =0.57+0.01.

(b) To find Pz, we note from (3) that for both the 0 and
0' points

100000-

10000

(R',)

1000-

Since

1

&R-,')
a&R-,'. &

—, =0
-N ct (14a)

100
10

10

100
N

1000 10000

g, R v(c)exp[ E(c)l—kT]
&R, )—:

g, exp[ E( c) lk—T ]
(14b) (b)

we can form the derivative in (14a) and so express Q~ in

terms of quantities that may be calculated. In terms of
calculated quantities, (14a) takes the form

&NfR, &
—

& v, )&R',-&

&R,', )

Figure 5(b) shows a log-log plot of Q,~; against N; the
asymptotic slope gives $„=0.45+0.03.

(c) In order to find y'z we must ensure that the set of all

nonintersecting walks is sampled, and so we use the
KGW algorithm. The KGW algorithm generates chains
with the statistics of an ensemble of walks with NN in-
teraction JNN /kT= —ln2. To obtain 0' point statistics,
for which the interaction is Jf /kT= —ln2, we must ad-
just the weight of each KGW: the proper weight

0.1

10

0.03

0.02—

100

(C)

++
~+

1000 10000

P,"(c)=P, (c) (16a) 0.01

for each KGW configuration at the t9' point is produced
by weighting each KGW configuration explicitly by
exp(NNN~ln2). That is, from a comparison of (8) and
(11),

P~, (c)=Pv (c)exp(NN~Nln2)

OJ CU

+ 1

Z Z
CA Cf)

0.00
~F00 ~

r
—0.01—

—0.02—

=Ps (c)exp[(NN~+NI, NN )ln2] . (16b)

C~
S(N) =

CRW
N~'

z
(17)

Cz. =z' is the number of random walks of N steps, and
z = q

—1. We can therefore write'

S(N +12) p N + 12
ln

S(N —12) z N —12

(18)

The result is a KGW-generated ensemble of all weighted
SAW's.

To measure yz, we consider the survival probability
S(N), the probability that a given walk will survive to N
steps:

—0.03
I

0.4 1.20.80 0.2 0.6 1

N +12
N —f2

FICr. 5. (a) A log-log plot of &Rs ) vs N for the 0 point ( ~ )

and 0' point (+ ); the 0 point values have been doubled in order
to separate the curves on the same plot. The asymptotic slopes
give 2v„and 2v„. (b) A log-log plot of Q, [as defined in Eq.
(14a)] against N for the 0 (~) and 0' (+) points; the 0' point
values have been multiplied by —' to separate the curves. The 0
point curve becomes prohibitively "noisy" for N ) 300, and is
not extended further here. The asymptotic slopes give (t„and

(c) A plot of ln[S(N+ 12)lS(N —12)] vs

ln[(N+ 12)l(N —12)] for the 0 ( ~ ) and 0' (+) points; for pur-
poses of comparison, the 0 point values have been altered by an
additive constant of —0.8. The limiting slopes as N ~ give

y, &

—1 and y„—l.
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The number is c oseb 12 h sen to minimize lattice oscillations.
1 fThe asymptotic slope of a log- g pllo -lo lot o

S(N+12)/S(N —12) versus (N+12)/(N —12) has
~ =1.12+0.07slope y&

—1. With this approach we find y& = 1. 12 0.
[see Fig. 5(c)].

P (c)=P exp[ —(e+ 1n2)N~~]N C N

exp( —eN. ~), (19a)

whic ma es i ph k s it ossible to explore all temperatures along
the J IkT axis in Fig. 4(a). (See however, t e ppen-
d' .) N rical results indicate that this w 'g

NN
~ ~

ei hted KGWix. ume
'

hen e+ ln2ensemble describes a tricritical point wiien e n
=e, +ln2= —0.30+0.05, so that J~~/k0=E,
= —0.99+0.05 (see Fig. 6). This is the conventional 0-
point.

H
'

found e, we can adjust the weigwei ht of both
'

s. In analo-W's and SKW's to obtain 0-point statistics. nKGW s an
confi uration

'
h(16b) the roper weight Pz(c) for aconfig

fP~G (c)andc at the 0 point can be expressed in terms o
P ( ). From(19a), with e=e„wehave

P~(c)=Pv exp( — Ne~~) . (19b)

each KGW atUsing (1 1) in (19b), the proper weight for each KG

O.65
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O.55—
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FIG. 6. Analysis of the weighted KGW pW near the 0 point for
+ ln2: —0.200several va ues o e1 of the interaction parameter e+ ln:

' and+; —0.250 (X); —0.275 (o ); —0.300 (6); —0.350 (~ ); an
—0.400 (A). For finite N we define an effective exponent
v(N) = —'1 [(R (N+1))/(R (N))]/1n[(N+1)/N], where

2
'"

in of len th N. The ex-R (N) is the radius of gyration of a chain o engt
of v(N) to N~ ~ determines v. This analysis is

usually reserved for series expansions, but ig -qua i y
Carlo data may also be analyzed inin this manner. We find that

0(e& e ) v(N) increases with N and extrapolates to-
ward the SAW value, while for T & 0(e & e, ), vi ex rapo
to the collapsed p ase.

value
' d' t b tweenthat v(N) extrapolates to a new value,
'

value intermediate etween
these extremes.

B. The Opoint

To evaluate the exponents at the 0 p0 oint we must first
find the critical value J~~/k0. We usee use the KGW since

he 0 oint. Byonly NN interactions are used to model the p
each KGW configuration with a more generalweighting eac

Boltzmann factor exp[ —(e+ ln2) ~~], w
=J IkT we obtain a general weight Pz(c) given byNN

the 0 point is

P (c)=P exp[ —(e, +ln2)N~~] .N C N (19c)

IV. CROSSOVER BEHAVIOR NEAR THE O' POINT

I the hase diagram shown in Fig. 4. 4 a we ex ect a
critical line L to connect the 0 and 0 points.ints. If the 0'
point is a critica poin o1 t f higher order with respect to the
resto t e ine, wr h l' L we expect another crossover exponent
Pz)0 in a special direction tangent to L at . o
demonstrate is, w

The scaling relation of Eq. (3) therefore generalizes to

&R~) -N f(e,N, e~N2 'o
(20)

The exponent
&

ed termines the crossover behavior near
h s ect to the collapsed and dilute regimes on ei-

ther side of L; hence P, =Pe. The exponen 2 c
how the crossover occurs from the tricritical points on L
near 0', to the 0' point itself. If the 0' point is in a

borin tricriticaldiferent universality class from its neig bor' g
h should measure Pz) 0; in the language of

oint belongs to the same universality c ass as epoin e
he line L, then we will find Pz &0, and eze will be an ir-t e ine

levant arameter. The marginal case z
==0 corre-

which the criti-s onds to the more complex situation in w ic e
cal exponents may vary continuous y gusl alon the critical

14a) we find thatB the same argument leading to Eq. a,
B&R~2)

BE

1

&R') Ei = E'2 =O

—A(a)N '+B(a)N '.
The above derivative is a directional one taken along a
line e at an ang e a wi1 'th respect to the ez axis, so that E

Using (8) in (19b), the proper weight for each SKW at the
0 point is

P (c)=P exp[ e, N—~~ —(ln2)Nf]N C N

=P ex [ —(e, +ln2)N&z —(jn2)N&zz (19d)

=N +N' . With the same analysis as atsince Nf =Nz&
ei hted as int e poin, wh 0' t e use an ensemble of SKW's weig te as in

9d) find v =0.60+0.05 and P'=0. 5 0. [see ig .(1 ton ve—
5(a an) d 5(b)]. Using an ensemble of KGW s weig

i . 5(c) .in (19c), we find y'=1.08+0.07 [see Fig. c].
Th bove numerical results therefor e confirm the DSea ov

0' oint.prediction or efor the tricritical exponents at t e 0 p
A1 hou h our values for the 0-point exponents are con-t oug
sistent wi e c'th the corresponding 0 -point va ues w

ult to con-con ence imi sfid 1 its of our calculation, it is difficu
oints belongelude from this work whether the 0 and 0' points e ong

nce in the next sectionto the same universality class. ence, in t e nex
we investigate more ct re closely the properties of the 0' point,
where configurations may be generated wit grea
efficiency with the SKW algorithm.
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is a line such that e,cosa=e2sino:. The coeScients 3 and
B are functions of o.'such that when u=O, 3 =0, and
when a=~/2, B=0. Since we do not know the exact
orientation of the ez axis with respect to the phase dia-
gram axes in Fig. 4(a), we rewrite Eq. (21) as

—A(a)+B(a)N ' (22)

If we plot Q /N against 1/N using the predicted
bl

value Pi= —,', then the asymptotic N dependence of the
curve for any a will be entirely due to the value of P2. In
Fig. 7(a) we form such a plot; the fact that the curves ap-
pear asymptotically straight suggests that $2-0, the mar-
ginal case. To measure $2 explicitly, we obtain the value
of a=a' from Fig. 7(a) for which the intercept A(a)=0,
and make a log-log plot of Q versus N tFig. 7(b)].
The asymptotic slope gives $2=0.0+0.05. Our results
therefore suggest that the actual situation may in fact be
that of the marginal case, where the universality class
changes continuously along L.

V. DISCUSSION AND CONCLUSIONS

In summary, we have addressed the question of the
universality class of the 0 and 0' points. We have made
an extensive Monte Carlo simulation program for study-
ing both the conventional model of the 0 point and the
model which displays a tricritical point called a 0 point.
We present numerical evaluations of the tricritical ex-
ponents at both points. These values confirm the DS pre-
dictions for the 0 point, and indicate an upper limit on
how different the exponents at each point can be. Final-
ly, our examination of the crossover behavior at the 0'
point suggests that the universality class varies in a com-
plex manner along the line that contains the 0 and 0'
points, supporting the possibility that they do not belong
to the same universality class. We conclude by noting
that for dimension d )2, it has been shown ' that the 0
and 0' points are in the same universality class. Howev-
er, the methods of this proof do not extend to d ~2.
Since our work is in d =2, our suggestion that the 0 and
0' points are not in the same universality class is not in-
consistent with the above proof.
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APPENDIX: COMMENT ON
STATISTICAL ERRORS

The following remarks concern the estimates for ve, Pe,
y&, and y&. , given in Sec. III. We first discuss the KGW
algorithm. This algorithm can generate any
configuration of nonintersecting random walk, but as we
have noted, not all KGW configurations are generated
with equal probability. Note that the probability
Pv (c) in (11) is a function of only N~~, and hence the
probability Pz (Nzz) to generate a KGW with Nzz
NN contacts coincides with the more general probability
Pz(Nz~) in (19a) to observe a polymer chain with N~~
NN contacts when e = —ln2.

For the polymer system, the probability P~, (E) to ob-
serve a polymer in a configuration of energy E can be
written as

0.1-

10 100 1000 10000
P~(E) = II~(E)exp( PE ), —(A1)

FIG. 7. (a) Plot of Q /N vs I/N' for three values of
tangent angle a: a=54 (+ ), a=57 (e), and a=60' ( X ). The
straightness of these curves suggests Pz=O. (b) Log-log plot of
Q„- against N The asymptotic slope gives Pq..

where II&(E) is the degeneracy of N step configurations
having energy E, and f3—:1/kT In general, Pv(E) is ex-.
pected to be a sharply peaked function of E because it is
the product of a rapidly increasing function of E, A ~(E),
and a rapidly decreasing function of E, exp( PE ). —
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Since E =JNNNNN, (19a) implies 0.07

P~(E /JNN ) =P~(NNN )

=P~ (N» )exp[ (e+ln2)N»] . (A2)

The behavior of Pz(E) can therefore be calculated direct-
ly from knowledge of P~ (NNN ). Now P~ (NNN )

can be estimated with the KGW algorithm, by making a
histogram showing the number of walks generated having
NNN NN contacts, and normalizing by the number of
walks in the sample. For example, the left curve of Fig. 8
shows Pz (NNN ) for KGW's of length N=200. The
relatively narrow shape of this curve implies that the
most probable configurations are confined to a well-
defined interval of NNN', these contribute most to the
statistics of chains at e = —ln2.

Now consider the case e& —ln2. We require a set of
configurations weighted according to Pz(NNN ) of (A2).
Substituting the result for P~ (NNN ) from the left
curve of Fig. 8 into (A2), P~(NNN ) can be easily calculat-
ed. The result for e= —0.9 (—ln2 is shown as the right
curve in Fig. 8. The peak has shifted, reAecting the fact
that at a lower temperature the most probable
configurations have more NN contacts.

Note that the right curve has greater scatter than the
left curve. The explanation of this effect is quite reveal-
ing. Consider, e.g. , N~N =40, which corresponds to the
peak of the right curve. The KGW configurations that
produce the right curve are very few in number, since
NNN =40 is in the tail of the original distribution. Thus a
relatiuely small fraction of the left curue is used to obtain
much of the right curve. Thus we see that the right curve
has little statistical error for small values of Nzz but
larger statistical error for large values of NNN.

In general, the fraction of the Monte Carlo sample that
makes a meaningful contribution to the chain statistics
for a given value of e decreases as ~e —1n2~ increases The.
rate of decrease depends both on how fast the peak of
Pz(NNN ) moves away from the peak of P& (NNN ) as
e —ln2 increases, and on how quickly the tails of

Pz (NNN ) decrease with respect to Nzz.
The result is an effective reduction in sample size when

KGW's are weighted as in (A2) to give 8 point statistics.
A completely analogous effective reduction in sample size
occurs when KGW's are weighted as in (16b) to give 0'
point statistics. This contributes to the scatter observed
in both curves of Fig. 5(c), and hence to the uncertainty
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FIG. 8. A plot of P~(NNN ) vs N» for a sample of KGW's of
length %=200, for e= —ln2 (~ ) and e= —0.9 (+).

in the values for y& and y &.
Weighting SKW's as in (19d) also results in the

effective reduction of the sample size. Hence the curve in
Fig. 5(a) giving vo and the curve in Fig. 5(b) giving (to are
much noisier than the corresponding 0' point curves.

This effective reduction in the sample size places a lim-
it upon how large ~e —in2~ can be. The numerical esti-
mate for Pz (NNN) cannot extend beyond values of
NNN for which configurations are obtained. Hence, there
must be values of e for which chain statistics can not pos-
sibly be studied with the KGW algorithm because none
of the dominant chain configurations for those values of e
are generated. In general, one can expect to explore a
range of e for which clearly peaked P~(NNN ) distribu-
tions can be formed from the Pz (NNN ) curve. A limi-
tation of the present work is that e, for the 0 point seems
to lie outside this range, and so considerable scatter is ob-
served in some of the data. Indeed, for e, = —1.0, our
sample size is electively reduced to less than l%%uo of the
original set (generated for e= —ln2).

%'e conclude by noting that the above remarks do not
concern the estimates for vo. and P&. since the required
ensemble of configurations in this case is exactly that gen-
erated by the SKW algorithm. For the same reason, the
results of Sec. IV are unaffected by the above considera-
tions on statistical error.
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