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Dynamic correlations in electron liquids. I. General formalism
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Time-dependent multiparticle correlation functions and response functions are formulated with
the functional derivatives in the grand-canonical ensemble. Equations for the single-particle
Careen's functions are the Dyson equations describing scattering of the single particles by density-
fluctuation excitations. Equations for the density-fluctuation excitations are truncated with a dy-
namic version of the convolution approximation to triple correlations. A closed set of equations for
the Green's functions and excitations are thereby obtained, which constitutes a dynamic
hypernetted-chain scheme for the degenerate electron liquids. The formalism is extended also to the
description of the spin-dependent response and correlations.

I. INTRODUCTION

In simple metals such as Na and Al, effects of the crys-
tal potentials are weak, ' so that the electron-liquid mod-
el is applicable for the valence electrons. The Coulomb-
coupling constant, ' r, =(3/4mn )'~ me /fi, for such an
electron liquid takes on a magnitude greater than unity
(typically, 2~ r, ~ 6); it may thus be looked upon as a
strongly coupled system. Here, m and e denote the elec-
tronic mass and charge; n refers to the number density of
electrons.

In a strongly coupled electron liquid, exchange and
Coulomb-induced many-body effects exert essential
influence on the quasiparticle properties and spectral
functions of dynamic excitations. Recent progress in ex-
perimental techniques such as strong synchrotron-
radiation sources has made it possible to measure various
excitation spectra with an improved accuracy: Single-
particle excitation spectra have been investigated through
angle-resolved photoemission experiments, ' resulting in
observation of conduction-band widths much narrower
than those predicted in a perturbation-theoretical calcula-
tion. The dynamic structure factor S(k, co) has been
measured in x-ray inelastic scattering experiments with
fine resolutions. The double-peak structures observed in
the intermediate wave-number regime were attributed
primarily to the lattice-structure effects, rather than to
universal properties of a strongly correlated electron
liquid; a possibility was also pointed out that some of the
fine structures observed, e.g. , in polycrystalline samples
might be correlation induced.

Most of the theories hitherto proposed on the static
and dynamic correlations' are either perturbation
theoretical or dependent on intuitive model calculations.
Since the coupling constant is larger than unity for metal-
lic electrons, a perturbative method usually fails to de-
scribe the correlational properties correctly; one resorts
to a self-consistent theory whereby the many-body effects
are taken into account in an iterative manner. Such a
theory has been developed successfully for a description
of static correlations and for the ground-state properties.
It is the purpose of the present paper to develop a self-
consistent microscopic theory of dynamic correlations in

strongly coupled, degenerate electron liquids.
We thus analyze the dynamic evolutions of Green's

functions in the grand canonical formalism in the pres-
ence of an external perturbation. In the analyses, we
make an extensive use of the functional derivative tech-
nique, which has been a powerful tool in the classical
and quantum' theories of liquids. The multiparticle
response functions are formulated as the functional
derivatives of the single-particle Green s function with
respect to the external perturbation. We then define and
introduce the multiparticle correlation potentials as func-
tional derivatives of the self-energy, the interaction part
of the quasiparticle energy, with respect to Green's func-
tions; this is done in a way analogous to the correlation
potentials in classical liquids, which are defined as the
functional derivatives of the correlation part of the free
energy with respect to density fields. ""

The response functions are expressible in terms of the
Green's functions and correlation potentials, and thus
form a chain of equations. We may truncate the hierar-
chy of the multiparticle response and correlations if an
approximation is found which enables us to set an in-
dependent expression for the correlation potentials in
terms of the Green's functions and response functions.
We thereby derive a representation of Dyson equations
for the single-particle Green's functions; a dynamic con-
volution approximation is introduced for truncation of the
three-body correlation potentials. We thus obtain a set of
mutually coupled self-consistent equations for the single-
particle Green's functions and the density fluctuation ex-
citations. Solutions to those equations for relevant cases
of simple metals will be the subjects of subsequent pa-
pers 1 3 14

Organization of the paper is as follows: In Sec. II, the
self-energy X(k, co) and the dynamic local-field correc-
tion (LFC) G(k, co) are formulated in terms of the two-
and three-body response functions. In Sec. III, those
multiparticle response functions are analyzed through a
functional-derivative method; approximations are intro-
duced for truncation. Physical implications of the result-
ing equations are elucidated in Sec. IV, through investi-
gations of their classical (A'~0) and weak-coupling
(r, ~0) limits. In Sec. V, the formalism is extended to
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the spin-dependent response and correlations. Conclud-
ing remarks are given in Sec. VI. Some of the calcula-
tional details are explained in Appendixes.

II. FORMULATION OF THE PROBLEM

and S is the scattering matrix given by

4= T exp ——g f d 1 f d 1' /tH (1)P(1,I')fH (1')
a

We consider a system of electrons immersed in a uni-
form neutralizing background of positive charges. The
grand-canonical Hamiltonian is expressed as

H =g f d r itj (r)
$2

V —p g (r)

where T represents the time-ordering operator from right
to left, and we use a shorthand collective-index notation
1=(ri, ti ). We likewise define an average of an arbitrary
operator 8 in the presence of a nonlocal external poten-
tial P(1, 1') in the ground state ~0& as

+ —,
' g f d r f d r'P (r)g (r')v(~r —r'~)
a, a'

X g .(r')g (r),
where p, is the chemical potential, v(r) =e /r is the
Coulomb potential, and P (r) and it/ (r) are the creation
and annihilation operators for an electron with spin o..
The single-particle Green's function Q(1, 1') is defined as

Q(1, 1')= —(i/2)g& &[it/ (1)Q (1')]&,

The v-body response functions y' '(1, 1';. . .;v, v') are
then calculated as the functional derivatives of the
Careen's function with respect to P:

gv —1
' '(1 1' v v')=

5$(v, v') . 5P(2, 2')

Xg& Z [P'.(I)1i.(l')]&lq

In particular, the density response function is given by
g(1,2) =y' '(1+, 1;2+,2), where 1+=(r it +&0) and 0
means a positive infinitesimal.

In the absence of the external field, the Green's func-
tion obeys the usual equation of motion with the Hamil-
tonian (1); its Fourier transform Q(k, co) is expressed as

Q(k, co) =[tu+p/fz Rk /2m ——X(k, co)]

Here the self-energy X(k, cu) is formulated exactly as

X(k, iu)= —
—,
' f f u(q)e'"

(2m )

&8(t) &= &0~x[8„(t)$]~0&/&o~z~o&,

where

8 ( t ) e iHt /A'8e —/Kt /A'

(3)

(4)

Xyk+q/2, + /2(q x )9 '(k, co), (8)

with u(q) =4m.e /q, and the electron-hole pair response
function yp (k, co) is related to the two-body response
function as

(k, co)= f d(1 —1')fd[(r, +r', )/2 —rz] fd[(t, +t', )/2 —tz]y' '(1', 1;2+,2)

X exp [
—ip (ri —ri )+ix (t, —t i )

—ik [(r,+ r', ) /2 —r2]+i to[( t, + t ', ) /2 t 2 ] I . — (9)

The dielectric response function ' e(k, co) is related
with the Fourier transform y(k, co) of the density
response function as

e '(k, ~u) =1+v(k)y(k, co)

and F is the momentum distribution function . In Eq.
(12), b, kp is a difference operator acting on a p-dependent
function f(p) as bg(p)=f(p+k/2) —f(p —k/2). The
LFC is expressed in terms of the three-body density
response function as

=1+v(k)f f 4
e'" yp, (k, co) .

d p dx;~o (10)

y(k, co) =pl (k, co)/[ 1 —v(k)[1 —G(k, co)]yL (k, co) I,

The dynamic LFC, G(k, co), is then defined and intro-
duced vra

G(k, iv) =—

where

ih d qdx k.q; oe'
ny(k, co) f f (2~)4 q~

Xy' '(k —q, co —x;q, x), (13)

where the Lindhard polarizability' is given by

yL(k, ei) = ——1 d p gkF
(12)

fi (2~)3 co haik p/m+i 0sgn(iu)—

g' '(k, cu;q, x)
= fd(1 —2)fd(3 —2)y' '(1+, 1;2+,2;3+,3)

Xexp[ —ik (r, —ri)+iso(t, t2)—
—iq. (r3 —rz)+ix(t3 t2)] . —(14)
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A derivation of Eq. (13) is described in Appendix A; a
proof is given also that Eq. (13) is exact in the high-
frequency or long-wavelength limit.

The functions Q(k, co) and y(k, co) retain many-body
effects in X(k, co) and G(k, co), which in turn depend on
two- and three-body response functions. If the latter
functions are expressed in terms of Q(k, co) and g(k, co),
truncation is completed and we obtain a closed set of
equations; this will be done in the next section.

III. CALCULATIONS OF X(k, co) AND G(k, co)

For analyses of the multiparticle response functions,
we find it useful to introduce v-body correlation poten-

tials ="(1,1';. . . ; v, v'), defined as the functional deriva-
tives of X with respect to 5',

Physically, "' ' represent the effective v-body interactions
stemming from interparticle correlations. In particular,
:-'.' is the same as what has been called the irreducible
particle-hole interaction, ' except for the direct Coulomb
interaction contained in the latter.

We begin with an exact equation for the electron-hole
pair response function g' '(1', 1;2+,2), derived in Appen-
dix B.

y'2'(I', I;2+,2)= —2iA 'g(1, 2)g(2, 1')—2ifi 'Q(1, 3)Q(3, 1')v(3,4)y(4, 2)

+Q(1,3)Q(3', I')=' '(3 3'4 4')y '(4', 4;2+, 2) . (16)

Here, v(3, 4)=v(~r3 —
r&~ )5(t3 —t&), and integrations with

respect to the barred indices are implied. Equation (16) is
diagrammatically represented in Fig. 1, where thick lines
refer to y' ', a directed (thin) line 9, a double line g, a
dashed line U, and a shaded square =' '; a solid circle im-
plies an integration over the index.

We now introduce a local approximation, such that

lived density-Auctuation excitations contained in y' ';

EF =(AkF ) /2m is the Fermi energy.
In the local approximation (17), Eq. (16) can be solved

for g' '(1', 1;2+,2) in the form

yp (k, co) = —2iA' 'Qlp —k/2, x —co/2)

X Q(p+ k/2, x +co/2)/e'(k, co),

:"' '(3, 3';4, 4') =:-' '(3, 4)5(3, 3')5(4,4') (17)
where

in Eq. (16); 5(3, 3') refers to a four-dimensional 5 func-
tion. This approximation may be justified through the
following arguments: Since =' '(3, 3', 4, 4') is short
ranged' in the sense that r3 —rg and ~r~

—
r4~ have spa-

tial extents on the order of the Fermi distance,
kF '=(3vr n ) '~, it may be regarded as spatially local in
comparison with the long-range quality of the Coulomb
interaction v(3, 4) in Eq. (16). Analogously, the temporal
scales of variations in =' ' may be confined within the
Fermi time -A/EF, which we assume to be smaller
significantly than the characteristic times of the long-

'(k, co) =y(k, co)/yo(k, co),

Uo

FIG. 1. Diagrammatic representation of Eq. {16). FICx. 2. Diagrammatic representation of Eq. {18).
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yo(k, co) = ——f f Q(p —k/2, x —co/2)
(2m. )

X Q(p+k/2, x+co/2) . (20)

X(k, co)= —f f e' Q(k+q, co+x) .(2') e(q, x)

(21)
After the local approximation, Eq. (16) reduces to Eq.
(18) depicted in Fig. 2, where a wavy line represents 8
Substitution of Eq. (18) in Eq. (8) yields

The three-body density response function is calculated
as (see Appendix 8)

y' '(1+, 1;2+,2;3+,3)= —()ri/4)y( '(1, I;4,4')y( '(5', 5;2+,2)y' '(6', 6;3+,3)

x [s-'(4, 6)Q-'(6', s)Q '(s ', 4')+ 9-'(4, s)Q-'(s ', 6)Q-'(6', 4')+:-'"(4,4', , ';6, 6 )] .

(22)

Here again, we assume thee local approximations, Eq. (17)
and:-( '(l, l';2, 2', 3, 3') =:-' '(1,2, 3)5(1,1')5(2,2')|)(3,3'),
to the correlation potentials; then Eq. (22) becomes

y' '(1 , 1;2+,2;3+,3)=y())(4, 5, 6)e (1,4)

X e (5, 2)Z '(6, 3)
—()) /4) =-"'(4,S, 6)

Xy(1,4)g(S, 2)y(6, 3), (23)

where

y() '(1,2, 3)= —2ih' [g(1,3)g(3,2)g(2, 1)

+Q(1,2)Q(2, 3)Q(3, 1)] . (24)

Figure 3 depicts Eq. (23), where a shaded triangle
represents =~( )

The three-body correlation potential:-' '(4, 5, 6) in the
last term of Eq. (23) depends intrinsically on the triple
and higher-order correlation functions. If we ignore this
term in Eq. (23) and substitute the remainder in Eq. (13),
we obtain

()ti f f d'qdx k q
neo(k, co) (2')" q2

Xyo '(k —q, co —x;q, x)

XF '(k —q, co —x)

where

po '(k, co;q, x)= — f f [Q(p,y)Q(p+k, y+co)
2l d p dy

fi (2~)
X Q(p —q, y —x)
+ I(k, co)'+-+(q, x )] ]

(26)
is a Fourier transform of go( '(1,2, 3) and hence depends
only on the single-particle Green s functions. Hierarchies
of the many-body correlations and response functions are
thus truncated at the second stage involving density-
fiuctuation excitations. Consequently, Eqs. (7), (11), (21),
and (25) constitute a closed set of equations for Q(k, ()))
and y(k, co).

As we shall show in the subsequent section, the neglect
of the last term in Eq. (23) amounts to adopting a dynam-
ic version of the convolution approximation to the three-
body density response. Significance of the convolution
approximation for the long-ranged Coulombic system
and its relation with the hypernetted-chain approxima-
tion have been well elucidated " it ensures perfect
screening and thereby maintains the short ranged quality
of the correlation potentials. We may thus call Eq. (25)
the LFC in the dynamic hypernetted-chain approximation.
Inclusion of non vanishing contributions from
:-' '(4, 5, 6)&0 would then lead to a modification and im-
provement on such an approximation.

Xe '(q, x), (25) IV. PHYSICAL PROPERTIES
OF THE SELF-CONSISTENT EQUATIONS

Qo

3t-(3)

FIG. 3. Diagrammatic representation of Eq. (23).

In this section, we intend to elucidate some of the
physical contents in the self-consistent equations derived
in the preceding section. We shall do so through investi-
gation of those equations in various limits.

Let us first take up the classical limit (A'~0) of Eqs. (7)
and (21) for the single-particle Green's function. Follow-
ing the notation in KadanoA'and Baym, ' we decompose
each of Q(1, 1') and X(1,1') into two analytic functions,
9 (1,1') and X (1, 1'), in accord with t) ~wti, and rewrite
these functions in terms of new variables, r=r, —r', ,
t=t) —ri, R=(ri+ri)/2, and T=(t)+t') )/2; we then
define their Fourier transforms via, e.g. ,
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0 (p, co;R, T)=+i f d r f dt exp( —ip r./fi+icot)

XQ (r, t;R, T),
and the distribution function as

f(p;R, T)= f 0 (p, co;R, T) .

The equation of motion for f(p; R, T ) is derived as'

(27)

(28)

where we have assumed a slowly varying external
field P(1, 1')=P(1)5(1,1'); PH(1)=P(1)+u(1,2)

(g (2)g (2)) is its Hartree field. Substitution of
Eq. (21) in the right-hand side of Eq. (29) yields

G
fi f f v (q)A(p+Aq/2;q, x)

(2~)

X [S(q,x }f(p+A'q; R, T)
8 ~ 8

8T I BR pH(R, T) f(p;R, T)
Bp —S(q, —x)f(p;R, T)] . (30)

= f [0'(p, co;R, T)X (p, co;R, T)

(p, co;R, T)X (p, co;R, T)],
Here we have assumed separation between fast and slow
variations so that

f dx 0 (p+fik/2, x+co/2;R, T)Q (p haik/2, x——co/2;R, T) =[I—f(p+A'k/2; R T)]f(p+A'k /2;R, T) A(p; ken),

where

A(p;k, co)= f dx A( p+iirk/2, x+co/2)A(p —iitk/2, x —co/2),

and

A(p, co)= —,'g f d(1 —1') exp[ —ip (r, —rI)/%+ice(t, —t', )]([g (l)ittt(1')+it (I')itj (I)])

(31)

(32)

(33)

is the spectral function for the single-particle Careen's function. In Eq. (30), we have introduced S(q, x) through the re-
lation

S(q, x) —S(q, —x) = —[fi/iru (q)]lmez '(q, x), (34)

where e~ (q, x ) is the retarded counterpart to Z(q, x). In deriving Eq. (30), we have also assumed f (p;R, T) && 1, valid
in the limit A~O.

Expanding Eq. (30) in powers of fi and keeping only the leading terms, we arrive at the Fokker-Planck equation, '

BT m BR BR '
Bp

D(p).a a
Bp Bp

F(p) f(p;R, T)=0,a
Bp

(35)

8X
D(p) =sr f f qqv (q)S(q, x) A (p;q, x),

(2ir }

F(p) = —f f qv(q)1m'~ '(q, x) A (p;q, x) .g 8X

(2ir )

(36)

(37)

where the diffusion and friction coefficients, D(p) and
F(p), are given by

mation for the three-body correlation function. "' To
do so, we work in the grand-canonical ensemble
with P( 1, 1' ) =P( r

&
)5( 1, 1' ). The Ursell functions

U' '(r&, . . . , r ) defined by

gv —1

5$(r )
. 5$(r, )

Hence, Eqs. (7) and (21) are consistent with the classical
notion of single particles being scattered by field Auctua-
tions.

Next, we show that the approximation =' '=0 in Eq.
(23) at vanishing frequencies, i.e.,

y' '(k, O;q, O) =go '(k, O;q, O)Z '(k, O)

Xe '(q, O)e '(k+q, O)

reduces in the classical limit to the convolution approxi-

Xg(Q (r, )g (r, ))~~ 0

have Fourier transforms

U' '(k) = —ks Ty(k, O),
U' '(k, q)=(k~T) y' '(k, O;q, O) .

One can likewise prove

(39)

(40)

(41)

(42)
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limyo' '(kO, ;qO, ) = n /(kz T) (43)

so that the classical limit of Eq. (38) turns into a
convolution-approximation formula, "'

U' '(k, q)=n U' '(k)U' '(q)U' '(k+q), (44)

with the aid of Eq. (19).

Finally, we consider the weak-coupling limit (r, ~O) of
Eq. (25). In this limit, we may set Z(k, co) = 1 and
Q(k, co)=[co—A'(k —k~)/2m+iOsgn( co)] '. After per-
forming the frequency integrals in Eq. (25), we move over
to the retarded boundary conditions by shifting all the
poles in the upper half of the complex co plane into the
lower half. The result then is

f f d'p d'p'k (p —p') ~r",e(kr P)~—r", e(kF S')—
G(k, co)=-

nfgy&(k, co) (2~)6 ~p
—p ~2 co —pk'p/rn+$O

(45)

where e(x)= [1+sgn(x)]/2 is the unit step function. Equation (45) is the same as the LFC derived originally by Toigo
and Woodruf' through the analysis of lowest-order proper-polarization diagrams. Hence, Eq. (25) correctly describes
the exchange effect in the weak-coupling limit.

V. SPIN RESPONSE

Thus far we have been concerned with formulation of the single-particle Green s function and the density response
function. The formalism can be extended to describe the spin-dependent properties. To do so, we recover the spin in-
dices and consider the spin-dependent Green's functions,

9 (1,1')= i (T—[g (1)g (I'))), (46)

which in conjunction with a spin-dependent external field P (1, 1 ) introduced in Eq. (5) lead to the response functions,

gv —1

„(, ', . . . ;v,v')=, , (T[P (1)g (I')])ly 0 ~ (47)

In particular, y, (1,2) =y','(1+, 1;2+,2) is the density-density response function between the spin components o. and ~,
and g(1, 2) =P,(25,—1)y,(1,2) is the spin response function.

Spin-dependent LFC's are introduced through an extension of Eq. (11), i.e.,

y,(k, co)=yL (k, co) 5,+gu(k)[1 —G, (k, co)]g„,(k, co) (48)

where gL (k, co) is given by Eq. (12) with F& replaced by F~, the momentum distribution function of the spin com-
ponent o.. The LFC's are then formulated as

d dx k.G,(k, co)= — g f f e'" yo', '(k —q, co —x;q, x)Z,'(k —q, co —x)Z, ,'(q, x),
neo, k, co, (2~)4 q

2

by following a procedure analogous to that in Appendix A. Here we recall

Z,'(k, co)=y (k, co)/yo (k, co),

with

(49)

(5O)

yo '(k, co;q, x) =—

yo (k, co)= ——f f P 0 (p —k/2, x —co/2)Q (p+k/2, x+co/2),
(2n )

(2m )
2 f f z [& (p,y)Q (p+ky+co)Q (p —qy —x)+I(k, co)~(q, x)I ] .

(51)

(52)

We have assumed the dynamic convolution approxima-
tions of Sec. III in the calculation of Eq. (49).

For the electron liquid in the paramagnetic state where
G =G and G =G, the spin LFC, J(k, co),
introduced via'

g(k, co)=y~(k, co)/[I+u(k)J(k, co)yi (k, co)], (53)

is calculated as

/'A' f f d qdx k q;„0
neo(k, co) (2m)~ q

~

Xy03'(k —q, co —x;q, x)

Xg '(k q, co )F—x'(q, x—), '



4936 AIICHIRO NAKANO AND SETSUO ICHIMARU 39

where

'(k, co) =g(k, co)/go(k, co) . (55)

Those equations for Q(k, co) and y(k, co) remain un-
changed. Hence, Eqs. (53) and (54), together with Eqs.
(7), (11), (21), and (25), constitute a closed set of equations
for Q(k, co), y(k, co), and g(k, co).

tion approximations in the equations for the response
functions. This scheme of truncation may thus corre-
spond to the dynamic hypernetted-chain approximation
to the integral equations. Solutions to those equations
under specific circumstances will be considered in the
subsequent publications 13, 14
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APPENDIX A: DERIVATION OF EQ. (13)

%"e define an equal-time electron-hole pair response
function y~(k, co } as

yp(k, co)= e' y „(k,co),2'
which obeys the equation of motion:

(A 1)
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d
(co Ak p—/m)y (k co)= —E~F&[1+u(k)y(k, co)] i' f f—

4
e'" u(ci)b&~~'(k q, co x—;q, x)—. (A2)

Here

y~ '(k, co;q, x)= f d(r, —r', )fd[(r, +r', )/2 —r2]

X fd(t, —t2) fd(3 —2) g' '(r'„t, +0;r„t,;3+,3;2+,2)

Xexp[ —ip (ri —r'&) ik—[(r, +ri)/2 —r2]

+ico(t, t, ) —iq. (r, ——r, )+ix(t, t, )] .— (A3)

The LFC is introduced via

(co —A'k-p/m)y (k, co) = b,"F
I 1+u(k)[1—G—(k, co)]y(k, co)], (A4)

in accord with Eq. (11); it is determined through comparison between Eqs. (A2) and (A4) as follows: We first multiply
Eq. (A2) by haik p/m, integrate the resulting equation over p, and then obtain

6 p(co —co )y(k, co)= f (2~)'
Rk.P nk '~~P d q dx k q P (3)yp(k, co)+ + f f 4

e' y' '(k —q, co —x;q, x),
m ~ '

m n (2'�) q
(A5)

where co =(4mne /m)'i is the plasma frequency. In deriving Eq. (A5), we have used the continuity equation,

d p Ak. pcoy(k, co)= f y (k, co),
(2~)3 m

(A6)

which can be obtained by integrating Eq. (A2) over p. Applying the same procedure to Eq. (A4) and setting the result-

ing equation equal to Eq. (A5), we obtain Eq. (13).
We now show that Eq. (13) is exact for either co~ ao or k~0. Multiplying Eq. (A2) by [co—A'k. p/ +miOsgn(co}]

and integrating it over p, we obtain Eq. (11),with G(k, co) given by

l d Pd qdX I.~P u(q)bz~
G(k, co) = P O' IXO g' '(k —q, co —x;q, x),

u(k)yL (k, co)y(k, co) (2m) co haik p/m +iOsgn(co)— (Aj)
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which is thus an exact expression defined in Eq. (11).
Substituting the expansion

[to —Ak. p/m+ iO sgn(co) ] ' = co '( I+erik. p/m co+ . . ),
(A8)

'(1 1')= i + V +~+ u(1 2)Q(2 2+)
Bt, 2m

(82)

in yL(k, co) and in the integrand of Eq. (A7), and keeping
only the leading terms in the expansion, we recover Eq.
(13). Since Eq. (A8) is correct either in the limit co~ ao

or k~0, Eq. (13) becomes exact in these limits. In fact,
we can prove that y(k, co) satisfies the third-frequency
moment sum rule by virtue of Eq. (13), through the same
method as that elaborated in Niklasson.

'(1,2)Q(2, 1')=5(1,1'), (81)

where 5(1,1')=5 (r, —r', )5(t, —t', ). It can be expressed
as

APPENDIX B: DERIVATION OF EQS. (16) AND (22)

The inverse 9 ' of the single-particle Green's function
is deGned via

with the self energy

X(1,1')= —2 'u(1+, 2)y' '(3, 1;2 , 2)Q '(3, 1') . (83)

We take the functional derivative of Eq. (82) with re-
spect to Q(2, 2'), multiply the resulting equation by
g' '(2, 2', 3+,3)Q(4, 1)Q(1',4'), and integrate it over the
indices 1, 1', 2, 2', we thus obtain Eq. (16) with the aid of
Eq. (15) after some relabeling of indices.

To obtain Eq. (22), we perform functional deriva-
tives of Eq. (82) successively with respect to Q(2, 2')
and 9( 3, 3' ), multiply the result by
y' '(4+, 4; 1, 1' )g' '( 2, 2', 5+, 5 )g' '( 3,3', 6+, 6 ), and finally
integrate it with respect to 1, 1',2, 2', 3,3'.
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