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Koshino-Taylor coefficient in electrical resistivity
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At low temperatures the electrical resistivity of simple metals such as potassium has a T term
which is proportional to the concentration of impurities. This behavior was predicted by Koshino
and Taylor. We provide an expression for the coefficient of the T term. It is expressed as a func-
tion of the phase shifts of the scattering of the electron by the impurity.

At low temperature, the electrical resistivity of simple
metals such as lithium and potassium varies with temper-
ature according to '

p(T)=AT +po(l+BT )+op(T) .

The constant term po is due to impurity scattering, and is
proportional to their concentration. The first term AT
is intrinsic and comes from electron-electron umklapp
scattering. The largest contribution to the coeKcient 3
is from phonon-mediated interactions between the elec-
trons. The term B is the subject of the present discus-
sion. The extra term 6p is from a variety of effects: pho-
non drag, dislocations, ' size effects, ' ' and the effects
of the impurities on the phonons. ' '

The term B has two contributions: The Koshino-
Taylor effect' and dislocations. ' Here we wish to
derive a new expression for the coefficient for the
Koshino- Taylor effect.

The Koshino-Taylor effect is due to inelastic scattering
of the electrons by impurities. Since the impurities are
part of the lattice, the scattering by the electrons can ex-
cite phonons. The rate of scattering is also normalized by
the Debye-Wailer effect, which is given in terms of the
thermal Auctuations of the impurity positions.

Accurate experimental data for B have become avail-
able for potassium and lithium. " It seems worthwhile
to derive a more accurate expression for B, in order to
provide a comparison between theory and experiment.
Past derivations expressed B as an average over the
scattering potential of the impurity. A better way to de-

scribe the potential scattering is in terms of the phase
shifts of the electron scattering from the impurity. We
adopt this approach and express B as a function of the
phase shifts. The Friedel sum rule' provides a constraint
on the value of these phase shifts. Furthermore, the term
po provides another function of the phase shifts. These
relations then allow B to be determined within bounds.

INELASTIC IMPURITY SCATTERING

Consider a distribution of impurities at sites R with a
Auctuating displacement Q . This potential can be writ-
ten as

V= g V(r —
R~

—
QJ )

J

=gatv;(q)exp[iq (r —R —Q. )] .
J

We expand it in powers of the displacement, and keep the
first two terms:

V=ggv, (q)exp[iq (r —R, )]

X[1—iq Q —(q Q ) /2+ . ] .

This potential is used to evaluate the scattering in the
second Born approximation. We retain terms of order
O(Q ). The term (q Q) is part of the Debye-Wailer fac-
tor. It is subtracted from the inelastic scattering of pho-
nons. The net contribution to the self-energy of the elec-
tron is

d' d' '
( ')

X (p, E)=n; f [v;(q)]f, I(N .+1)[G (p+q, a+co ) —G (p+q, E)](2~)' ' (2~)' 2pco'

+N .[G (p+q, c, —co ~ )
—G (p+q, E)]I .

Primed q variables refer to the phonon, while unprimed q variables refer to the momentum transfer of the electron dur-
ing the scattering. We use p here to mean the mass of the impurity divided by the volume of the unit cell. This self-
energy vanishes if the energy of the phonon is set equal to zero. This formula is only valid if the impurity mass equals
the mass of the host ions. Later we discuss the correction which is needed when the masses are different. We write

G (p, e)=inF(E)A (p, E), X (p, F)=inF(E)21 ~~(p, e),
which defines the Koshino-Taylor energy uncertainty:
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(p, E)=n; f [v;(q)]2f ', [[X+n~(&+co )]A (p+q, E+ro~ )
d'q 2

d'q' (q g')'
(2~)' ' (2ir)' 2pco'

+[N, +1—nz(e —co ~ )]2 (p+q, e—
coq ) —(2' +1)A (p+q, E)] . (2)

We change the electron-impurity potential v;(q) to a T
matrix' between initial (p) and final (p') electron wave
vectors. Furthermore we add a factor of (1—cos8) to the
integrand to account for the scattering back in the formu-
la for the resistivity. The angle 0 is between p and p'.
The phonon part of the integrand is given by a function
we define as g (u):

d
(k~/p)g f g'g', 6(u —coi„(q'))=5 ~(u),

(2~)
(3)

where A. is the polarization of the phonon. The right-
hand side is proportional to a delta function of the (x,y, z)
components (p„v) which is required by cubic symmetry,
which we are assuming. The function g(u) is dimension-
less. The delta function means that the factor (q g') be-

comes

We find that

S, = pl sinz(ni —ii) i),
1=1

l(l —1)
SKi. =2 S;—g sin (5i —5i 2)

, 22l —1

(5)

Collecting all of these results gives the expression for the
KT term in the resistivity

D 12I Kr(E) =IKi.f du g( )[un~( su+) —n~(—ue)] .
0 u

We write nz(E —u)=1 —nz(u —c, ) and the 1 term gives
an uninteresting constant. At low temperature the T
term comes from the integral at small u. From Eq. (3) we
find that g =yu at small u. Then the u integral is
changed to y =pu so that we find for I Ki.

q =(p —p') =2k+(1 —cosO) .

The integral over p' decouples from the integral over
phonon coordinates. It is useful to define the integral

d pIK~=n, T ~ 1 —cosO 3 p', c.
(2ir )

The same factors appear in the expression for the resis-
tivity from impurity scattering. However, this factor,
which we call I;, has only one factor of (1—cos8). It is a
good approximation to evaluate both of these expressions
as if the scattering were elastic. Then the T matrices can
be expressed in terms of phase shifts, ' and the integral
expressed in terms of them. We define S for j =i or KT
according to

4m.n;I = S
Pl F

2I Kr(e) =yIKr(k~ T) z(pE),

00 1z(x)= f dyy
0 e +~+1 e~ +1

The coemcient 8 is this expression divided by p0T . Thus
we get that

BKr =~ ykiiR/3,

R —SK~/S; .

There remains just the task of evaluating the phonon con-
tribution y. From Eq. (3) it can be written as

y=[k'/(2 p)](g„/ '),
where ( ) indicates an average over 4' of solid angle
plus a summation over acoustic-phonon branches, and c
is the phonon velocity which depends upon solid angle.
For monovalent metals the density p can be written as
the ion mass M times the particle density k~ /3m . Ex-
pressing k~ in terms of the electron density factor r, by
kza0 = 1.9192/r, gives the expression

BKr=(bRr, /M)(g„/c ),
b =sr k~ a 0(/2X1. 199 )2,

which is our final expression. If we express M in atomic
mass units and ( ) in terms of 10 ' s /cm, then
b=1.48X10 4K '.

The only expression which may present difhculty is the
ratio R in (6) between the phase-shift expression for the
KT process divided by that for the impurity scattering.
However, we find that this expression is simple to evalu-
ate. First, we assume that the only nonzero phase shifts
are s, p, and d. This approximation is accurate in simple
metals, as shown by experiments on electron scattering
from core holes. ' Second, the Friedel sum rule relates
these three phase shifts to the impurity valence Z, which
is the difference between the charge on the impurity and
the host-metal ion

Zvr/2=60+35, +552 .

In calculating the conductivity, we have to average c. over
its range of thermal values. This average is

(z) = J dgz(PE)[ —Bn (E)/Be] .

The above expression is a double integral in x =pc. and y.
It is easy to do the x integral first, and the result gives a y
integrand of 2yB[ynii(y)]/By. Then the y integral is also
easy, so that (z ) = sr /3. Our result is

2I =n yI (k T) /3.
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small for Z =0 impurities, (5) can be approximated by
setting sin f =f . Then the Friedel sum rule and the ex-
pression for S; provide two equations for the unknowns
5O and 5, . Solving these two equations gives

no=s, '"(2~+T),
5 =S' ( a+—T/3),
T=(1—12a )' /&2 .

The factor of S, cancels out of the ratio
R =S~T/S, =F(a). By varying a within its bounds of
+1/12', one finds the maximum value of R is 1.80 and
the minimum value is 1.06. In Fig. 1(a) the curve for
52=0.04 comes close to both of those bounds. Thus for
Z =0 the knowledge of S; does not provide any informa-
tion towards determining R. Instead, it only provides a
scale factor on the phase shifts.

All ions in the metal move together in long-wavelength
acoustic motion. So there is no correction for the
difference in the ion mass, or in the difference in bonding.
This theory should apply to every impurity.

DISCUSSION
FIG. 1. The ratio R defined in Eqs. (5) and (6) is plotted as a

function of phase shifts of an electron on the Fermi surface
scattering from the impurity. The Friedel sum rule determines
5O once 5& and 52 are specified. Part {a) is for an impurity with
the same core charge as the host ions (Z =0},and part (b) is for
an impurity whose charge state differs by one (Z = 1)~

So if we vary 5& and 52, then 50 is determined. Figure 1

shows a graph of R plotted for Z =0 and Z =1 for
different values of the phase shifts. These values encom-
pass the range of likely physical values. For Z =0, then,
R has values between 1.06 and 1.80. For Z = 1 the values
are between 1.2 and 1.4. The parameter B has only a
slight dependence upon the values of the phase shift for
the impurity with Z =1, but a large dependence when
Z =0.

The constant impurity resistance po is also obtained by
the fitting to the data. Using the standard formula'

po=g (n; /no)S

g =2h /e kF = 1.42 X 10 r, fl cm .

The experiments usually determine S;. For Z&0 this in-
formation puts another constraint upon the phase shifts.
However, for Z =0, a knowledge of S; does not help. In-
stead, it provides a scale factor for all of the phase shifts
which factor out of the ratio when R is evaluated. For
example, set 52=aS . Since the phase shifts are all

A new expression has been derived for the Koshino-
Taylor coeKcient for the low-temperature resistivity of
simple metals. Here we wish to compare our result to the
available experiment results.

For potassium we find for the average over sound-wave
directions that ( ) =0.466. Z =0 for the rubidium im-

purity. Using 1.06&R &1.8 gives in units of 10 K
the bounds on B of 0.93&B &1.58. The experimental
values"' of 1.20 and 1.23 X 10 K are near the aver-
age of our extremal values. For this case we find that
S;=0.088 and the phase shifts all have a magnitude of
0.1 rad.

For the cubic form of lithium we find that
( ) =0.0452. Using R =1.3 for Mg impurities (Z =1)
gives B =0.40X 10 K . The experimental result" is
0.16X10 K . The comparison for lithium is inap-
propriate since it changes its structure at low tempera-
ture to the 9R phase, which is hexagonal rather than
cubic. The experiments are done at low temperature.

Experimental values are only available for lithium and
potassium. Sodium and rubidium do not have a tempera-
ture regime where the T is well defined. Thus the only
comparison which is reasonable is for potassium.
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