
PHYSICAL REVIEW B VOLUME 39, NUMBER 8 1S MARCH 1989-I

Mobility, interdiffusion, and tracer diffusion in lattice-gas models o& two-c«ponent ai»ys

K. W. Kehr
Institut fu'r Festkorperforschung der Kernforschungsanlage Ju lich',

Postfach 1913, D 5170-Jii lich, Federal Republic of Germany

K. Binder
Institut fu'r Physik, Universitat Mainz, Postfach 3980, D 6500-Mainz, Federal Republic of Germany

S. M. Reulein
Institut fiir Festkorperforschung der Kernforschungsanlage Ju lich,

'

Postfach 1913, D 5170 J-ulich, Federal Republic of Germany
(Received 18 July 1988}

The transport properties of lattice-gas models of alloys with two particle species are studied. The
numbers of the particles and vacancies are conserved, and the two particle species have different ex-
change rates with the vacancies. The mobility and interdiffusion is described by the linear Onsager
theory of transport. The Onsager coefficients are estimated from numerical simulations of the
mobilities. A recently proposed relation between the Onsager coefficients of the random-alloy mod-
el is verified. The interdiffusion of the two species is directly monitored in the simulations; it is well
described by the estimated Onsager coeNcients. The results on interdiffusion are compared with
simulation results on tracer diffusion. The'interdiffusion cannot be expressed by the average, or the
inverse average, of the tracer-diffusion coefficients. An exception is the case of identical transition
rates where the interdict'usion coe%cient is given by the tracer-diffusion coefficient.

I. INTRODUCTION

In this paper we investigate the interdiffusion in
lattice-gas models of two species of particles with
different transition rates. Interdiffusion is a common
phenomenon in metal physics. Many investigations were
done of interdiffusion of one species of metal atoms into
another, and also of the interdiffusion in random alloys.
Reviews of the theoretical concepts, together with refer-
ences of experimental work, can be found in Refs. 1 —3.
Interdiffusion has also been studied experimentally and
theoretically for polymer mixtures (for a short review, see
Ref. 4). A central question in both fields is how the pro-
cess of interdiffusion is related to simpler physical quanti-
ties, for instance, self-diffusion coefficients of the indivi-
dual species. In this context some controversy arose in
the field of polymers.

We decided to investigate interdiffusion of two species
of particles in lattice-gas models, since they are wel1-
defined models, where the theory can be developed ex-
plicitly to some extent, and, second, since they are easily
amenable to numerical simulations. Of course, these
models contain simplifying features compared to real sys-
tems. For instance, the creation and destruction of va-
cancies at imperfections makes important contributions
to the diffusion properties of mixtures of metals. Such
processes are di%cult to incorporate into the theory or
into simulations and we omitted them completely.

We describe interdiffusion and self-diffusion in the
lattice-gas models in terms of the Onsager formulation of
linearized nonequilibrium thermodynamics. The neces-
sary thermodynamic functions are obtained from the

statistics of the lattice gases. This is done in Sec. II. Our
aim is an unambiguous formulation of the interdiffusion
process, which in our opinion ean be achieved for these
well-defined models. The Onsager coe%cients-which are
undetermined parameters in the formulations of Sec. II
are determined from numerical simulations in Sec. III.
Here we explore various ratios of the transition rates and
the concentrations of the particle species. The exactly
known case of equal transition rates is verified; other lim-
iting cases are also easily understood, as will be discussed
in this section. The Onsager coefficient are then used to
evaluate explicitly the interdiffusion process in Sec. IV.
The results are compared with direct numerical simula-
tions of the interdiffusion process, where the decay of
concentration profiles is monitored. It turns out that a
complete description of the interdiffusion process is
achieved, within the accuracy of the numerical simula-
tions. The problem of possible relations of interdiffusion
with self-diffusion is taken up in Sec. V. The tracer-
diffusion coefficients of both particle species are deter-
mined by numerical simulations and compared with the
Onsager formulation of self-diffusion and with controver-
sial propositions for their relation with interdiffusion.
Section VI first summarizes the conclusions of our study
of interdiffusion in lattice-gas models. Thereafter the
connection and also the differences to interdiffusion in
metal alloys and polymers are discussed.

II. ONSAGER DESCRIPTION OF INTERDIFFUSION

A. Thermodynamics of lattice-gas models

In this section we will describe interdiffusion of
lattice-gas particles in the frame of Onsager's linearized
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where

0A+Pa+Pv=l . (2.1b)

To give a specific form of the free energy I' of the lattice-
gas model we assume a mean-field-type interaction of the
particles, or, equivalently, we utilize the Bragg-Williams
approximation,

F=kB T NAlnNA +NBlnNB+NVlnNV

NB Nv++AA 2N +BB 2N +vv 2N
+ +

nonequilibrium transport theory. The thermodynamics
of lattice gases is required as an ingredient and developed
in this section. We consider a lattice with N sites, occu-
pied with N A particles of species 3, NB particles of
species B, and Nv vacancies. For comparison with relat-
ed work we treat vacancies in this section as a separate,
independent species. We consider NA, NB, and Nv as
variable quantities (alternatively we could regard the
number N of sites as varying). Of course, N =NA
+NB+Nv. It is expedient to introduce the fractional oc-
cupancies

NA NB Nv
0A N & NB N ~ NV

f3' A=13f+(1—tiA)(ln t~iA+1+X AA4 A+X Aa tiia+X Av(()v)

PB( PB+ +XABNA+XBBNB XBVPV)

v(lndv+1+XAVNA +Xavla+Xvvlv) (2.6a)

&va =&f 0A—(»0A+1+XAANA+xABPB+XAvkv)

+(1 OB )( nba+ 1+XABPA +XBBPB+XBVPV)

0 v(in' v+ 1+XA v(t'A +Xavla +Xvvk v)
(2.6b)

PV V=Pf NA(l—n4 A+1+XAANA+XABOB+XAVPV)

ya ( lnya + 1 +XAa 4 A +XBBpa +Xav(t' v )

+(1 (v )(lndv +1+XAvNA +Xavda+Xvvdv)

(2.6c)

where p=(kBT) '. Note that three chemical potentials
appear, since we consider NA, NB, and Nv as varying
quantities. However, they are related to each other by
the Duhem-Gibbs relation.

The Duhem-Gibbs relation is a consequence of the ex-
tensivity of the energy as a function of extensive vari-
ables. We have

NANB NANV NBNV
+XAB N

+LA v N +XBv N
dF= —SdT+g p; dN;, (2.7)

(2.2)

The coefficients g, specify the interactions of the
different species of particles and vacancies. A modifi-
cation in the entropy term is necessary if polymer chains
of lengths nA, nB are considered; this possibility will be
disregarded. The free energy per lattice site f=F/N is
then given by

dE = T dS+g p; dN; (2.8)

and, since E must be a homogeneous function of degree 1

of the extensive variables,

E= TS +g p;N;, . (2.9)

where S is the entropy. Introducing the energy
E =I'+ TS we obtain

f=ka T(pA in(t A +palnpa+pvlnitiv

2XAA(t'A+ ~XBBNB+ ~Xvvpv

or, equivalently,

f PA( A +PBPB +AVIV (2.10)

+XAB&A &B+XAVNA Nv+Xavkapv ) . (2.3)

The chemical potentials of the different species are ob-
tained from the standard definition

This last relation is easily verified from Eq. (2.5).
We did not specify the volume or the pressure in our

derivations. There is no need to do so in the lattice-gas
models, but one may include one of these variables.

Comparison of the differential

aI'
aN,

(2.4)
df= —sdT+ g dP;

a

i 1

(2.1 1)

Using F=Nf and differentiating with respect to the P,
we have

v, =f+X
&

a

J
(2.5)

where the sum runs over 2, B, and V. The chemical po-
tentials are given explicitly by

with the explicit differential of (2.10) and use of (2.5) es-
tablishes the Duhem-Gibbs relation in the form, valid for
isothermal processes ( d T=0 ):

dPA+Pa dPB+Pv dPV=0 . (2.12)

It is frequently assumed in metal physics and also in poly-
mer physics that pv is identically zero. This leads to a
reduced form of the Duhem-Gibbs relation. The use of
@v=0 is justified in these articles by the assumption of a
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"local equilibrium" of the vacancies. We will comment
on this assumption in Sec. VI. In our work we will not
make this assumption, i.e., pv will be explicitly taken into
account. Although we will not use (2.12) explicitly, it
will be fulfilled in our derivations.

B. Onsager formalism

We have locally, at each instant of time,

c„(r,t )+cB(r, t )+cv(r, t ) =1 . (2.13)

We assume now that the particle and vacancy numbers
Nz, XB, and Nv are conserved. These conservation laws
lead locally to the continuity equations

Bc +V.jq =0
Bt

BCB +V.jB=0,
at

acv
+V jv=0.

at

(2.14)

The current densities j; have dimensions of velocities.
They could be redefined by introducing the volume per
lattice site, but this is not done here. From (2.13) we find

V (J„+3B+3v)=0, (2.15a)

and since we will not admit uniform or rotational flow
patterns,

We now consider nonequilibrium situations, character-
ized by gradients of chemical potentials and particle den-
sities, which lead to particle currents. We assume that a
hydrodynamic description is possible, i.e., that local ther-
modynamic equilibrium exists. In the usual way the glo-
bal variables P; are replaced by space- and time-
dependent local variables, which we call concentrations,

A~c A(r, t), PB~cB(r, t), P v~c v(r, t) .

AAA +ABA +A VA

A~B+ABB+ A VB
—0,

A~v+ABv+Avv —0 .

(2.19)

These relations allow the elimination of all Onsager
coeScients that involve the vacancies

AVA (AAA + ABA ) ~

AvB ——(A„B+ABB ),
Avv —A~~+2A~B+ ABB

(2.20)

Using these relations the particle current densities jz and

jB can be expressed in the following form:

JA ~AAA V(P'A Pv) ~AABV(PB Pv) ~

3B
— pABA V(P A Pv) ~ABBV(PB —

P v )
(2.21)

Note that only the diff'erences P ~
—P v and PB —P v aP-

pear. The form of Eqs. (2.21) is essentially a consequence
of particle-number conservation, as is evident from their
derivation.

The next step is to relate gradients of chemical poten-
tials to gradients of particle concentrations. This can be
achieved, for instance, by using the chemical potentials
derived within the mean-field approximation in Sec. II A.
The P; are given by Eq. (2.6) where the p; should be sub-
stituted by c; (r, t ). We obtain

1
++HA Vcg +ggBVcB+ggvVcv

PB, and P v, we must require [although the P; are related
by the Duhem-Gibbs relation, the condition (2.18) is
completely independent of it]

jA+ jB+jV (2.15b) +A VVCA ++BVVCB

The constitutive linear equations relating the current
densities to the gradients of the chemical potentials are

(2.16a)

1+ +XVV «v
cv

3A
——pAAAVPA /3AABVPB 13—AAvVPv ~

JB I ABA VPA I3ABBVPB 13ABVVP'v

3v I AVA VpA ~AvBVpB I AvvVpv

(2.22)
1

+BB VcB ++BvVcv
CB

(2.16b) PV(PB P v ) =XAB«A +

(2.16c)
A VVCA ++BVVCB

These equations define the Qnsager coe%cients A; . For
simplicity we have assumed isothermal processes, i.e., no
temperature gradients are allowed. Also, external forces
have been omitted in (2.16); they will be introduced in the
following section. The Onsager symmetry relations re-
quire

1
+Xvv «v

Cv

(2.17)AAB ABA& AAV AVA& ABV AVB

The condition (2.15b) of vanishing total current yields a
further condition,

(A A A + ABA +A vA )VPA +(AAB +ABB +AvB )VPB

+(AAv+ABv+Avv)Vpv=0 . (2.18)

In order that this condition be fulfilled for arbitrary p~,

The concentrations c; in the large parentheses should be
replaced by their global values P, , in accordance with the
linear theory of transport. From now on we use c; both
for the local and global variables; the meaning will be
clear from the context.

It remains to eliminate the gradient of the vacancy
concentration by using Vcv= —V(cA+cB ). We can then
give the linear relations between current densities and
gradients of particle densities. While we have used Latin
indices for the three components A, B, and V, we now
use Greek indices for the two species 3 and B. We have
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j = — g DpVcp,
P= A, B

(2.23)

where the elements of the diffusivity matrix are given by

1

CA

1+ +XAA+Xvv —2XA v
CV

1
++AB ++AB++VV +A V +Bv

CV

1
DAB +AA ++AB ++VV +A V +BVcv

1 1+&AB + +EBB+Xvv
—2XBV

CB CV

(2.24)
1

DBA +AB
1+ +LA A +XVV

—
2&A v

CV

1
++AB++VV +A V +Bv+ABB

cv

1
+LAB+XVV XA v XBVDBB +AB

CV

1 1+&BB + +EBB+Xvv
—2XBV

CB CV

Note that the matrix D & is no longer symmetric, con-
trary to A &, but it is diagonalizable.

Although (2.24) is given in the Bragg-Williams approx-
imation, the result is more general, if the coeKcients g
are identified with appropriate second derivatives of the
free energy per site.

Finally we combine the linear current relations with
the continuity equations for the particle species to obtain
a generalization of the diffusion equation,

BC~ = gD pV cp .
p

(2.25)

The concentration dependence of D
&

would entail an ad-
ditional term on the right-hand side of (2.25). However,
Eq. (2.25) is valid for linear deviations of the concentra-
tions c from their equilibrium values.

We point out that once the set of three Onsager
coefficients A & is known, and the equilibrium free energy
per site, then the diffusion matrix entering Eq. (2.25) is
completely specified. The further evaluation of (2.25) will
be deferred to Sec. IV. It will be shown in that section
that (2.25), together with appropriate boundary condi-
tions, provides a complete description of interdiffusion in
the lattice-gas models under consideration.

We close this section with a remark on the literature of
this subject. The Onsager formulation of particle trans-
port in Auids and solids has been considered in many arti-
cles; also questions such as the correct choices of the
reference frames were frequently discussed. In most of
the work the assumption that the vacancy concentration
is regulated by the equilibrium condition pv=—0 is made
at an early stage (see, for instance, Refs. 1 —3). One ex-

ception is the formulation of multicomponent diffusion in
crystals in Ref. 5. To avoid confusion we preferred to de-
velop the appropriate Onsager description of transport
for our lattice-gas models with conserved numbers of va-
cancies without reference to previous formulations.

III. DETERMINATION OF THE ONSAGER
COEFFICIENTS

A. Simulatioi procedure

j, = —g pA, J. ( Vp —FJ ) .
J

(3.1)

The sum runs over A, B, and V and isothermal condi-
tions are assumed. We do not consider any external
forces acting on the vacancies. Thus we may eliminate
the Onsager coeScients related to vacancies as in Sec. II.
Also, we assume vanishing gradients of the chemical po-
tential, equivalent to the absence of concentration gra-
dients. The constitutive relations are then simply

j =+A 13F
r

(3.2a)

or

1
v =g A PF&,

C~
(3.2b)

where the sum runs over A and B and v is the velocity
of species a. The force on one species of particles, say y,
is implemented by taking the transition rates in the x
direction as

I-~r~=b, I- I-~r~ =b, —~I
x r~ —x r (3.3)

The Onsager coeKcients of the lattice-gas model with
two species of particles are not known exactly except for
the case of identical transition rates of both species.
Hence we estimate the Onsager coe%cients of the model
by numerical simulations for various concentrations and
ratios of the transition rates, in two and three dimen-
sions. Up to now the dynamics of the model was not
clearly specified. In fact, the phenomenological Onsager
formulation of Sec. II does not require such a
specification. The dynamics that we use is exchange of
vacancies with both particle species. The transition rate
of an A particle to a vacant site shall be I A, and that of a
B particle I B. Direct exchange of the particles is exclud-
ed; hence the model is relevant to metal and polymer
physics. Further, all interactions between the particles
are neglected, except the exclusion of double occupancy
of lattice sites. Following the usual terminology we call
this model noninteracting. Also the designation random-
alloy model is commonly used.

We assume a uniform force in one direction imposed
on one species of particles. Such a force is easily imple-
mented in numerical simulations by introducing a bias of
the transition rates of this species in one direction. When
external forces F act on the particles of species j, the
linear relations (2.16) between driving forces and current
densities are extended to
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In the linear regime,

u„'~ =r/3F (3.5)

This expression follows from the Onsager coefficient of
one species of noninteracting particles, A=c(1 —c)r, in
the limit c —+0. Hence we have

U(a)
AIc

X

(3.6)

when a force is exerted on particle species y. We will
take I as the time unit in the representation of the On-
sager coefficients; thus I =1 in Eq. (3.6).

The simulation of drift in lattice gases when a force in
one direction is imposed on the particles was pioneered in
Ref. 6. The random-alloy model with a force imposed on
one particle species was studied by simulations in Ref. 7.
In that work a quantity related to the Onsa ger
coefficients was deduced at very small vacancy concentra-
tions only; hence no direct comparison will be made.

In our simulations the mean displacement of the parti-
cles is monitored; see Ref. 8 for a general review of the
simulation procedures in lattice gases. Since small vacan-
cy concentrations are investigated (cv 0. 1) it is advan-
tageous to attempt to move the vacancies in each single
step. In fact, only the exchanges of A - V or B-V pairs are
relevant. The time unit in the simulations is the Monte
Carlo step per particle (MCS/p); within a Monte Carlo
step each particle has attempted once, on the average, to
make a transition to a neighbor site. Necessary
redefinitions to keep transition probabilities in each direc-
tion 1 are included in the definition of the MCS/p.

with b ) 1. The transition rates in all other directions are
r . To circumvent the (practical) problem of explicitly
determining the force, we consider the drift of a single
particle in an otherwise empty lattice. Its transition rates
in the x direction are I „=bI, I =b 'I, and in the
other directions I . Its mean velocity in the x direction is

(3.4)

I I I I I I I I I

~ ~
~ ~ ~

—2.0K10

These details are irrelevant for the determination of the
Onsager coefficients in the linear regime, but some care is
appropriate to evaluate correctly the single-particle ve-
locities used in Eq. (3.6). Since these details are rather
technical, they are omitted here. Usually the B particles
were taken as the faster species.

Fijure 1 shows typical displacements of A and B parti-
cles where a force acts on the B particles and the A parti-
cles have a transition rate I z = I z /10. Note the
different scales for the displacements of both species. It is
seen that the drift of the A particles is reduced by a
larger factor than 10. Namely, the A particles acquire
their drift velocity indirectly through the collisions with
the B particles. It can be shown for independent particles
that the mean displacement is self auevagin-g, contrary to
the mean-square displacement. Hence it suffices to moni-
tor the displacements on one sample for sufficiently long
times.

In the simulations with drift we used 50 sites in D =3
and 400 sites in D =2 and periodic boundary conditions
were imposed. We took four different values of the bias
parameter and run all programs with bias in the +x and
—x directions. The number of MCS/p was chosen such
that the equivalent single-particle displacements were al-
ways larger than 600. The simulation results were evalu-
ated according to Eq. (3.6) and the results on A &/c
plotted. An example is given in Fig. 2. Lines were drawn
by hand through the data points and the values for b = 1

taken as estimates for A &/c . The results on the On-
sager coefficients will be discussed in the next section;
here the validity of the procedure used will be discussed.
Of course, the trivial test with a one-component lattice
gas was made, where the Onsager coefficient is exactly
c (1—c)r. A nontrivial test is provided by the lattice gas
consisting of two species of particles with identical transi-
tion rates (to be visualized as identical but differently

:12

LJ
cf~8

—1.6

—1.2

QJ
E
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—
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—
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0
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time (PCS/p j

20
0
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3.2—
I I I I I I I I

1.1 1.3 1.5 1.1 1.3
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0
1.5

FIG. 1. Mean displacements of A (open circles) and 8 (solid
circles) particles as a function of Monte Carlo steps. The con-
centrations were c& =c& =0.48, the bias parameter b =1.1, and
the ratio of the transition rates I &/I"& =0.1. The number of
sites was 50'.

FIG. 2. Determination of Onsager coeKcients A &/c by ex-
trapolation to bias parameter b =1. The concentrations were
c&

=0.64, c& =0.32, and the ratio of the transition rates
I & /I & =0.1. The number of sites was 50 .
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colored particles). The Onsager coeflicients of this two-
component system are given by' (see also Sec. V)

CACB
A~s = (1—c)[1—f(c)]I

c, (1—c)r —A~a

A~s =cs(1—c)I —A„s,
(3.7)

0.10

0.08- —ABB
CB

where c =cz +cB is the summary particle concentration
and f (c) the corresponding correlation factor for tracer
difFusion. This factor may be determined by simulations
(see, e.g. , Ref. 8); a sufficiently accurate approximation is
provided by the theory of Nakazato and Kitahara. We
checked the validity of our procedure by simulation of
the lattice gas with difFerently colored particles at several
concentrations in D =3 and one concentration in D =2.
An example is given in Fig. 3. The discrepancies between
theory and simulations were at most 2%. Another indi-
cation of the accuracy is given by the dift'erence of the
data points for drift in the +x or —x direction. A some-
what better accuracy can be achieved in D =2, due to the
stronger weight (—,

' instead of —,') of the direction with a
bias. We believe that the Onsager coefFicients so deter-
mined have an accuracy of 2 —3%%uo. Further points which
corroborate the accuracy of the determinations are the
fulfillment of the Onsager symmetry relations (see Sec.
III 8) and the very good description of interdiffusion pro-

vided by these coefficients (see Sec. IV). Of course, the
accuracy could be increased by the use of more comput-
ing time, but this did not seem reasonable to us.

Very recently, exact relations between the Onsager
coefFicients of the random-alloy model, i.e., with nonin-
teracting particles, were derived' from the correlation
functions of linear-response theory. These relations are,
in our conventions,

A„„/I ~+A„~/I'a =c~(1—c),

A ~s /I ~ +Ass /Ps =cs (1—c),

(3.8a)

(3.8b)

with c the summary concentration. We checked the va-
lidity of these relations by our simulation results (see Sec.
III B).

B. Results

The results for the Onsager coefficients in three-
dimensional two-component lattice gases are given in
Table I. The dependence on the ratio of the concentra-
tions is as expected from simple considerations. Note the
good fulfillment of the Onsager symmetry relation
A ~B =ABz. It is also evident for c~ =cB and
I z =I B/10 that the Onsager coeScients are approxi-
mately proportional to cv, as is the case for I ~

= I B, cf.
Eq. (3.7). The Onsager coefficients given in Table I will
be further used in the following section. Table I also con-
tains a test of the relations (3.8) derived recently. ' It is
seen from the third and fourth lines of each block that
these relations are fulfilled within the accuracy of the
simulations.

The results for the two-dimensional two-component
lattice gases are represented in Figs. 4—6. In D =2 all
simulations were performed with c&=0.04. The special

0 06-
OJ
C)
LJ

g 0.04-
C:

C3

0.02-
AAB

A

1
2

tA

C:
CU

LJ

OJo
LJ

10
cf

C)

0.1
0.0

0,02

1.3

bias parameter
1.5 l I I

0.1

ratio of transition rates

0.01
I l

0.01 0.2 0.5 'l.0

concentration

FIG. 3. Determination of Onsager coefficients A &/c in the
case of equal transition rates I &

= I z for D =3 dimensions and
the concentrations c& =c&=0.45. The correlation factor at
c =0.9 is f (c)=0.697 and the theoretical predictions according
to (3.7) are indicated by arrows.

FIG. 4. Onsager coefficients A» of two-dimensional alloy

systems. (a) Coefficients as functions of the ratio I ~ /I & of the

transition rates; the concentration c& is indicated as a parame-

ter. (b) Coefficients as functions of c~, with the ratio l & /I z as

a parameter. All curves are guide lines to the eye.
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AAB «d ABA
(b)

C:
CU I

CU
C)
LJ

10
C7l
C5

C:
CD ABB

0.01
I I I I I

0:I

ratio of transition rates

(b)

I

0.2
I

0.5 1.0
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tA
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LJ'

CLI
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C7l
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0.1
ratio of transition rates

0.2

0.01~
I I

0.01 0.2 0.5 1.0
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FIG. 5. Onsager coefficients ABB of two-dimensional alloy
systems. See Fig. 4 for more details.

FIG. 6. Onsager coefficients A AB and AB A of two-
dimensional alloy systems. See Fig. 4 for more details.

case I z =I z is also included in the figures; it has been
determined from Eq. (3.7) and verified for cz =0.48. The
following features emerge from the data.

(i) The Onsager coefficient A z z is proportional to
I z/I z, for large ratios of the transition rates. This
coefficient describes the mobility of the slow species of
particles in a background of rapidly moving particles.
The limiting value for I z /1 z «1 is evidently

(3.9)

which is the appropriate generalization of the Onsager
coefficient of the one-component system.

(ii) The Onsager coefficient Aiiii seems to become pro-
portional to I ~ /I z only for large concentrations c~ and
large ratios of the transition rates. In fact, there should
be two distinct regimes, according to whether c~ is larger

or less than 1 —c z, where c z is the percolation concen-
tration of the vacancies (c I, =O. 592 75 for the square lat-
tice). When c„)l —c I, , proportionality with I z /1 z
means that the 8 particles can only move as allowed by
the motions of the 3 particles. In this regime the long-
range mobility of the 8 particles vanishes when the 2
particles become immobile. When c~ & 1 —c ~ there
should be a limiting mobility of the B particles even for
immobile 3 particles. The approach to the limiting be-
havior is not yet clearly seen in our data for
I z/I z =100. A separate investigation of this regime
with fixed 3 particles is planned. Of course, the limiting
concentration cz =1—c z would lead to interesting be-
havior related to the percolation problem. Single-particle
diffusion in this regime was studied by several authors. "
The multiparticle aspect of this problem has also been in-
vestigated.

TABLE I. Onsager coefficients and test of the relations (3.8) for random alloys in D =3 dimensions. The arrangement of the
coefficients and of the right- and left-hand sides of (3.8) is shown in the first block. The ratio y =1

A /I B was always 0.1. Note that
I B = I and I = 1 in our representation of the Onsager coefficients.

/CB 1/2 2/1

0.01 + A A

+BA
+AB++AA /V
CA(1 —C)

&AB

+BB
+BB++BA /f

4.63 x 10-'
1.93 x 10-'
4.82x 10-'

1.91 x 10-'
2.96X 10
4. 87X 10

4.95 X 10

0.04 1.20x10-'
5.50x 10
1.26 x 10-'
1.28 X 10

5.38 X 10
1.96 x 10-'
2. 50X 10
2. 56X 10

1.81 X 10
7.49 X 10
1.88X10 '

7. 15x10
1.18x 10-'
1.90 x 10-'

1.92X10 '

2.44X 10
6.91 x 10-'
2. 51 X 10

—'
2.56 x 10-'

6.85x 10
5.66 x 10-'
1.25x 10
1.28 x 10-'

0.10 4.32x10-' 1.53x10-'
1 ~ 49 x 10 2.97x 10
4.47 x10-' 4.50x10-'

4.5 x10-'
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(iii) The Onsager symmetry relations A„B=AB„are
fulfilled in D =2 within the accuracy of the simulations.

(iv) The behavior of the cross coefficients as a function
of concentrations and transition rates is intermediate be-
tween that of the diagonal coefficients. This is evident in
view of relations (3.8). We could also verify the validity
of these relations by our estimates for the Onsager
coefficients in D =2. The accuracy was always similar to,
or better than, the one in D =3. Thus, in the random-
alloy model at given concentrations, ratio of the transi-
tion rates, and lattice type, there is only one independent
Onsager coefficient. '

IV. INTERDIFFUSIQN

f, =n(D„, 1, D—„,),
n; =[DBA +(k, D—

AA ) ]

l —+,
f, etj, =v5 ti

and

fai e aj
= vfiij

The left and right eigenvectors fulfill

(4.6)

(4.7)

(4.g)

A. Theory

The theory of interdiffusion in the lattice-gas model
with two species of particles is very simple, once the On-
sager coefficients are known. It consists of solving the
diffusion equation (2.25) with appropriate initial condi-
tions. The equation reads

c (r, 0)=c +6c (0)cos(k.r), (4.9)

where v is a normalization factor whose explicit form will
not be reproduced here.

We assume that we have initially a density profile given
by a constant term plus one Fourier component as devia-
tion,

a—c =gD &V cj3
p

(2.25')
where the wave vector k is related to the wavelength of
the deviation by ~k =2m/A, . The solution of the diffusion
equation yields

and the coefficients D tj are given in (2.24). This equation
is decoupled by a linear transformation

ca= ge, a (4.1)

where the eigenvectors e, and the corresponding eigen-
values k; follow from

g D pep; =A.;e
P

(4.2)

Explicitly,

~ =
—,'(DAA +DBB )+—,

' [(DAA —DBB )'+4DABDBA ]'"
(4.3)

c (r, t)=c +5c (t)cos(k.r),

where

5c (t)= —g g e,f@5cB(0)exp(—A, , k t) . (4.10)
1

v; p

We thus find the decay of the Fourier component as a
superposition of two exponential decay modes. The de-
cay constants are given by the eigenvalues k+, A, of the
diffusivity tensor times k; the relative weight of the de-
cay modes is determined by the initial conditions and the
eigenvectors e, f.

Before we compare solutions (4.10) with simulations,
we consider two simplifying cases.

1. Case of small vacancy concentration

Here we discuss the general case where the interactions
between the particles and the vacancies are included. If
the following inequalities hold simultaneously,

e, —m;(D„B, A, , D„„), —

m, = [DAB+(A., D„A ) ]— (4.4) 1
+X~~ +Xvv 2X~ v ~v «1 (4.11a)

A vector notation with respect to the particle index has
been adopted.

Since the matrix D
&

is not symmetric but diagonaliz-
able, one needs also the left eigenvectors,

1
+ggg+gvv —2+gv cv « 1

Cg

(XAB+Xvv +Av XBv)cv « 1

(4.11b)

(4.11c)

g f;D t3=A, f@ . . (4.5)
the solution k+ [Eq. (4.3)] may be expanded in cv, and
only the two leading orders need to be kept. Inserting
Eq. (2.24) into Eq. (4.3) we first find
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A, +— 1

2cv AA AB
1

+A A ++VV 2XA V

1
+EBB+XVV+2AAB(XAB+XVV XAV XBV)+ABB

CB

1

2cv
1

BB +CVAAA +AA ++VV 2XA V

1cVABB
CB

+~BB+xvv
—2xBv

2

+4A AAABB[1+ cv(X AB+Xvv XAv XBv)]

+4AAB 1+cv 1

+NCAA

+x VV
—2x Av

11+cv +EBB+Xvv
—2XBV

CB

1
+4AABABB[1+cv(X„B+Xvv—

XAv
—XBV)] 1+cv +XBB+XVV—2XBv

CB

+4AAAAAB[1+cV(XAB+XVV XAV XBV)] 1+CV
1

++A A ++VV 2+A V

i /2

(4.12)

Thus the square root in Eq. (4.12) can indeed be expand-
ed linearly in cv if Eqs. (4.11) hold, irrespectiue of the
ualues of the Onsager coefficients A„A, AAB, and ABB.
This yields

A. + =(A„„+2AAB+ABB)/cv, (4.13)

AAA ABB AAB
2

AAA +2AAB+ABB c
1 1+ +NCAA

CB

+XBB
—2X „B . (4.14)

From this result we recognize that in the considered limit
cv~0, Eq. (4.13) describes a fast mode, while Eq. (4.14)
describes a slow mode. Since in this limit the Onsager
coefFicients AAA, AAB, ABB themselves are proportional
to cv, the rate A, + tends to a finite nonzero limit for
cv~0, while A, becomes of the order of CV. We shall
show later that in this limit A, + describes the "density"
relaxation (i.e., the relaxation of the total concentration
c„+cB of both A and 8 particles) in the system, while

describes interdiffusion. The diA'usion coefficient for
interdifFusion now has the familiar form-of the product of

"k~~~t~~ factor" (A A A ABB A AB ) /(A AA +2A AB

+ABB ) and a "thermodynamic factor" (c„'+cB '+XA„
+XBB—2X„B). This thermodynamic factor can simply
be interpreted as [d (f/kBT)/dcA]T, using Eq. (2.3)
with cv=0 and noting that then cB =1—cA. [Remember
that in Sec. II 8 we have relabeled the P's as c's in order
to distinguish global from locally varying quantities; ac-
tually in Eqs. (2.24) and (4.11)—(4.14) the c's can again be
replaced by the P s.] In this limit, it is also obvious that

I

CB(r, t)=CB+6CB(0)cos(k r)exp( —Ak t)

directly in the diffusion equation, Eq. (2.25), to find

(4.15b)

I

interactions B'AV, gBv, yvv must cancel out from the re-
sults for A, +, A, , as is evident from Eqs. (4.13) and (4.14),
and that the interactions y A A, EBB,g AB do not enter sep-
arately but only in the familiar combination

ff X„A +XBB
—2X „B. The result, Eq. (4.13), explicitly

displays the "critical slowing down" of A. if we choose
the parameters (temperature, concentration) such that we
approach the "spinodal curve" of the mixture, where the
large parentheses in Eq. (4.14) vanish. This is, of course,
a typical mean-field result, and not to be expected to be
valid beyond mean-field theory. However, since the
present paper focuses attention on the noninteracting
case, y» =EBB=gAB =0, the description of the "ther-
modynamic factor" in Eq. (4.14) is in fact then exact,
since then the free energy only contains the expressions
describing entropy of mixing. The latter are correctly
given by Eq. (2.3).

We now wish to show that the two rates X+,A, in fact
describe density relaxation and interdict'usion, in the con-
sidered limit. This is most simply seen if we specialize
the general solution of the diffusion equation, Eq. (4.10),
which is a superposition pf two parts decaying with A, +
and A, , to the special case where the initial condition in
Eq. (4.9) has been such that the coefficient of either the
term exp( A+k t) o—r o, f the term exp( —A, k t) van-
ishes in Eq. (4.10). We can find the corresponding initial
condition most simply by using the ansatz

c„(r,t)=cA+5CA(0)cos(k r)exp( Ak t), (4.—15a)

1
6CA(0) —

A, +AAA
1

++AB+Xvv XAv +Bv
1+ +xAA+XVV —

2&AV +AAB
Cv CV

1 1
B(0) AAA +XAB +XVV XAV XBV AAB XBB XVV XBv

cv CB CV
(4.16)
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Here we have used the equation for Bc~(r, t)/dt; the
equation BcB(r,t)/Bt does not yield anything new, of
course, if A, in Eqs. (4.15) and (4.16) is an eigenvalue.
From Eq. (4.16) we hence find, in the limit where c&~0,

5cB(0)

5c„(0)
AAA +AAB CV

AAA +AAB
(4.17)

If we consider the solution A, =k, Eq. (4.14) shows that
the term cvA, is of order cv and thus by a factor cv
smaller than the term AA A +AAz, which is of order cv.
Thus we conclude that the initial condition characterized
by the ratio R of concentration amplitudes

R =5c (0)/5c„(0)= —1+O(c ) (4.18)

Aint=(AAA ABB AAB )/(AAA + AB ABB ) (4.20)

in Eq. (4.14). If there are no crossterms, A„B~0, it can
be simply rewritten as Aj„f AAA +Agg i.e., the recipro-
cals of the Onsager coefficients AAA, Azz are additive to
determine the reciprocal Onsager coefficient for
interdiffusion. It is also interesting to consider the case
where one species, say 8, is much faster than the other
species, i.e., A~~ ))AAA, A». Then we find

A~B/A~~ABB)

X (1—2A„B /ABB —A~~ /ABB ) —A„~ (4.21)

if also A A~ && A A A A~~: then interdiffusion is solely
determined by the Onsager coefficient A~„of the slow

component. The physical interpretation of this result is
very simple, of course: since there are so few vacancies
present, the relaxation of the concentration deviation of
the fast component is eff'ectively blocked by the slow
component, and only if a slow atom vacates a site can a
fast one occupy it.

relaxes with A, only. But this is exactly the case of
interdiffusion: for 3 and 8 particles, the initial concen-
tration deviations from equilibrium are opposite in sign
but equal in magnitude. In contrast, if we choose A. =A, +
in Fq. (4. 17), we obtain instead a ratio R+ of concentra-
tion amplitudes, using Eq. (4.13)

R +
—= 5cB+(0)/5c ~ (0)= ( A „B+ABB ) /( A ~B +A g g ) & 0

(4.19)
Thus choosing 5c~+(0) and 5cB+(0) of the same sign, so
that there is a variation of the "density" c„(r)+cB(r),
one obtains a mode relaxing only with k+. This relaxa-
tion, of course, is balanced by vacancies, and in the limit
cv~0 the weight of this density-relaxation mode turns to
zero, for initial conditions which satisfy 5cB (0)
= —5cz (0) which are then still possible.

One can turn this argument around and consider an in-
itial condition 5cB(0)=—5c~(0) for the case of nonzero
but small vacancy concentration. Then one finds that
this initial condition decays with the two exponentials
exp( —k+k t) and exp( —A, k t), but the factor in front
of exp( —k k t ) stays of order unity for $ v~0 while the
factor in front of the exp( I,+k t ) term—is of order Pi, .

We now discuss various limits of the "kinetic factor"

2. Case of differently colored identical particles

In the case I A=I &=I we restrict the discussion to
the noninteracting case, where the explic1t expressions
(3.7) for the Onsager coefficients are available. Very sim-
ple results are obtained for the eigenvalues from these ex-
pressions,

A, =r,
X =(1—c)f(c)r .

(4.22)

The first eigenvalue is identical to the coefficient of col-
lective diffusion in a one-component lattice gas. ' The
second eigenvalue represents the interdiffusion of the
differently colored particles. By a similar derivation as
the one leading to (4.17) and by use of (3.7) one finds that
the relaxation of density variations is governed by A,

only, for the following ratio of the amplitudes:

R =5cB (0) /5c „(0)= —1 . (4.23)

R+ =5cB (0)/5c„+(0)=cB/c~ . (4.24)

For general ratios of the initial amplitudes, collective
diffusion and interdiffusion take place concurrently.
Equation (4.22) shows that the coefficient of interdiffusion
is given, for I A

= I z, by the coefficient of tracer diffusion
at the summary concentration c. We will return to this
result in the next section.

B. Simulation and results

The simulations were all done for the random-alloy
model where, apart from the exclusion of double occu-
pancy, no interactions of the particles and/or vacancies
are considered. To simulate the interdiffusion of the two
species, three- and two-dimensional lattices were occu-
pied with 2 and B particles with cosinelike density
profiles according to (4.9). The three-dimensional lattices
normally had 80 sites; the case with cv=0.01 was inves-
tigated in samples with 120 sites. The two-dimensional
lattices had 1000 sites. The occupation with particles
was done in the following way: A wave vector k was
chosen in the x direction with -the wavelength A, in the
range between 80 and 13—,

' lattice constants. Also values
of cz, cB, and 5c~(0)= —5cB(0) were selected. The ini-
tial concentrations of the lattice planes (D =3 dimen-
sions) or rows (D =2 dimensions) perpendicular to the x
direction were calculated from (4.9) and the sites were oc-
cupied with 3 or 8 particles with the corresponding
probabilities. This method corresponds to given chemi-
cal potentials for the planes or rows. Hence there are
fluctuations of the concentrations from their nominal
values which are unimportant for the lattice sizes used.
After the occupation step, the initial amplitudes were
determined by fitting the expression (4.9) to the actual oc-
cupation numbers of the lattice planes or rows perpendic-
ular to the x direction, using a standard fit routine. The

As expected, only slow relaxation occurs when there is no
total concentration amplitude present. The larger eigen-
value k+ appears as a single relaxation mode only for the
:ratio
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FIG. 11. Amplitudes of concentration profiles as a function
of Monte Carlo steps per particle for the case I &

= I &. Open
circles, A particles; solid circles, B particles; given at alternating
time points for clarity. The straight lines represent the theory
as described in the text. The concentrations were c& =c&
=0.45, and 12 samples were averaged.

0.08—

X +

CU

LJ

QJo
LJ

Q.Q6—

c Q,Q/+—

C3
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even slower than at later times. The long-time decay of
both concentration profiles is governed by the eigenvalue

We observe again very satisfactory agreement be-
tween the simulation results and the predictions of the
theory. While at the vacancy concentration c&=0.1, the
initial amplitudes of the density profiles were smaller
than the vacancy concentration; in the case c&=0.01
they-were 5 times as large as the corresponding vacancy
concentration. In this case the fast decay mode is hardly
noticeable in the figure. Evidently the small vacancy con-
centration allows only a partial relaxation of the concen-
tration profile of the B particles; most of the relaxation of
the profile occurs on the time scale of the slower mode,

which determines also the decay of the A profile. The
point is that this behavior is fully contained in the ap-
propriate solution (4.10) of the diffusion equation. The
eigenvalues and the initial conditions appear to describe
completely the detailed behavior of the interdiffusion pro-
cess. Figure 9 shows better agreement between theory
and simulations and less Auctuations than the previous
examples; this is due to the averaging over four samples.

To give an example for quite different parameters, and
also for a simulation in D =2, we select the case
c„=0.32, c~ =0.64, and I „=I~/100. Figures 4 and 6
indicate that the Onsager coefficients Azz and Azz are
very small in this case, resulting in a very small eigenval-
ue A, . We show in Fig. 10 the simulation results togeth-
er with the theoretical prediction on a strongly expanded
scale. On this scale the fluctuations of the data points are
considerable. Nevertheless, we feel that the theory gives
a very satisfactory description of the behavior of the
interdifFusion observed in the simulations.

We finally consider the case of identical transition rates
of both species of particles, I „=Iz. As described in
Sec. IVA, theory predicts a single exponential decay
mode in this case when Vcz = —Vcz. The decay con-
stant is proportional to the interdiffusion coefficient
which is identical to the tracer-diffusion coefficient at the
summary particle concentration c =cz +cz, cf. Eq.
(4.22). We investigated by simulations interdiffusion of
two differently colored particles at several ratios of c„lcs
at c~ =0.1, and at c~ =c~ for several vacancy concentra-
tions. Figure 11 demonstrates that there is indeed only a
single decay mode present in the simulation results. The
solid lines represent exponential decay with
exp( —A. k t), and expression (4.22) for A, , correspond-
ing to the tracer-difFusion coefficient, was calculated from
the formula of Ref. 9. Since an average over 12 samples
was performed, the scatter of the data points is small.
We examined the independence of the decay constant on
c„/cs by performing simulations at different ratios and

C:
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c 0.1—
(3
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I I

0.1 0:l8
I

Q.3
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I

0:I
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FIG. 12. Interdiffusion coefficient for two differently colored

particles at different concentrations of one species. The lattice
had 80 sites and e&=0. 1. Crosses, simulation data for X=80;
pluses, simulation data for A. =40; dashed line, theory.

FIG. 13. Interdiffusion coefficient for two differently colored
particles for different vacancy concentrations. Crosses, data for
A. = 80; pluses, data for A, =40; points, theory.
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fitting the results to a single exponential decay. The re-
sulting interdiffusion coefficients are given in Fig. 12, to-
gether with the theoretical prediction. The scatter of
data is larger at c„&c~ since averages over only four
samples were performed. The test of the dependence on
the vacancy concentration cz is given in Fig. 13. The de-
viations of the theory from the simulations appear to be
small in this log-log plot; nevertheless, the agreement be-
tween theory and simulations is quite satisfactory.

c~+c +=const, c~ =const; (5.2a)

that is,

(or B*), and B. There are six Onsager coeScients A &
and the symmetry property A &

=A& holds. Tracer
diff'usion can be derived by imposing gradients in the con-
centrations cz and c + of the species A and A * with the
conditions

C. Remarks
Vc~ = —Vc Vc~=0 . (5.2b)

The foHowing features of the interdiffusion of two
species of particles in the random-alloy model with con-
served particle and vacancy numbers emerge from theory
and are corroborated by the simulations.

(i) The interdiffusion is characterized by the Onsager
coefficients and the particle and vacancy concentrations.
Once the Onsager coefficients are known, and the initial
conditions specified, a quantitative prediction of the time
development of the interdiffusion profile can be made.

(ii) From the diffusion equation follow two diffusion
modes. There is a clear separation into a fast and slow
mode for large ratios of the transition rates of both
species (unless the faster species is not effectively blocked
by absence of percolation conditions). The contributions
of both modes to the development of interdiffusion
profiles are inAuenced by the initial conditions. When the
vacancy concentration is small, the contribution of the
fast mode is reduced. Physically this corresponds to the
situation that the fast component cannot attain equilibri-
um before the slow component has relaxed.

(iii) The interdiffusion of diff'erently colored particles is
described by a single diffusive mode; the corresponding
diffusion coefficient is given by the tracer-diffusion
coefficient in the lattice gas with the summary concentra-
tion.

V. TRACER DIFFUSION

One considers either the current density j„ induced by
Vc„orj, induced by Vc + and finds

] 1
A ~c~g

A 1 1
D, = A~~ — A„

cA C~g

(5.3a)

(5.3b)

Both expressions are equal and represent the tracer-
diffusion coefficient D, , since jz = —j„+. They are the

generalization of the formally identical expressions for
the tracer-diffusion coefficient of A * particles in a lattice
gas with A and A' but without B particles.

The first form is more commonly referred to in the
literature (see, e.g., Refs. 3 and 14), but the second form
(5.3b) exhibits more clearly the different processes
inffuencing the tracer diffusion. The coefficient Az„/c„
is related to the mobility of the 3 (and A ") particles; this
coefficient was investigated in Sec. III for vanishing con-
centrations c +. Note that it depends on cz and I"z as

A

well. In the special case cz =0 and for noninteracting lat-
tice gases it is given by (1—c„)I„,in the limit c„+~0.
The second term contains the correlation effects inherent
in tracer diffusion. ' This is evident from the special case
cz =0 where the second term is

A. Theory

The diffusion of tagged particles in the random-alloy
model was treated in Ref. 1 in the frame of Onsager's for-
mulation (see also Refs. 2 and 3). Since the previous au-
thors used the assumption of complete thermal equilibri-
um of vacancies (p~—:0) which we do not use, because it
does not hold for the model investigated and its simula-
tions, we will give a brief outline of the derivations within
our formulation. The results will be identical, since also
in our treatment of tracer diffusion the chemical potential
of the vacancies is kept constant, Vp&=0. Generalizing
the derivations of Sec. II we consider four components
A, A *,B, V, or A, B,B*,V, respectively, where A * or B*
represent the (small) fraction of tagged particles. We ob-
tain the following set of equations as an extension of
(2.21):

(5.1)

where the Greek indices now designate the species A, A *

B 1 1
D, — A ~ ~ A

C Cg

1 1
A~~ — A

C~gCg

(5.4)

An interesting special case is tracer diff'usion in the lat-
tice gas with identical transition rates of both species.
Since the particles have identical properties, one can also
consider gradients of the particles that obey

cz+c + =const, cz =const .

The condition j„=Oyields for this case

1
AAB

Cg

(5.5)

(5.6)

If a force is exerted on the tagged ( A *) particles, the ve-
locity induced in the A particles is the same as in the B
particles. The velocity would also be the same in a lattice

and f(c„)is the correlation factor for tracer diffusion. If
tracer diffusion of B* particles is considered, one has
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gas consisting of only 3 and 3* particles with the sum-
mary concentration c. Designating the Onsager coeffi-
cients of this lattice gas with (0) we have

1+00

(5.7)

On the other hand, A'„' ~=(1—c)[1—f(c)jI ~, as dis-

cussed above. Equations (5.3), (5.6), and (5.7) allow us to
derive the expression for A„~ given in (3.7). The other
two coefficients are found from the fact that the eigenval-
ue A, + of (4.3) must describe collective diff'usion in this
case, i.e., A, + =I, as discussed in Ref. 13. Relations (3.7)
were first derived in Ref. 1 (see also Refs. 2 and 3 ).

There are attempts to derive the tracer-diffusion
coefficients of the random-alloy model with different ra-
tios of the transition rates and general concentrations
from microscopic theory. ' ' Here we are interested in
the analysis of tracer-diffusion coefFicients in terms of On-
sager coefficients and in the relation of tracer diffusion to
interdiffusion. Therefore we will abstain from comparing
our results with the microscopic theories.

B. Simulations and results

D„,(br )=a+b ln(br ) /br+a lhr, (5.8)

as suggested by the theoretical work, and took the
coefficient a as our final estimates of the tracer-diffusion
coefficients. In D =3 dimensions the apparent variation
with At is smaller; thus we took the estimates for the

It is now a standard procedure to estimate tracer-
diffusion coefficients in lattice gases by Monte Carlo simu-
lations. In our simulations, lattices of size (40) in D =3
dimensions and (250) in D=2 dimensions were used.
Typical mean-square displacements of tagged A and B
particles as a function of time are shown in Fig. 14. Al-
though the transition rates of both species differ by a fac-
tor of 10, the difference in the tracer-diffusion coefficients
is roughly a factor 5. This is due to the difference in the
backward correlations for both particle species. Since the
mean-square displacement is not self aueragi-ng, it makes
no sense to follow if for long times. Instead, one should
use samples as large as possible. To achieve this aim, one
may also split the time of a sufficiently long simulation
into intervals, determine the mean-square displacements
within these intervals, and average over them. The prob-
lem is to make sure that the asymptotic mean-square dis-
placement is obtained in this way. Figure 15 shows the
dependence of the estimated tracer-diffusion coefFicients
of B particles on the time interval over which the mean-
square displacements were determined. Each simulation
was run over 20 time intervals. There is a much stronger
dependence of the estimated tracer-diffusion coefficients
on the length At of the time interval in D =2 dimensions
than in D=3 dimensions. The reason for this depen-
dence is the presence of a logarithmic correction in the
mean-square displacements in lattice gases in D =2 di-
mensions, as found in the one-component case. ' We
fitted our estimates D„,(b.t ) in D =2 dimensions by (cf.
Fig. 15)

300

'LJ

~ 200

I

~ 100
E

0
0 6

time (NCS/p j

1P x10

FIG. 14. Mean-square displacements of tagged A (open cir-
cles) and B (solid circles) particles as a function of Monte Carlo
steps per particle. The lattice had 50' sites; the concentrations
were c& =c&=0.45 and I &/I & =0.1.

10~10 10x10

8-
a
CU 6-
QJ ~ ~~ ao 4. —

~~~~»» ~«~~~~ D=3
o
v) 2

~o( 1 I I

10

time interval (PCS/p I

10

I 0
10

FIG. 15. Estimates of the tracer-di6'usion coeEcients as a
function of the time intervals used. Data points are simulation
results for B particles, and I ~/I ~=0.1. D=3 dimensions:
concentrations c& =cz =0.45; the dashed line is a guide to the
eye. D =2 dimensions: concentrations c„=c&=0.48; the solid
line represents the fit of the data by Eq. (5.8).

largest time interval (e.g. , b, t =5000 MCS for cv =0.04)
as our final ones.

Several groups' obtained previous results on tracer
diffusion in random alloys in D =3 dimensions. Our re-
sults presented below deviate from the previous results
where comparisons can be made, e.g. , by about 15% from
Ref. 20 at c&=0.01 and I z/I &=0.1. In this work
short effective time intervals per particle were taken. The
agreement is better with Ref. 22 (about 4% at ci, =0. 1

and I ~ /I s =0.1) where longer time intervals were used.
The dependence of the estimates of tracer-diffusion
coefficients on the time interval was carefully studied in
D =3 dimensions for the single-component lattice gas.
We believe that our results for the random-alloy model
are better than the previous ones in D =3 dimensions be-
cause of the long time intervals used and because our
correlation factors are smaller than the published values.
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TABLE II. Tracer-diffusion coefficients and Onsager coefficients divided by concentrations for ran-
dom alloys in D =3 dimensions. The ratio of the transition rates was I A/I & =0. 1 and I & =I =1.
For each concentration the upper entry gives the coefficient for particle species 3 and the lower entry
for species B.

CA

0.495

Cy

0.01

Da

7.77 X 10
3.46 X 10

A /c

9.36 x 10-'
5.98 X 10

A ~/c ~

1.6x10-4
2.5 X 10

0.32 0.04 3.37 x 10-'
1.87 X 10

3.76 x 10-'
3.07 x 10-'

3.9X 10
1.2X10 '

0.48 0.04 3.18 X 10
1.51 X 10

3.77 X 10
2.46 X 10

5.9X 10
9.5 X 10

0.64 0.04 2.99 X 10
1.17x 10- '

3.82 X 10
1.77 X 10

8.3 X 10
6.0x10-'

0.45 0.1 8.31 x 10-'
4.36 X 10

9.6x10-'
6.6x10-'

1.3 x10-'
2.2X10 '

Table II gives our estimates for tracer-diffusion
coefficients in D =3 dimensions and Table III for the
ones in D =2 dimensions. The qualitative dependence on
the relative concentrations c~ /c~ on the vacancy concen-
tration in D =3 dimensions, and on the ratio of the tran-
sition rates in D =2 dimensions, is as expected from
physical considerations. We have further analyzed the
data by subtracting from the Onsager coefficients A /c
the tracer-diffusion coefficients. Equations (5.3) and (5.4)
show that estimates for the On sager coefficients

+/c + are obtained in this way. Since two quantities
with finite accuracy are subtracted, the errors of these
numbers may be considerable, and are hard to estimate.
Nevertheless, the dependencies on concentration and on
the ratio of the transition rates are consistent and reason-
able. Remember that these coefficients contain essential-
ly the backward correlation of tagged-particle diffusion.
For I ~ =I z/100 the reduction of the tracer-diffusion
coefficient of 3 particles with increasing c~ is essentially

TABLE III. Tracer-diffusion coefficients and Onsager coefficients divided by concentrations for ran-
dom alloys in D =2 dimensions. The vacancy concentration was c&=0.04 and I"~ =I =1. For each
concentration the upper entry gives the coefficient for particle species 3 and the lower for species B.

0.192

I A/Ia

1/10

Da

3.08 X 10
1.29 x 10-'

A /c

3.57 x 10-'
3.02 X 10

A ~/c ~

4.9 X 10
1.73 X 10

0.32 1/10 2.83 X 10
9.93 X 10

3.59 X 10
2.34 x 10-'

6.6 x10-4
1 ~ 35X10

0.48 1/10 2.57 X 10
7.21 x 10-'

3.69 X 10
1 ~ 54x 10-'

1.08 X 10
8.2x10 '

0.64 l/10 2.29 X 10
5.42 X 10

3.76 x 10-'
9.70 X 10

1.47x10 '
4.3 X 10

0.768 1/10 2.10X 10

4.44 x 10-'
3.85 x 10-'
6.55 X 10

1.75 X 10

2. 1 X 10

0.32 1/100 3.15X10 4

4.80 X 10
3.95 X 10
1.60 X 10

8.0X 10
1.12 X 10

0.48 1/100 2.77 x 10-'
1.83 X 10

3.93 X 10
5.0X 10

1.16X 10
3.2 x10-'

0.64 1/100 2.43 X 10
8.71X10 4

3.94 X 10
1.68 X 10

1.51 X 10 4

8.1x10-'
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due to this backward correlation, since A ~ ~ /c ~ is prac-
tically constant. The main point for the further discus-
sion is that these coefficients are clearly present, although
they are smaller than the diagonal coefficients.

C. Comparison with fast- and slow-mode theory

(D ) = (c~D,"+c„D, ) Ic,
and (ii) slow mode theo-ry:

(5.9)

(5.10)

Of course, both expressions have to be compared with
the eigenvalue k which is characteristic of the long-time
interdiffusion behavior. The eigenvalue A, + describes
transient behavior, in particular collective diffusion in the
case of two differently colored particles. For complete-
ness it is also given in the following tables.

Table IV shows both averages, together with A. +,X

for several random alloys in D =3 dimensions. It is obvi-
ous that neither the fast-mode theory nor the slow-mode
theory applies. Although the differences between
(D ') ' and X are of the order of 10% only, they are
outside of the estimated error margins. Table V gives the

We now consider the relation of interdiffusion with
tracer diffusion in the random-alloy model. In an atomis-
tic model of a binary alloy, as well as in our computer
simulation, there are only two kinetic rate factors, I ~
and I z, which describe the jumps of 3 or B particles to a
vacant site, respectively. These rates then control both
interdiffusion and self-diffusion of both species, for all
concentrations of the alloy.

Thus the idea is fairly natural to assume that there
must be a relation between the interdiffusion coefficient

in Eq. (4.14) and the tracer-diffusion coefftcients
D, ,D, . This would be very useful for the interpretation
of experiments, where various methods exist to measure
tracer-diffusion coefficients and then the interdiffusion
coefficient could be predicted, while there are hardly any
experimental possibilities to measure Onsager coefficients
directly. Several approximations have been proposed in
order to relate k and D, ,D, . Two of them have found
a lot of recent attention in the literature on polymer mix-
tures and will be compared with the simulation results
below. A deduction of the two proposals in the frame of
our previous derivations will be given in the Appendix.

We examine whether there exists a relation of the slow
eigenvalue k to one of the following two averages.

(i) Fast mode theory:-

P

+ 1 f (c) cpD—
A p cD, 5p—+

r t

r

(5.11)

A slight generalization to finite vacancy concentrations
has been made and f (c) is the correlation factor for
tagged-particle diffusion in a lattice gas with summary
concentration c =c~ +c~. The relations are obviously
valid for the case of identical transition rates [cf. (3.7)].
We examined these relations for I & ~I z by using our es-

same comparison for various random alloys in D =2 di-
mensions, for two different ratios I ~/I ~. Again, the
slow-mode theory clearly does not apply for A, . In par-
ticular, for I ~ =I z/100 the differences are of the order
of 20%%uo. The agreement between fast-mode theory and

at c~ =0.768 and I ~
= I ~ /10 must be considered as

fortuitous.
One particular point needs some discussion. The

values for A, appear to be symmetric about cz =0.5 in
D =2 dimensions, while they are slightly increasing with
c~ in D = 3 dimensions. We believe that this difference is
real. In D =2 dimensions the samples with c~ =0.64 are
below the percolation threshold for motion of the B parti-
cles for fixed 2 particles; this results in a reduced mobili-
ty of the B component in the general case. In D =3 di-
mensions the sample with cz =0.64 is still above the per-
colation threshold and the mobility of B particles is cor-
respondingly larger. We have examined that all Onsager
coefficients used in deriving A, +, A. at c~ =0.64 give ex-
cellent fits of the corresponding interdiffusion data. Of
course, further investigation is necessary to confirm this
point in detail; however, this will not be done here.

In summary, neither the slow-mode nor the fast-mode
theory can describe interdiffusion in the random-alloy
model for I „&Ie, in the long-time limit. A trivial ex-
ception is the case I"z =I z where the slow-mode and
fast-mode theories coincide and where the coefficient of
interdiffusion &'s given by the tracer-diffusion coefficient,
at the summary concentration.

Also, attempts were made to relate the Onsager
coefficients A &, which characterize the transport proper-
ties of nontagged particles, to the tracer-diffusion
coefficients. An early attempt is found in Ref. 24, and a
refined connection was developed in Refs. 25 —27. A
transparent derivation of the approximate relations be-
tween A

& and D, of Refs. 25 —27 was given in Ref. 28
(see also the review in Ref. 3). They are, in our notation,

TABLE IV. Comparison with fast-mode and slow-mode theories of interdiffusion for random alloys
in D =3 dimensions. The ratio of the transition rates was always I ~ /I & =0.1.

0.495
0.32
0.48
0.64
0.45

cv

0.01
0.04
0.04
0.04
0.1

2.12 X 10
8.48 X 10
9.14x10 '
8.80 x 10-'
2.60 X 10

1.27 X 10
4.64 x 10-'
5.25 X 10
5.94 X 10
1.40 X 10

0.386
0.577
0.399
0.251
0.432

1.41 x 10-'
4.92 X 10
5.65 x 10-'
6.49x10 '
1.44 X 10
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TABLE V. Comparison with fast-mode and slow-mode theories of interdiffusion for random alloys
in D =2 dimensions. The vacancy concentration was always cz =0.04.

r„/r,
0.192
0.32
0.48
0.64
0.768
0.32
0.48
0.64

1/10
1/10
1/10
1/10
1/10

1/100
1/100
1/100

5.04 X 10
5.20 X 10
4.89 X 10-'
4.38 X 10-'
3.97 X 10
1.81 X 10-'
1.05 X 10
6.62 X 10-'

3.63 X 10-'
3.72 X 10-'
3.79 X 10-'
3.72 X 10-'
3.63 X 10-'
4.57 X 10
4.81 X 10
4.68 X 10-'

0.666
0.478
0.301
0.195
0.143
0.282
0.0781
0.0271

3.95 X 10
4.13 X 10
4.24 X 10
4.12 X 10
3.97 X 10
5.45 X 10
5.90 X 10-'
5.50 X 10-'

timates for the tracer-diffusion and Onsager coefficients.
They are in variance with our numerical results, at all
concentrations, in D =2 and 3 dimensions. For
I ~ =I z/10 the typical differences are of the order of
10%. The case 1 „=I~/100 and D=2 dimensions is
shown in Table VI. We point out that we have studied
the case with conserved number of vacancies; the case
with pz=—0 requires a separate investigation. We con-
clude by noting that, generally, the tracer-diffusion
coefficients contain additional Onsager coefficients, for in-
stance, A „~/c„~. These coefficients are characteristic
of the backward correlations in the tagged-particle
diffusion; they are not directly related to the Onsager
coefficients entering the interdiffusion.

VI. DISCUSSION

We have studied the mobility, interdiffusion, and tracer
diffusion in the random-alloy model with two different
species of particles. In this model the particle numbers of
both species and the numbers of vacancies are conserved.
A grand-canonical ensemble with varying particle and
vacancy numbers Nz, Nz, and N& was introduced to
derive the chemical potentials p z, p~, and p ~. However,
we did not make the assumption that the number of va-
cancies is regulated by the equilibrium condition pz =—0.

For the formulation of transport theory we returned to
the canonical ensemble and required locally the validity
of the continuity equations, which are equivalent to glo-
bal conservation of the numbers Nz, Nz, and Nz. The
particle currents were related to the gradients of the
chemical potentials by the Onsager coefficients. The lo-
cal condition that the sum of the fractional occupancies
of both particle species and of the vacancies is unity al-
lowed us to eliminate the Onsager coefficients connected
to the vacancies. There remain three Onsager coefficients

for the alloy model with two particle species. They were
estimated from numerical simulations of their mobilities
when forces acted on one of the two species. The com-
bination of the constitutive current relations with the
continuity equations lead to coupled diffusion equations
for both particle species. The solution of these equations
exhibits two decay modes that are determined by the
three Onsager coefFicients. The weight of these decay
modes is also influenced by the initial conditions. The
slow decay mode describes the long-time behavior of
interdiffusion.

The tracer diffusion, where the motion of tagged parti-
cles is monitored, contains additional off-diagonal On-
sager coefficients. These coefficients contain the typical
backward correlations of tagged-particle diffusion. Since
these correlations have a different physical origin, one
cannot expect that interdiffusion is simply related to
tracer diffusion. Already from the form of the decay con-
stants for interdiffusion one concludes that they cannot
be expressed as averages, or inverse averages, of the
tracer-diffusion coefficients. These statements are corro-
borated by the results of the numerical simulations. An
exception is the case of identical transition rates of both
particle species, where the coefficient of interdiffusion is
given by the coefficient of tracer diffusion at the summary
concentration of the lattice gas.

So far a consistent picture of mobility, interdiffusion,
and tracer diffusion in the random-alloy model has been
developed, which is supported by the numerical simula-
tions. Why were different and sometimes convicting con-
clusions reached in the field of metal and polymer phys-
1cs?

The basic assumption of the treatment of interdiffusion
in metal physics is the assumption of adjustment of the
local vacancy concentration by the condition pv—=0 (cf.
Refs. 1 —3 and 24—27). This requires the possibility for

TABLE VI. Comparison of Onsager coeKcients according to (5.11) with the numerical estimates in D =2 dimensions, for
1 ~ =1 ii/100 and cv =0.04. The value f(0.96)=0.487 was used, and the coefficients A 13 are arranged as matrices.

Relati'on (5.11) 1.04 X 10-'
0.32

1.03 X 10
6.21 X 10

1.51 X 10
=+AB

0.48

1.22 X 10
1.68 X 10

0.64

2.14 X 10-'
=+AB

1.05 X 10
4.67 X 10

Numerical
estimates

1.26 X 10-'
1.70 X 10

1.49 X 10-'
1.02 X 10

1.89 X 10
1.73 X 10-'

1.70 X 10
2.40 X 10

2.52 X 10
1.15 X 10

1.18 X 10
5.38 X 10
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immediate creation and destruction of vacancies. In the
thermodynamic formulation, vacancy creation and de-
struction is regulated by the introduction of a free enthal-

py for vacancy formation, such that p z =0 can be main-
tained at each instant and place. Physically, vacancies
may be created and destroyed at lattice imperfections, in
particular at dislocations. Instructive figures of the
influence of these processes on transport properties are
given, e.g. , in Ref. 2. The resulting motion of whole lat-
tice planes is called the Kirkendall effect, or also bulk
jhow of matter. It has been experimentally observed in
metals, although its quantitative description requires the
existence of efficient vacancy sinks; the fulfillment of the
condition pz —=0 seems to be dificult in practice.

There are flows of atoms in our lattice-gas models, and
time-dependent shifts of the equivalent center of mass.
For instance, the results of Fig. 8 imply first a flow of B
particles into the 3 particles, followed by a slow
counterflow of 3 particles and a reduced flow of the B
particles. However, any marker associated with a lattice
plane would not move. There is no bulk flow and no
Kirkendall effect possible in our models, by their con-
struction. It is not surprising that our results are
different from analyses where different initial assumptions
are made. Models with vacancy creation and destruction
are difficult to implement in numerical simulations. One
possibility is probably given by diffusion processes medi-
ated by interstitial mechanisms. Other processes, such as
creation and destruction of vacancies at dislocations, are
certainly very difficult to model.

One particular aim of a coherent theoretical descrip-
tion of self-diffusion and interdiffusion in mixtures, which
is often addressed in the literature, ' ' ' is the idea
to express the interdiffusion coefficient in terms of a "ki-
netic factor, " involving self-diffusion coefficients of the
diffusing species, and a thermodynamic factor" which
describes the thermodynamic driving -force for
interdiffusion. This question has found particular atten-
tion for fluid polymer mixtures recently, both theoretical-
ly ' and experimentally (see Ref. 4 for a short
review). Empirically sometimes ' the data seemed to
be more consistent with the "slow-mode theory" (Refs.
31—33) and sometimes ' ' with the "fast-mode theory"
(Refs. 29 and 30). Now it would not be a surprise if, for
quid polymer mixtures, eA'ects due to bulk fiow are im-
portant, but a first-principles theory which includes such
effects is rather difficult. ' In the present model, bulk
flow is strictly absent by construction, and naively one
might think that then the slow-mode theory [Eq. (5.10)]
should be applicable. However, our numerical results
show that such a simple relation between tracer-diffusion
coefficients and the interdiffusion coefficient does not ex-
ist, although the relation between interdiffusion and the
Onsager coefficients works out nicely. Our results
demonstrate clearly that the hypothetical relations be-
tween tracer diffusion coefficie-nts and the Onsager
coefPci en ts A z ~, Ase in the mixture, Eqs. (A4a) and
(A4b), do not hold, and also the neglect of the crossterm
AAB is not warranted. Since these assumptions enter the
alternative formula [Eq. (5.9)] as well, we are very skepti-
cal whether any of these simple formulas describes a real

system. From our point of view, it is no surprise that the
comparison between experimental results and such
oversimplified theoretical relations leads to ambiguous re-
sults, both for mixtures of small molecules and for poly-
mer mixtures. We hope that the comparisons between
computer simulations and the various theoretical ap-
proaches will shed light on the significance of similar
comparisons between real experimentals and various
theories, too.
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APPENDIX: APPROXIMATIONS PROPOSED
TO RELATE INTERDIFFUSION AND TRACER

DIFFUSION IN THE LIMIT cv ~0
In this Appendix derivations of the so-called "slow-

mode" and "fast-mode" theories are discussed. The
former theory will be deduced from the results of Sec.
IV A, while the latter theory is obtained by introducing
the condition of complete thermal equilibrium.

1. The "slow-mode" theory

Suppose we apply Eq. (4.14) to a mixture where the B
particles are nothing but tracer atoms A *. Then we have

DA= lim
c ~~0

2

+
AAA+2A ~+A ~ g cA c

(A 1)

AAA —XAACA

AA

which yields

D, A,

(A2)

(A3)

where in the last equality we have invoked the fact that
there is no chemical distinction between 2 and
Comparison of Eqs. (A2) and (5.3) then shows

Dt c (A4a)

a similar reasoning for an AB mixture where the 3 parti-
cles are tracer atoms B*yields, of course,

B
ABB —D, cB . (A4b)

Note that Eq. (A4a) is true for a "mixture" without B
particles, and Eq. (A4b) is true for a "mixture" without

Now D, tends to a nonzero finite limit for zero tracer
concentration. This is only possible if the kinetic factor
in Eq. (Al) is also proportional to c,. A plausible ex-

pression hence is [cf. also Eq. (3.7)]
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A particles. Let us assume, however, that these relations
remain valid if the other species of particles is added, and
that the cross term A„s in Eq. (4.14) can be neglected:
With these two assumptions, which have no further physi-
cal justification to our knowledge, Eq. (4.14) becomes in
the noninteracting case

crossterms,

Ja PAaa VVis

jv= —(j~+js)
CACBDt Dt 1 1

A B

A BcADt +cBD] cA cB
(A5)

The total Aux j„ofA across a plane fixed with respect to
the coordinate system is the sum of the difFusion Aux of A

plus A transported by the vacancy Aux:
which is Eq. (5.10). It is called "slow-mode" theory be-
cause the slowly di6'using spec&es clearly controls the
interdiffusion coe%cient.

2. The "fast-mode" theory

3„=—PA„„Vp,„+c„(PA„„V3„+PA@aVying ) .

Conservation of 3 particles implies

Bc&(r, t)
Bt

=V( —j~ )

(AS)

(A9)

A rather difFerent result, Eq. (5.9) can be obtained by
several distinct arguments. We reproduce only one par-
ticular line of reasoning here. Let us return to Eq. (2.21)
and arbitrarily assume that the interdiffusion proceeds
such that everywhere the vacancy concentration cz(r, t)
is in complete thermal equilibrium, i.e.,

Bc„(r,t)
=D;„,V c„(r,t),

Bt
(A10)

and using Eqs. (2.6a) and (2.6b) for Pv —&0 one then ob-
tains

Vpv 0 (A6)
where in the noninteracting case the interdiffusion
coefficient becomes

In view of Eq. (2.6c), Eq. (A6) cannot be justified. But the
motivation for Eq. (A6) is that for real physical alloy
there is no strict conservation of lattice sites, vacancies
can be created and destroyed by interaction with other
lattice imperfections (interstitials, dislocations, grain
boundaries, external free surfaces, etc.), and then Eq. (A6)
may be reasonable. If we now set, again neglecting

CB A B
+AA + ABB = CBDt +CA

CB
(A 1 1)

invoking once more that Eqs. (A4a) and (A4b) can be
used for the mixture as well. Since for Cv~o, c„+cB
=c = 1, this is Eq. (5.9).
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