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Recent work by Car and Parrinello has generated considerable interest in the calculation of elec-
tronic structure by nonlinear optimization. The technique introduced by these authors, dynamical
simulated annealing, is designed for problems that involve energy barriers. When local optimiza-
tion suffices to determine the energy minimum, more direct methods are available. In this paper we
apply the algorithm suggested by Williams and Soler to calculate the electronic structure of metals,
using a plane-wave expansion for the electronic orbitals and an electron-ion pseudopotential of the
Kleinman-Bylander form. Radial pseudopotentials were taken from the compilation of Bachelet,
Hamann, and Schliiter. Calculations are performed to optimize the electronic structure (i) with
fixed atomic configuration, or (ii) with the atomic volume being optimized simultaneously. It is
found that the dual optimization (ii) converges in essentially the same number of steps as the static
lattice optimization (i). Numerical results are presented for Li, K, Al, and simple-cubic P.

I. INTRODUCTION

Most techniques for the calculation of electronic struc-
ture in solids involve matrix diagonalization. Since the
numerical effort in diagonalization scales as the cube of
the matrix size, these techniques can become inefficient
for systems with large unit cells or low symmetry. Alter-
native strategies have been designed to minimize or avoid
the diagonalization bottleneck, including the following.

(i) Construct an optimized basis of minimal size. The
linear muffin-tin orbitals (LMTO) tight-binding formal-
ism! represents one such scheme; see Refs. 2 and 3.

(ii) Apply iterative algorithms constructed to yield only
the lowest-lying eigenstates.* Few applications to solids
have been made to date.

(iii) Determine the eigenstates by nonlinear optimiza-
tion, as in the widely noted work of Car and Parrinello,>®
or in extensions thereto.”?

We develop in this paper a procedure for calculating
electronic structure in metals by optimization, with the
objective of treating systems with large unit cells. An at-
tractive feature of the method is the capability of simul-
taneous optimization of the electronic structure and the
atomic configuration. We demonstrate this feature by
optimizing both the lattice constant and the electronic
states in parallel. Our procedure is also expected to be
compatible with molecular dynamics simulation, but that
application is not explored in this paper.

Electronic states are calculated by the equation-of-
motion method proposed by Williams and Soler (WS),”
which we have found superior to several other possible
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optimization methods.” Electronic wave functions are
expanded in plane waves'® in order to exploit the
efficiency of fast Fourier transformation.® A norm-
conserving pseudopotential cast in the Bylander-
Kleinman form'!!? is used to represent the electron-ion
interaction. Brillouin-zone integrations are performed by
a Gaussian-broadening method.>!> As presently formu-
lated, our techniques are restricted to s-p-bonded systems;
however, they could be extended to d- and possibly f-
electron materials with a mixed-basis representation.'*

The equations of motion employed in our electronic-
structure optimizations are presented in Sec. II. In Sec.
II A we discuss the WS algorithm. Most previous appli-
cations of optimization methods>®!>!5 have dealt with
semiconductors; Sec. II B outlines the adaptation of the
present approach to treat open-shell systems. A brief dis-
cussion of pseudopotentials is given in Sec. II C. Tests
and applications to pure metals are presented in Sec. III,
and a discussion of the results is given in Sec. IV. Appen-
dix A describes the formulation of the Gaussian-
broadening method and Appendix B outlines the calcula-
tion of total energy and pressure.

II. OPTIMIZATION METHODS

A. Williams-Soler algorithm

Car and Parrinello® showed that “simulated anneal-
ing,” originally applied in the context of Monte Carlo al-
gorithms, could also be adapted to deterministic dynami-
cal models. Their main objective was to develop an ab in-
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itio formulation of molecular dynamics, in which the
electronic contributions to the atomic forces are deter-
mined within the local-density approximation. They
demonstrated that the Lagrangian equations of motion
for the ions, in conjunction with the (pseudo)Lagrangian
equations of motion

2 2—
W, /3’ =—HY,+ 3 A,¥, (1)
J

for the electrons, describe the dynamics of classical ions
moving in a background of adiabatic electrons. In Eg.
(1), H is the one-electron (Kohn-Sham) Hamiltonian, ¥,
are the occupied orbitals, and A;, are Lagrange multi-
pliers that ensure orthonormality (the fictitious masses
are set to unity here).

Another application of simulated annealing, more
directly relevant to our present purpose, is the calculation
of electronic orbitals by integrating Eq. (1) and quenching
the “fictitious” kinetic energy at appropriate intervals.’
Payne et al.® developed an algorithm for analytically in-
tegrating Eq. (1), which substantially improved the
efficiency of this procedure. Williams and Soler’ recog-
nized that the Payne et al. algorithm, in effect, performs
a local optimization, and proposed a more direct form of
fictitious dynamics, which eliminates the need to quench,

AV, /3t =—HVY,+ 3 AV, . 2)
J

Equation (2), which can be derived from a steepest-
descents condition,®’ is simply the imaginary-time
Schrodinger equation, for which excited-state solutions
decay exponentially.!® Employing the orthonormality

constraint A;; =H ;, we can rewrite Eq. (2) in the form

oV, /3t =—(1—Py)HY, , (3)

where
N
Py=S W) (¥,
i=1
projects onto the Hilbert subspace of the N occupied
states W,(¢). With the help of Eq. (3), the time derivative
of the energy can be written

N
dE/dt=—2 3 (ilH(1—Py)H|i) . @)
i=1
Since (1—Py) =0, it follows that dE /dt =0, and thus the
solution to Eq. (2) monotonically approaches an energy
minimum.!’ :
It is convenient to expand the electron orbitals in terms
of plane waves,

W, (r,t)=>W¥,(G,t)exp(i[k+G]-r) . (5)

Here, the subscript i denotes both the band index v and
the wave vector k. Substituting Eq. (5) into the EOM,
Eq. (2), we obtain

B\P,(G,l)/at=—(HGG—A,,)‘I’,(G,t)+ﬁ,(G,t) > (6)

where

C. WOODWARD, B. I. MIN, R. BENEDEK, AND J. GARNER 39

Bi(G,t)=— X Hga V(G 1)+ X A;¥,;(G,1) . (7)
G’ ) J

The primes on the summations in Eq. (7) indicate that the
diagonal terms Hgg and A are omitted.'® If the param-
eters Hgg, Ay, and B,(G,t) are treated as constants,”!®
Eq. (6) can be integrated analytically,

V,(G,t +h)+VY,(G,t)+F,(G,t)f(G,t,h)h , (8a)
where the residual vector F is defined as

Fi(G,t)=— 3 (Hgg6;; —A;;0gc)¥Y;(G',t) ,  (8b)
G',Jj

and f(G,t,h)=f(x)=(e*—1)/x, with x=—(Hgg
—A;)h. Equation (8) is utilized as follows. After the
selection of initial states V,;(G, t =0), Eq. (8) is applied
iteratively until convergence is achieved; following each
iteration, the states are orthonormalized by the Gram-
Schmidt method and a new set of potentials, Hamiltonian
matrix elements, and Lagrange multipliers are deter-
mined. It was noted recently’® that Gram-Schmidt or-
thogonalization removes any spurious symmetry inadver-
tently “built in” to the initial states.

Equation (8) was written by Williams and Soler’ in a
slightly different form. The present form shows clearly
the relationship of the approach to the ‘“method of
steepest descents.”?! The condition of vanishing residu-
als, F;(G)=0, is simply a restatement of the Kohn-Sham
eigenvalue equation (for states related to Kohn-Sham or-
bitals by a unitary transformation.) Further, we observe
that if f is set equal to unity, Eq. (8) reduces to the
method of steepest descents,?! i.e., the “displacement” in
a given iteration is parallel to the residual F. Equation (8)
in conjunction with the definition f(x)=(e*—1)/x im-
proves on the steepest-descents method by including the

~ curvature of the steepest-descents path. Since the time

dependence of Hgg, A, and B;(G,t) are neglected, how-
ever, this integration is only approximate and a max-
imum ‘“‘time interval” h exists for which the method
remains stable, i.e., for which the total energy
E(t +h)<E((t). Nevertheless, values of 4 exist for which
Eq. (8) is stable and converges much faster, typically by a
factor of 5 or 10, than the method of steepest des-
cents. 10-21,22

Alternative methods of solution to Eq. (7) are available.
For example, the Born-Dyson perturbation series can be
applied, treating (3/3t —Hgg+A;)”! as the Green’s
function and B;(G,t) as the perturbation.?? Unlike Eq.
(8), however, finite-order Born series expansions converge
only approximately to the Kohn-Sham orbitals as t — .
A more detailed discussion of the relative performance of
different methods of solution to Eq. (2) will be presented
elsewhere.’

B. Adaptation to metals

As mentioned above, most existing optimization calcu-
lations> %1215 have been on semiconductors. Calculations
for metals entail additional complications because of the
Fermi surface and the tendency of self-consistency algo-
rithms to exhibit instabilities. We have adopted the fol-
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lowing procedures in order to treat metals. First, the
Gaussian-broadening method®!? is applied to zone in-
tegrations. Although tetrahedron integration methods
are preferred in conventional electronic structure calcula-
tions, they require a larger number of k points to con-
verge.?* The electronic charge density is expressed in the
form

n(0)=3 ¢, (02w (vk), )
v,k

where €, is the eigenvalue corresponding to the Kohn-
Sham orbital ¢, ,. The summation is over the band index
v and over n, points in the Brillouin zone.?> The weight
w (v,k) is the product of a volume factor (k) and an oc-
cupancy factor z (€ —¢€, x); w (v, k) thus also depends im-
plicitly on the Fermi level €p. For accurate sampling,
values of n; =5 are employed so as to include at least one
low symmetry point. An explicit relation for the occu-
pancy factor z is derived in Appendix A. For each k
point, Eq. (9) is summed over a sufficient number of
bands n, (k) to include the low-lying excited states, which
have a finite occupancy factor z in the Gaussian-
broadening scheme.

The (converged) orbitals W, , calculated by the
methods of the previous section will generally differ from
the eigenfunctions of H by a unitary transformation. To
obtain the Kohn-Sham orbitals ¢, that enter Eq. (9), a
diagonalization of the Hamiltonian matrix H;; (=Aj;) is
performed in the [#,(k)-dimensional] subspace of the or-
bitals W, .. Thus, after each iteration of Eq. (8), a new
charge density »n (r) is calculated with the (trial) Kohn-
Sham orbitals obtained by subspace diagonalization.
This charge density is then used to evaluate the total en-
ergy and calculate an input potential for the next itera-
tion cycle. We note, incidentally, that in the case of an
insulator subspace diagonalization becomes unnecessary
if n,(k) is equal to the number of occupied bands; the
weights w are then equal and

S 4, (0= 3 ¥, (r)]

by virtue of unitarity. Teter and Allan'® point out, how-
ever, that subspace diagonalization accelerates conver-
gence and therefore is helpful also in calculations for in-
sulators.2%

Finally, we address briefly the issue of instabilities dur-
ing self-consistency cycling. We have adopted simple
mixing of the output and input charge densities,

n(t+h)=(1—y)n;(t)+ynyt +h), (10)

where ny(t +h) is the charge density calculated from the
orbitals ¥, , updated to time ¢ +4, and n,;(¢ +h) is the
charge density from which potentials for the next cycle
are determined. In general, the largest feasible mixing
coefficient will depend on the time interval A, and the or-
bital angular momentum of the valence electrons.

C. Pseudopotential

The norm-conserving pseudopotentials proposed by
Hamann, Schliiter, and Chiang27 (HSC) and by Bachelet,
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Hamann, and Schliiter?® (BHS) have been widely used.
Allan and Teter,!?> however, have noted the convenience
of the Kleinman-Bylander!! fully nonlocal (NL) represen-
tation in the context of optimization -calculations.
Adopting the notation of Ref. 12, we write the matrix ele-
ments in the semilocal (SL) representation as

(qlVsLlq ) =3 4m(2] +1)P;(cos(6,4"))
]

X [ drr¥j(qrjg'nsV,(r), (D)
and in the KB nonlocal representation as

(qlVyla’ ) =3 4m(21 +1)Pj(cos(8,q))
1

X [ dr r2j (qrg,(nsV,(r)

[ dr r2j(q'r)g,(r)8V,(r)
[ dr v, (n]1%8V (r)

(12)

where ¢,(r) is the atomic radial pseudo-wave-function for
angular momentum /. The advantage of the nonlocal
form is that its operation on a wave function requires
O (M) operations, while the semilocal form requires
O (M?), where M is the size of the plane-wave basis set.
In the present work we have employed the pseudopoten-
tials 8¥,(r) compiled by BHS.?” To generate the corre-
sponding matrix elements of Vy, the only additional in-
formation required is the atomic radial pseudo-wave-
functions.?’ Most of the numerical calculations described
below are based on Vy , but for test purposes, a few cal-
culations with Vg were also performed, as discussed in
the following section.

V. and Vg are identical in the case of an isolated
atom. Large lattice constant calculations (i.e., in the
separated-atom limit) based on Vy; should therefore
yield eigenfunctions and eigenvalues comparable to those
obtained in an atomic calculation based on Vg . This
correspondence provides a useful self-consistency test on
electronic structure codes using the Kleinman-Bylander
pseudopotential.3%3!

III. APPLICATIONS

In this section we present a series of calculations on
simple metals with cubic crystal structure, to illustrate
the performance of the new methods. Calculations with
fixed unit cell volume are described in subsections A-C;
in subsection D we discuss calculations in which the unit
cell volume as well as the electronic states are optimized
simultaneously.

A. Convergence of optimization method

As described above, each iteration of our optimization
method consists of a WS update by Eq. (8) followed by a
subspace diagonalization. Results of a typical optimiza-
tion sequence are shown in Fig. 1, based on calculations
for bee Li with the BHS-NL pseudopotential and the fol-
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log,, [ E(n)-E(60) (a.u)]

T T -10
0 20 40 60

time step

FIG. 1. Optimization sequence for bcec Li with lattice con-
stant a=5.925 a.u. Calculations based on n; =50 k points, and
plane-wave cutoff energy Epw =24.0 Ry. The curves show the
base-10 logarithm of energy per atom (from which the con-
verged energy [ = E(60)] is subtracted) and the residual R. The
linear behavior indicates exponential convergence of both quan-
tities.

lowing parameters: n;, =50 k points, M =485 plane
waves, n,(k)=6 bands, and lattice constant a=5.925 a.u.
All of the calculations described in this section employed
the conventional cubic unit cell, which for the bcc struc-
ture includes two atoms. The exchange-correlation po-
tential was represented by the Ceperley-Alder form.*!*
Initial values of the orbital coefficients ¥;(G, t =0) were
assigned using random numbers. We employed the larg-
est time step, A=2.1 a.u., for which E(¢;) decreased
monotonically. To illustrate energy convergence, Fig. 1
shows the difference between the current value of the en-
ergy and its asymptotic value (approximated as the value
at iteration 60). The energy curve consists of a short ini-
tial transient, during which the initial states are convert-
ed into more physical trial wave functions, followed by a
linear (note the logarithmic scale) approach to the asymp-
tote. The convergence ratio is roughly 0.75; the energy
decreases about 25% of the distance to the asymptote
each iteration. Also plotted in Fig. 1 is the rms residual
R, defined by the relation

R?= 3 |F,(G,D[Pw(v,k) . (13)
v,k,G

This parameter measures the precision to which the
Kohn-Sham equation F,, , (G)=0 is satisfied for the occu-
pied states. Both the residual and the energy decrease
asymptotically at a comparable rate (note the different or-
dinate scales).

B. Comparison of SL and NL representations

Computational considerations provide a strong incen-
tive for use of the NL pseudopotential;'?> however, it is
important to verify that it yields results comparable to
the SL form.*3 In Fig. 2 we show total energies for Li as
a function of a calculated with both BHS-SL and BHS-
NL pseudopotentials using n; =12 and M=251. The re-
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FIG. 2. Binding energy per atom vs lattice constant for bcc
Li calculated with the BHS-SL and BHS-NL pseudopotentials.
Calculations based on n; =12 and Epy, =18.5 Ry.

sults for the two forms differ only in a small, essentially
constant energy shift.

C. Lattice constant, bulk modulus, and density of states

Although most previous norm-conserving-pseudo-
potential calculations for metals have employed variants
of the HSC-SL form.?” we thought it desirable to use the
BHS pseudopotentials®® because of their availability and
standardized form. Apparently, simple-cubic phos-
phorus® is the only metal for which results with the BHS
pseudopotential have been published. Figure 3 shows to-
tal binding energy per atom for this system as a function
of lattice constant based on BHS-NL (present work) and
BHS-SL (Sasaki et al.3*). The calculations were based on
n, =60 and a basis-set cutoff energy of 36 Ry, as in Ref.
34; Sasaki et al., however, used a different zone integra-
tion procedure. As we found in Fig. 2, the two curves are
similar apart from a nearly constant energy shift. Figure
4 illustrates the electronic density of states for sc P with a
lattice constant of 4.63 a.u. A Gaussian-broadening pa-
rameter o =0.02 was employed. The structure is essen-
tially the same as that given in Ref. 34, but with the Van
Hove singularities smeared out by the Gaussian broaden-

-6.6
B  BHS-SL (Sasaki et al.)

— ® BHS-NL (present work)
3
&
£
8
© -6.6 -
>
>
[
I
w

-6.6 T

4.1 4.5 4.9

lattice constant (a.u.)

FIG. 3. Binding-energy per atom vs lattice constant for
simple-cubic phosphorus calculated with the BHS-NL pseudo-
potential (present work) and the BHS-SL pseudopotential (Ref.
34). Calculations based on n; =60 and Epy =36 Ry.
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FIG. 4. Density of electronic states for simple-cubic phos-
phorus taken from Ref. 34 and results of the present work based
on the Gaussian-broadening scheme, with 0 =0.02 a.u. Vertical
line indicates Fermi level.

ing. If a more precise density of states were desired, one
could use the converged self-consistent potential, calcu-
late a larger number of k points, and apply the tetrahed-
ron method.

The most thoroughly studied metal with norm-
conserving pseudopotentials is A1.*737 Figure 5 shows
results for total binding energy per atom versus lattice
constant. The equilibrium lattice constant and bulk
modulus calculated from the data in Fig. 5 are listed in
Table I, along with results for Li and P. The results for
Al are in excellent agreement with previous work as well
as with experiment. The results for P are also satisfacto-
ry. The predicted lattice constant for Li obtained with
BHS-NL are about 10% smaller than experiment. Re-
sults for other alkali metals with BHS-NL are similarly
poor. Calculations by Dacorogna and Cohen,*® based on
an HSC-SL form with the “partial core correction” pro-
cedure of Louie et al.,*® on the other hand, give lattice
constants and bulk moduli in much better agreement
with experiment; however, the binding energies are some-
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FIG. 5. Binding energy per atom vs lattice constant for fcc
Al calculated with the BHS-NL pseudopotential, using n; =50
and Epy =17 Ry.

what too large. Evidently, property calculations for the
alkali metals are sensitive to the pseudopotential.

D. Simultaneous optimization of atomic
and electronic degrees of freedom

The simultaneous optimization of both the electronic
structure and the atomic configuration, within the local-
density approximation, was discussed by Bendt and
Zunger.*® Such a procedure eliminates the need to ex-
plicitly map the Born-Oppenheimer surface before optim-
izing the atomic coordinates. Recent applications™!>*!
based on dynamical simulated annealing have employed
“floating basis sets” to minimize basis set corrections to
the Hellmann-Feynman forces, and results have been en-
couraging.

When a local optimization of the atomic coordinates is
sufficient, the steepest-descents methods employed in the
present work provide a more direct approach than

TABLE I. Comparison of pseudopotential calculations with experiment. Lattice constant a in a.u.,
bulk modulus B in Mbar, and binding energy per atom E, in hartrees. Results not-corrected for zero-
point motion. BHS-NL and BHS-SL calculations for Li based on n; =12, cutoff energy Epy =18.5 Ry;
BHS-NL calculations with n, =50, Epy =24 Ry yielded ¢=5.97 a.u.,, B=0.1634, and E,=0.277 Ry.
BHS-NL calculations for (ALK,P) employed n;, =(50,12,60) and Epy =(17.0,6.0,36) Ry.

Property BHS-NL BHS-SL HSC-SL Expt.
bee Li a 5.88 5.84 6.43% 6.59
B 0.174 0.177 0.130 0.131
E, 0.2874 0.2866 0.310 0.259
fcc Al a 7.51 7.58° 7.60
B 0.715 0.715 0.722
E, 2.118 2.096 2.081
sc P a 4.55 4.52¢ 4.72¢ 4.68
B 1.18 1.27 0.956 0.950
E, 6.64 6.63 6.57

*Reference 38.
YReference 35.
°Reference 34.
dReference 44.
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FIG. 6. Binding energy per atom vs lattice constant for bcc
K, with n, =12 and Epw =6 Ry. Values labeled ‘“‘static’ corre-
spond to separate optimizations at fixed lattice constant. Values
labeled “dynamic” represent the results of simultaneous optimi-
zation of electronic structure and lattice constant.

dynamical simulated annealing. In the work described in
this section, we have simultaneously optimized the elec-
tronic structure and the atomic volume; these methods
can also be adapted to treat less symmetric relaxations,
such as the strain surrounding an impurity.

In the present treatment, the electronic structure is cal-
culated using the Williams-Soler algorithm, Eq. (8), while
the atomic volume is adjusted each time step by the
steepest-descent prescription

Qt +h)=Q(t)+ph /vg (14)

where p is the present and v, is the effective “viscosity.”
The calculation of the pressure is outlined in Appendix B.
The viscosity is an arbitrary parameter whose value must
be chosen small enough to enable the atomic volume to
adjust itself to relieve the pressure, but large enough to
avoid the numerical instabilities that would result from
rapid volume fluctuations. The results of such a calcula-
tion for bee K, labeled “dynamic,” along with converged
results for fixed lattice constant, labeled “‘static,” are
plotted in Figs. 6 and 7. The electronic states for the dy-
namic run were ‘‘initialized” by iterating Eq. (8) for 10
time intervals #=1.6 a.u. (starting from random states, as

4x1075
o static
° e dynamic
3
)
[ o °
5 N,
n .
1% o
o .
Q. .
L d
*
° *
-4x10°% T > 8
8.25 9.25 10.25

lattice constant (a.u.)

FIG. 7. Pressure vs lattice constant for bcc K. See caption to
Fig. 6.
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described in Sec. II) with a fixed lattice constant a=10
a.u. Subsequently, Egs. (8).and (14) were employed to up-
date the electronic states and the atomic volume simul-
taneously, using a viscosity vo=10"° a.u. The results for
the energy and the pressure are plotted in Figs. 6 and 7,
respectively. The lattice constant and the pressure exhib-
it exponential behavior, with no overshoot. The present
procedure has enabled us to determine the equilibrium
lattice constant as well as the self-consistent electronic
structure in the same number of iterations as normally
employed to achieve convergence in static-lattice calcula-
tions.

IV. DISCUSSION -

The key elements of the optimization method
developed in this paper are (i) the Williams-Soler algo-
rithm, (ii) subspace diagonalization, (iii) the plane-wave
basis set, and (iv) the fully nonlocal pseudopotential of
the Bylander-Kleinman form. The convergence of the
method was excellent in applications to simple metals.
Our comparisons of the BHS-NL with the BHS-SL pseu-
dopotentials were also encouraging and suggest that the
two forms will normally give comparable results. Furth-
ermore, although the pathological behavior mentioned in
Ref. 33 may occur in some instances, it can be remedied
straightforwardly.

The agreement of calculated properties with experi-
ment, as usual, depends on the quality of the pseudopo-
tential. Although the concept of norm conservation has
put first-principles pseudopotentials on a much sounder
basis, it does not, of course, guarantee correct physical
behavior. The results on the alkalis are a case in point.
More work on the development of reliable pseudopoten-
tials for condensed matter applications therefore seems
warranted.

With the testing of our methods on elemental metals
completed, treatment of more complex atomic arrange-
ments such as intermetallic compounds and disordered
systems is now possible. Work along these lines is now in
progress.
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APPENDIX A: GAUSSIAN-BROADENING
METHOD

This appendix outlines the formulation of the
Gaussian-broadening method, which is employed in
Brillouin-zone integrations. The density of states in this
method is expressed as

N(e)= 3 gle—€,)0(k),
v,k

(A1)

where the “line-shape function” is represented by a
Gaussian g (x)=[(27)%0] lexp(—x?%/20%) whose
width o is commensurate with the energy-level spacing.
By integrating the line-shape function up to the Fermi
energy, we obtain the occupancy factor

z(ep—ey)={1+erf[(eg—€,)/V20]1}/2 . (A2)

In calculating properties such as total energy, one re-
quires integrals of some energy-dependent function y (€)
weighted by the density of states,

I[y]=f:y(e)N(e)de. (A3)

Substituting Eq. (A1) into Eq. (A3), and expanding y to
first order about €, we obtain

I[y]: 2 Q(k)[y(f‘,’k)Z(GF_“ka)
vk

—o?y'(€, )8 (€ —€y)] . (A4)

Two cases of importance are the sum of eigenvalues
(y =€, y'=1) for occupied states and the charge density
(y =|¢(r)|?). In the former case we have

I[e]l= 3 w(v,k)e,  ,—0*N(eg) .
v,k

(A5)

The first term in Eq. (A5) is the weighted sum of the
discrete eigenvalues and the second term is a correction
for the levels whose line-shape function g overlaps with
€r. The correction term is typically small, but has been
included in the numerical calculations described in Sec.
III. In the case of the charge density (y =|¢(#)|?), how-
ever, Eq. (9) has been employed without a correction
term proportional to 0% such a term would average to
zero over the unit cell because of wave-function normali-
zation.

APPENDIX B: CALCULATION
OF TOTAL ENERGY AND PRESSURE

Ihm et al.** developed a momentum-space formulation
of the total energy of a solid for use in conjunction with
first-principles pseudopotentials. The energy calculations
in the present paper were based on the framework estab-
lished in that work, adapted to the Gaussian-broadening
integration scheme (Appendix A). In the local-density
approximation, the total energy of a solid per atom is
written as the sum of (single-particle) kinetic energy Eg,
Coulomb energy (=E, +E;+E,), and exchange-
correlation energy E,., which can be expressed in the
form*?
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E=f_EF N(e)ede—i—f[exc(n(r))—,uXC(n(r))]n(r)d3r
-3

G (5£0)

Ve (GIn(G)+ayZ, +VEwaid » (B1)

where the first term represents the sum of the single par-
ticle eigenvalues, the second term corrects for exchange
and correlation, the third term corrects for double count-
ing, and the last two terms account for the Ewald energy,
corrected for the (G=0) component of the local part of
the pseudopotential. The eigenvalue sum is evaluated us-
ing Eq. (A5). The second and third terms are determined
by the charge density n (r), which is calculated with Eq.
(9). The last two terms do not depend on the eigenstates;
they depend only on the atomic configuration, the
volume, and the pseudopotentials. An expression for the
pressure can be obtained by differentiating Eq. (B1) with
respect to volume (see, e.g., Nielsen and Martin*?):

p=—0E/0Q
=pk TPt FPei, T PeiNLT Pee TPEwald + Py - (B2)

The contribution from kinetic energy is given by
Px =2Ey /3Q. The mean value of the pseudopotential
gives rise to a pressure p,; =a,Z, /€. The local part of
the electron-ion contribution p,; ; is given by the deriva-
tive of

IZei,LE

2 Ve,-,L(G)n(G) .
G (£0)

Here the local part of the BHS pseudopotential (for each
species in a multicomponent system) is written

2
V. (G)=—47Z,S(G)/(G*Q) 3, c;exp(—G*/4a;) ,
i=1

where Z, is the number of valence electrons in the unit
cell with volume Q, S(G)= M exp( ——iG-R#) is the
unit-cell structure factor, and the numerical constants c;
and a; [not to be confused with «; in Eq. (B1)] are tabu-
lated in Ref. 28. The explicit result is

PeiL=—En /(3Q)—47Z, /(6Q%)

X 3 S(Gn(G)
G (50)

X 3 (c;/a;)exp(—G*/4a;) .

The nonlocal part of the electron-ion interaction ener-
gy can be written as

Ein =470 '3 3 W (k+G )Y, (k+G)
iLp G,G’

Xexp[i(G—G')-R,]
X{q'VyLla) ,

where q=k+G, q'=k+G’, and the matrix element of
the separable-kernel form of Vy; can be factored as'?

(q'|VnLla)= S vi(qvalq) (B3)
A
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in terms of the vectors
vA(Q)=(47)2Y 4 (q) [ dr r2j(gnAV,(r) ,

with the collective angular momentum index A={/,m}
and

Pant=Ean1/Q+(30)7'S S WHk+G)Y,(k+G)exp[i(G—G')-R

Ap GG’
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—1/2
AV (P)=6,(r8V,(r) [fdxx2[¢,(x)]2aV,<x) ;

here ¢,(7) is the atomic pseudo-wave-function and 8¥,(r)
is the nonlocal pseudopotential component for angular
momentum /. Differentiating E,; y; , we obtain

I, (q)

du,lq)
dlng A

p,] q,)+ UA(q)

d1ng’

The potential components v, (g) and the derivatives dv ,(q) /3 Ing may be calculated once and for all and stored in tabu-

lar form for each atomic species.

The remaining terms in Eq. (B2) are obtained straightforwardly: p,=E,, /3Q, pgryiq=Egwaq/3Q, and

pxcz(uxc_Exc)/Q'
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