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Synchronization of perturbed sine-Gordon soliton oscillators
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We investigate the dynamics of systems composed of perturbed sine-Gordon soliton oscillators
coupled through the boundary conditions. The perturbations are a dc forcing term and linear dis-

sipation. The oscillations maintain their individual frequencies for low values of the coupling pa-
rameter. However, for particular values of this parameter, the rejections of the solitons at the
boundary give rise to radiation exchange which allows spontaneous synchronization. We analyze
our results in the light of recent experiments on long Josephson junction oscillators.

There is now growing interest in the study of collective
synchronization in systems of nonlinear oscillators having
different natural frequencies. An understanding of the
dynamics of such systems could be relevant to collective
phenomena in physics, chemistry, and biology. ' In phys-
ics, collective synchronization effects are under investiga-
tion in the fields of statistical mechanics, lasers, long
Josephson junction (LJJ) arrays, and charge-density-
wave systems. ' Nonlinear oscillations that play a dom-
inant role in the dynamics of the last two classes are ones
based on the sine-Gordon equation: perturbed sine-
Gordon (PSG) equations model magnetic flux-quanta
(fluxons) motion in long Josephson junctions and current
oscillations in charge-density-wave compounds. In these
systems temporal patterns are generated by the spatial de-
grees of freedom that give rise to solitons and, depending
on boundary conditions and forcing terms, several kinds of
oscillating modes are possible. Since the space-time pat-
terns are composed of solitons, and considering the broad
scientific relevance of these nonlinear excitations, the col-
lective synchronization of systems whose unit cell is regu-
lated by a PSG equation is a very interesting problem.

The dynamics of PSG systems in the presence of ac and
dc forcing terms has been the subject of several investiga-
tions for both periodic and finite length spatial bound-
ary conditions. Among many interesting features ob-
served are the possibility of phase locking the soliton oscil-
lations to the external ac drive and the competing interac-
tions and pattern conversion that take place in particular
regions of parameter space. Previous studies have con-
sidered the case in which the external stimulation appears
as an external forcing term in the PSG equation, either
distributed over the whole spatial interval, or at one
end. By contrast, in the present work we study situations
where the ac excitation in one system is due to the oscilla-
tions taking place in another system and vice versa.
Periodic interactions can be selected by a suitable choice
of the perturbing terms (dc force and linear dissipation)
and the boundary condition. The oscillations of each PSG
system have a different natural frequency and the interac-
tion is generated by a coupling at a common boundary.
We analyze numerically the various phase locking regimes
between the oscillators and the corresponding space-time
patterns. This analysis can enable us to understand im-

portant properties of PSG systems, like superradiant be-
havior of LJJ's arrays, so far investigated only indirectly
by means of experimental techniques (measurements of
power spectra and current-voltage characteristics).

Let us consider first the simplest case of two coupled
PSG systems. We deal with the following perturbed sine-
Gordon equation

hatt
—

p „—sinp=p+apt,

over two finite spatial intervals (A and 8). In Eq. (1) p
represents a dc forcing term and ap, a linear dissipation.
At one end of the interval A we impose

4„=0,
while at the other end Eq. (1) is coupled to one end of the
interval 8, though the equation

(3)

where g is a coupling parameter. At the remaining end of
the spatial interval 8 we also impose condition (2). The
physical meaning of the boundary conditions (2) and (3)
can be easily understood in terms of Josephson electrical
quantities:' in this context we know that P„and P, are
proportional to current and voltage, respectively. There-
fore, Eq. (2) sets open circuit boundary conditions while,
considering g as a normalized capacitance, Eq. (3) estab-
lishes that the current at the coupled end must be equal to
the current Bowing through the capacitor. Thus, our PSG
systems interact at their common end through the time-
dependent currents Aowing in a coupling capacitor.

It is known"' that a soliton solution of Eq. (1)
scattering on boundaries such as the ones represented by
Eq. (2) and Eq. (3) can be reflected as an antisoliton or
annihilated depending upon the values of the parameters
p, a, and g. Setting conditions which allow reflections of
solitons at both the ends of the spatial interval, soliton-
antisoliton oscillations with a frequency approximatelp
equal to u/21 are generated. Here u —= [I+ (4a/trp) 't ] '

is the soliton power balance velocity" and I is the normal-
ized length of the spatial interval. We investigate the pa-
rameter range for which these oscillations can phase lock
when the spatial intervals A and 8 are unequal. We con-
centrate on length variations because these enter linearly
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in the determination of the frequencies of the oscillators
and also because making junction lengths equal within a
specified uncertainty represents a crucial technological re-
quirement in the fabrication of coherent LJJ's arrays.

Equations (1)-(3) were discretized and integrated by
means of a third-order Runge-Kutta routine fixing a time
step At =

2 hx 0.025. In all the simulations we set
a =0.1. Then, to allow soliton reflections at the boundary
regulated by Eq. (2), the values of p have to be greater
than 0.1" This fact sets a lower limit for the power bal-
ance velocity of the solitons undergoing the reflection pro-
cesses at about 0.62. Also, a detailed study of the bound-
ary condition (3) (Ref. 12) has shown that, depending on
the value of the parameter g, the solitons can be absorbed
or reflected at the coupled end. In particular, if g is not
much below the threshold /= 1 —(1 —u ) '~, we obtain
soliton reflections at the coupled end and transmission of
radiation between oscillators. We start the solitons with
the above power balance velocity around the centers of the
spatial intervals. The results prove to be independent of
the particular points where the solitons were initialized
provided that they were sufficiently far from the ends of
the spatial intervals. The strategy of the simulations was
the following: For a given value of oscillators lengths
(and therefore frequencies) and for a given value of the
coupling parameter g, we found the interval of p for which
phase-locking phenomena occur. This procedure is
equivalent to a search for phase locking in a dc series ar-
ray of LJJ. In this case the dc bias current feeding the
junctions is varied in order to find a region of phase lock-
ing. Once we found the p locking ranges for a given g, we
evaluated the g intervals over which phase locking can be
maintained for fixed p and oscillators length.

The evolution of initial data in which the two solitons
are started with the velocity u =0.686 (corresponding to
p=0. 12) for a coupling parameter (=0.175 is shown in

Fig. l. In this figure we have shown phase and phase
derivative along the two spatial intervals at the time
t =250. The left interval has a length of 10.1 in normal-
ized units while the right interval is 9.85 units long; the
coupling point is near the center (x =10.1) of the spatial
interval in the figure. In Fig. 1(a) we see that the two sol-
itons, while moving from right to left, occupy symmetrical
positions. This is indeed the situation, for /=0. 175, at all
times beyond an initial transient. The solitons and an-
tisolitons oscillate back and forth along the two lines
maintaining their relative positions. A more quantitative
way of looking at this phase locking eff'ect is shown in Fig.
1(b). In this figure we show the time evolution of p, , the
sum of the time derivatives of the phases at the left ends of
the spatial intervals. We see that there is only one peak in
the time sequence, which means that the solitons undergo
siinultaneous reflections. The peak of pt is about twice
that of the two separate peaks observed when the two os-
cillators do not phase lock. From the pP waveform of Fig.
2(b) it is evident that there is only one frequency in the
coupled PSG system. In Fig. 1(c) we show a typical p,
output waveform obtained when the PSG systems are
operated close to the phase-locking region (/=0. 24,
p=0. 12). In this case we see that subharmonic genera-
tion takes place; this behavior is qualitatively very similar
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FIG. 1.. Examples of diA'erent phase-locking regimes between
two perturbed sine-Gordon oscillators: (a) phase and phase
derivatives distributions along the coupled spatial intervals in a
situation of IPL; (b) time evolution of the sum of the phase
derivatives at the left ends of the two spatial intervals of (a); (c)
subharmonic regime observed close to a parameter space region
where IPL takes place. Dimensionless units are used.
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FIG. 2. The time evolution of the sum of the phase deriva-
tives at the left ends of four coupled perturbed sine-Gordon os-
cillators. Note that the peaks are about twice as big as the ones
in Fig. 1(b).

to that observed for Eq. (1) on the finite spatial interval
with a homogeneous external ac forcing term.

An isochronous phase-locking (IPL) situation like the
one in Figs. 1(a) and 1(b) is observed for /=0. 175 when

p is varied in the interval [0.12,0.135]; we note that this
corresponds to the interval [0.68,0.72] for the velocity u.
This means that if the oscillators are locked for a given
value of g they will remain locked for a frequency interval
of about 5%. Fixing p=0. 12, the IPL is also observed
when g is varied in the interval [0.15,0.22]. We have in-
vestigated the dependence of the IPL upon the absolute
lengths of the spatial intervals, choosing the two lengths
7.35 and 7.6 (i.e., different by about 3.4%). In this case
the phase-locking interval in p is [0.145,0.15] for /=0. 15,
while fixing p =0.15 the range of phase locking for g is
[0.17,0.25].

Having obtained information about the phase locking of
the two coupled oscillators, we investigated the possibility
of locking a larger number of PSG oscillators having
diff'erent internal frequencies. We did this for systems in-
cluding three and four coupled PSG oscillators. The PSG
systems were coupled in all cases by Eqs. (2) and (3) was
imposed at the free ends of the two terminal intervals.
For both the cases of three and four coupled PSG we ob-
served features analogous to the ones of the two PSG sys-
tems for the same parameter ranges. In Fig. 2 we show a
p, waveform for a system of four oscillators whose lengths
differ within 2.5%. The IPL regime is evident and we can
see that the peaks are about twice the ones of Fig. 1(b).
For the simulations of Fig. 2 we set /=0. 175 and p =0.12.

If we think in terms of long Josephson junction oscilla-
tors, we note that p, corresponds to the time evolution of
the sum of the ac Josephson voltages measured at the ends
of the junctions. Since we have found that in conditions of
IPL this voltage increases as the number of junctions, the
power at the corresponding (single) frequency will in-
crease as the square of the number of the junctions. We
emphasize that this result has been found as a direct
consequence of the internal dynamics of the PSG system
after considering a realistic model for photon exchange

between the junctions. Because of the capacitive nature of
the coupling equation (3), our simulated PSG system can
model a situation in which the long Josephson junctions
interact only through a mutual exchange of high frequen-
cy photons. Thus, it makes sense to compare our numeri-
cal data to the experiments reported in Ref. 4. These ex-
periments have indeed demonstrated that a considerable
increase in the power of the emitted radiation can be ob-
tained from dc-series arrays of long Josephson junctions.
Considering that the junctions of Ref. 4 have a length of
about 0.5 mm and a normalized length less than 5, a
scatter of the junction physical lengths of about 3.4% (the
numerically allowed coherence range for junctions whose
normalized length is 7.5) implies that a 15 pm uncertainty
in the fabrication process is allowable. This error is very
plausible within the technology employed for the experi-
ments and so we would expect the observed synchroniza-
tion phenomena on the basis of the simulations.

We further note that the results of the simulations are
qualitatively very similar to the experimental ones. In
Ref. 4 it was reported that the coherence could be ob-
served only for particular bias current choices which is
also what we found. However, as in previous experi-
ments, ' ' the measured intervals of coherence were very
small (of the order of few MHz). Our results suggest that
once that the junctions lock for a given g, it should be pos-
sible to observe coherent behavior between two long
Josephson junctions over frequency ranges of the order of
1.5% of the natural frequency of emission (which is pro-
portional to the velocity of the solitons) in the worst possi-
ble case. If a junction is operating at 10 GHz, this means
that we should be able to observe intervals of coherent
phase locking up to 150 MHz. Indeed, it has been shown
that a long Josephson junction operated in the soliton-
reAection mode can lock to an external source of elec-
tromagnetic radiation for frequency intervals as large as
80 MHz. ' We speculate that the existence of large capa-
citive gaps between the junctions was the reason for the
poor ranges of locking observed in the frequency-domain
experiments. We do not exclude the possibility that if the
value of the coupling parameter g is very small, the soliton
oscillations could phase lock over very tiny p intervals.
However, it may be difficult to identify these IPL regions
in numerical simulations. Recent dc measurements ' ap-
pear to confirm the poor coupling hypothesis because it
has been shown that two long Josephson junctions phase
lock very strongly with a suitably designed capacitive cou-
pling.

The junctions length scatter allowing IPL is large
enough that we could expect coherent behavior even from
LJJ's arrays operating in mi11imeter wave regions. Active
devices operating at these frequencies are presently a sub-
ject of great interest for the applied superconducting com-
munity. ' A typical length of a LJJ operating at millime-
ter wave frequencies is about 60 pm. ' Then, the 3.4%
scatter on length determination allows a fabrication un-
certainty of 2 pm. This is not an unreasonable margin
considered the level of sophistication achieved in super-
conducting integrated technology. ' Also, it should not be
very difficult to design coupled LJJ devices' for which the
value of the parameter g is of the order of magnitude giv-
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ing rise to coherence in the numerical simulations.
In conclusion, we have reported on detailed space-time

features accompanying coherent behavior of coupled per-
turbed sine-Gordon oscillators. Although the analysis
performed is far from representing a fully comprehensive
study, we believe that the phenomena presented should
stimulate interest and further work in the general field of
phase locking of nonlinear oscillators. Moreover, we have
shown that our work should deserve attention from the ap-
plied Josephson community: an experimental confirma-
tion of the results of our simulations would mean achieve-

ment of significant intervals of coherence for series arrays
of long Josephson junction Iluxon oscillators and, by
consequence, a more stable increase of the emitted power.
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