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Harmonic generation and flux quantization in granular superconductors
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Simple dynamical models of granular superconductors are used to compute the generation of
harmonic power in ac and dc magnetic fields. In zero order, the model is a single superconduct-
ing loop, with or without a weak link. The sample-average power is predicted by averaging over
suitable distribution functions for loop areas and orientations in a dc magnetic field. In a first-
order model, inductance and resistance are also included. In all models the power at high har-
monics shows strikingly sharp dips periodic in the dc field, revealing flux quantization in the pro-
totype loops.

Shortly after the discovery of the superconducting
copper oxides, Miiller, Takashige, and Bednorz and Raza-
vi, Koffyberg, and Mitrovic' showed that they were
granular and had some properties similar to spin glasses.
Other unusual properties were soon reported: strong non-
resonant microwave absorption in very low fields (H-10
Oe) strong dependence of ac susceptibility on the ac
field; and a sharp drop in transport critical current in low
fields. Recent reviews ' have considered in detail some
theoretical aspects of the physical properties of high-T,
granular superconductors. In a previous paper we re-
ported extensive harmonic generation by ceramic samples
of YBa2Cu&O& (Y-Ba-Cu-0) driven by an ac magnetic
field H~ sin(cot). For all even harmonics the power P(nto)
vanishes if the dc field Ho =0. These and other properties
were explained by an elementary model. In this Com-
munication we extend and generalize the model and show
that it further predicts novel behavior: for high harmon-
ics, very sharp periodic dips in P(neo) as a function of Ho.
We find, in effect, that observation of high harmonics
should recover quantitative aspects of flux quantization in
the microstructure of the sample. Although spin-glass
models of granular superconducting media have been well
developed we take here a simpler approach, and consider
the dynamical behavior of microscopic currents, which is
intrinsically nonlinear, and must be reckoned with directly
to model harmonic generation.

Zero-order model We con.sider a superconducting
sample subject to parallel and uniform dc and ac fields,
the total applied field being H=HO+H~ sin(cot). The
sample is assumed to have no electrical contacts but is
surrounded by a solenoid; all measurements are made
from the voltage induced into this "receiver" coil. The
sample is imagined to be composed of superconducting
"grains" in contact through weak links, e.g. , Josephson
tunnel junctions, point contacts, or proximity effects. For
low fields H &H, i of the grains, the situation will be
modeled by an ensemble of superconducting paths inter-
sected by weak links, the specific prototype being a thin
ring-shaped loop of area So in series with a junction of
area so, such that the flux due to the applied field is
SpHcos(8) and soHcos(p), respectively. We note that

It„cs:J„(p)sinacos(ncot), n even,

It„ceJ„(p)cosasin(ncot), n odd,

(3a)

(3b)

where J„(P) is the Bessel function of integer order.
We assume that each current loop induces a receiver

coil signal voltage v„(t) proportional to Socos8dIt/dt. If
the sample were composed of only one loop the signal
power P(mo) ee v„ for all harmonics would be periodic in
Ho due to flux quantization with period Aa=z, i.e.,
AHO =tI~O/(2SpcosB) between dips, corresponding to the
period of cos a or sin a. We characterize the ensemble of
current loops by a uniform distribution of orientation an-
gles and an area distribution function F(A ), with
A—=S/So. All the loops are assumed to be coherently
driven, so that the total signal voltage V„(t) at some har-
monic nm can be represented by the algebraic sum of all
v„(t) The sampl. e-average signal amplitude (V„) is com-

this geometry is similar to that used to model rf supercon-
ducting quantum interference devices (SQUID's). In the
zero-order model we neglect the flux due to the loop
current itself, but reconsider it below. The electromagnet-
ic properties of the sample are then predicted by taking
suitable averages over a distribution of areas So,so and
orientations 8, p. We define the dimensionless quantities

a=2trSpHocosO/@0, P=2trSpH~cosH/&o,

rt= trs OH cosp/@p,

where @o is the fiux quantum and a/2tr is just the number
of flux quanta in the loop due to Ho, etc. The applied field
induces current in the prototype loop, which, for a tunnel
junction is given by the Josephson current-phase rela-
tion'

I(t) =I, (sinri/tl)sing,

where 7 =a+ psincot, and I, is the junction critical
current. " We assume that the junction area s is
sufficiently small that the diffraction term [sin(ri)/teal = 1,
and consider only the Fourier components of sing, arising
from flux quantization of the loop:
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puted by the expression, for odd n,

1 m/2

(V„)=neo dA„A cosoJ„(AP)

x cos(Aa)F(A )sin(}d8/G; (4)

for even n replace cos(Aa) by sin(Aa); 6 is the normaliz-
ing factor ffF(A)sin8dA d(}.

To examine the effects of averaging on P(nco) vs a we
take as an example a Gaussian distribution function for
loop areas

(a)

F(A) =exp[ —(A —1) /2a ] (5)

peaked at S =So, with standard deviation o. First, to rep-
resent a single loop we take cr =0, and cos0=1 in Eq. (4)
and compute P(nco), plotted in Fig. 1(a), which shows the
expected periodicity ha =n; this plot is valid for all values
of p and odd n Ne.xt, for standard deviation cr =2, p =5,
and n 1 we compute P(co), plotted in Fig. 1(b). We see
that the periodicity is "averaged out" for a distribution of
areas and orientations. However, for large values of n the
result is different. For cr=2, P=5, and n =15 we com-
pute and plot P(15co) in Fig. 1(c), finding deep and al-
most periodic dips, with an average dip spacing h, a =1.03.
If we omit the averaging over 0 in Eq. (4) the plot is
essentially the same as Fig. 1(c),with ha smaller by 1.5%.
For increased cr, the plots are very similar, with decreased
h, a; the pattern converges for a ~ 2. Essentially, the same
behavior is found for other values of n, with h, a ~ n ' for
n»1. If we include the [sin(ti)/t}] term in Eq. (2), the
computed shapes of P(nco) for small n are inodified to an
extent depending on the distributions of S and s. Howev-
er, for large n, the shapes are not sensitive to the details of
either 5 or s distributions, as long as they are monotoni-
cally decreasing at large values.

The principal result of this Communication is that this
model of granular superconductors, even with a broad dis-
tribution of areas and grain orientations, predicts sharp
and almost periodic dips in the harmonic power as the dc
field is varied, giving evidence of Aux quantization arising
from the loop of the model. One would have naively ex-
pected the periodic flux quantization of a loop to be gen-
erally averaged out, this is not so for high harmonics.
Other distribution functions F(A) also yield sharp dips in
P(nco) vs a.

Loop mode/. We now explore the possibility that the
current-Aux relation of an individual current loop is not
sinusoidal, as in Eq. (2), but still periodic with period @o.
There are several conceivable cases in which this occurs:
(i) The current-phase relation of the weak links may devi-
ate from Eq. (2), which was derived by Josephson for the
case of a weakly coupled tunnel junction; (ii) the proto-
type loop has a large number of identical junctions, and
the change in the loop current is then controlled by the
change in phase-winding number of the loop rather than
by the current-phase relation of individual junctions; (iii)
screening by the loop current eff'ectively gives a skewed
periodic current-applied flux relation, as in the case of rf
SQUID's; and (iv) there may be current loops which
simply are superconducting without any junction or weak
link in their paths. %'e now consider this special case, al-
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FIG. 1. (a) Harmonic power P(nco) vs a, computed from
Eqs. (4) and (5) with o =0, corresponding to a single loop, with
no averaging; figure is valid for all values of P and odd n, and
shows periodicity h, a=+ due to flux quantization of the loop.
(b) Harmonic power P(co) vs a computed from Eqs. (4) and (5)
with ca=2, P=5, and n =1; sample averaging washes out the
sharp dips of Fig. 1(a). (c) Harmonic power P(15co) vs a, com-
puted from Eqs. (4) and (5) for a =2, P =5, and n =15; sample
averaging does not wash out the sharp dips. (d) Harmonic
power P(2co) vs a, computed from Eq. (7) for n 2, P =0.5, and
a monotonically decreasing distribution function F(A). (e)
Harmonic power P(2co) vs a, computed from Eq. (4) for n =2,
P=0.5, and same F(A) as in (d). (f) Harmonic power P(15co)
vs a, computed for the first-order model, Eq. (8), with P 5,
ic=0.3, and Lo 0.35, using F(A) from Eq. (5) and a =2.

though the results should be applicable to the others.
Fluxoid quantization in a loop requires that'

H dS+(m c/2e) v dl=n4&o, n 0, 1,2, . . . ,

which, for a thin ring of radius R, yields the velocity v of
the superconducting electrons and, hence, the current den-
sity I~ —v=6(n —@/@o)/(m*R), where @ HnR is the
applied Aux through the ring. The kinetic energy is pro-
portional to (n —&/@o) . As the flux @/@o is increased
we allow n to switch from n =0 to 1, etc., maintaining the
system in a minimum kinetic energy state. The current II
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is then a sawtooth function of (+/Np) which we write as the Fourier series

(6)It= g ( —I) +'m 'sin(m2ze/ep),
m=1

with 2~/+p to be identified with a+P sin(rot) in Eq. (1). Following the same procedure used to obtain Eq. (4), we use
Eq. (6) to find, for odd n, the sample-average signal voltage components

t ~/2

(V„)=nrp g ( —1) +'/e ' dA A cosOJ„(mAP)cos(mAa)F(A)sin8de/G,
m=1 ~0 ~0 (7)

+ (P/Lp)cos(rot ), (8)

where I ~

=I/I„x.= A, ro/2—eRI„Lp= 2trLI, /@p. For giv—en
values of parameters a, P, rc, and Lp and loop area
S=ASp, Eq. (8) is numerically iterated to yield dIi/dt.
This quantity is averaged over a Gaussian distribution of
areas, Eq. (5), with Lp assumed to vary as A 't, to obtain
(V(t))~, whose spectral components are computed using a

where for convergence we have replaced 1/m in the sum-
mation in Eq. (7) by exp( —m+1) to round off the high
harmonics of an otherwise infinitely sharp sawtooth.
From Eq. (4), we see that the zero-order model is merely
the first term of Eq. (7). Plots of P(nro) vs a, computed
from Eq. (7) are found to be quite similar to the zero-
order model; however, at small values of P the loop model
predicts additional structures. Shown in Fig. 1(d) is
P(2') vs a computed from Eq. (7) for P =0.5. This is to
be compared to P(2rp) for the zero-order model, Fig.
l(e), computed for P=0.5 and the same F(A) as Fig.
1(d).

First-order model. So far we have made the assump-
tion that the self-induced Aux due to the current circulat-
ing in the loop could be neglected. We have also neglected
the resistive current Aowing in the loop. However, these
assumptions ignore dissipation in the sample which can be
caused by either the resistive current or bulk-pinning hys-
teresis. ' It is equivalent to assuming that the sample
magnetization M(H) has the same functional form for
both dc and ac magnetic fields. A result is that Eqs. (3)
only give inductive components in the receiver coil signal.
So we generalize the zero-order model by assigning a
self-inductance to the loop and adding a resistance R in
shunt with the junction. The loop current is then given
by

' I(t ) =I, sin y+ V/R where V = (li/2e)dy/dt and

y =a+P sin(cot ) —2trLI/@p. Combining these expres-
sions one obtains

co 'dI &/dt =(xLp) ' 1sinta+P sin(rut) LpI ~]
—I~1—

I

fast Fourier transform algorithm, yielding real and imagi-
nary components V„„~(nro) and V;,s(nro). The corre-
sponding power P(nro) is plotted versus a in Fig. 1(f) for
n =15, P=5. Although there is a clear correspondence
with Fig. 1(c), one sees that now the inductive and dissi-
pative terms have a different dependence on a so that the
dips have a more complex pattern. We believe this model
may serve as a phenomenological theory for the interac-
tion of eddy-current and bulk hysteretic losses in granular
superconductors. '

We have not considered some important aspects of the
more general problem of high-T, granular superconduc-
tors, such as the critical state and Auxon nucleation'
which are beyond the scope of this Communication.

To summarize, in several simple dynamical models of
granular superconducting samples in low magnetic fields
we have computed the expected harmonic power P(nro)
generated by an ac driven superconducting loop, averaged
over a wide distribution of areas and orientations in a dc
magnetic field. For high harmonics, a strikingly sharp
periodic behavior in magnetic field is predicted, revealing
Aux quantization of the loop of the model. The plots of
Figs. 1(c) and 1(f) are reminiscent of those measured for
the magnetic field behavior of the resistance of loop-
coupled periodic arrays of Josephson junctions i6 and also
the computed behavior of superconducting wire net-
works in these cases, the systems consist of arrays of
essentially identical structures. We point out that in the
case Ho parallel to H1, to lowest order in H1 and in the
low-frequency limit, measurements at the nth harmonic
are equivalent to taking the nth derivative (d"M/dH") of
the nonlinear magnetization M(H), and can recover
averaged-out structure, even in bulk powder, that is un-
resolved in magnetization, susceptibility, magnetoresis-
tance, and critical temperature measurements. Onset of
additional structure is predicted for loops as the driving
field becomes small. Dissipation is included in a higher-
order version of the model. The main features of the mod-
el are experimentally observed, to be separately reported
for Bi4Sr3CasCu40„(Ref. 18) and for YBa2Cu307 (Ref.
19), an example of which is shown in Fig. 2. Experiments
in which Ho is perpendicular to H1 are also under way.
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FIG. 2. Measured harmonic power P(l5rII) vs dc field Ho for
Hl =23 Oe for the sample of powdered YBa2Cu307 at T =77 K
(from Ref. 19).
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