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Self-similarities in one-dimensional periodic and qnasiperiodic systems
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We find hyperinflation rules for periodic and quasiperiodic systems in one dimension which con-
sist of two components and are characterized by a single-parameter a. Applying hyperinflation
rules, we analyze the diffraction pattern and physical properties described by a class of transfer ma-

trices in SL (2, C). We show that the diffraction pattern is self-similar in the wave-vector —a space.
We also show that the product of transfer matrices has self-similar structure in its asymptotic be-
havior in the space spanned by a and parameters in the matrices, which gives rise to self-similarity
in various physical properties such as transmission coefficient, conductivity, heat conductivity,
effective impedance, and spectral diffusion. Possible experiments are also discussed.

I. INTRODUCTION

Quasiperiodic one-dimensional systems have been stud-
ied not only from theoretical interest but also in connec-
tion with various physical situations. One of the well-
known examples is the motion of a Bloch electron in a
two-dimensional space perpendicular to a uniform mag-
netic field. ' Quasicrystals proposed recently as a possible
structure of certain quenched alloys provide a quasi-
periodic one-dimensional sequence of atoms in three-
dimensional crystals. One-dimensional periodicity and
quasiperiodicity have also been made in a quantum het-
erostructure where two different materials are grown in
a specified order with precise thickness. Furthermore,
compactification in the string theory has been treated us-

ing ideas of quasicrystals.
One of the simplest ways to produce periodic and

quasiperiodic sequence is to use the projection method.
For example, if one projects a strip in a square lattice on
to a line with slope p, one obtains lattice points at

x„=n +p+p[an +p],
where a, p, p, and t)t are the parameters and [ ] denotes
the Gauss symbol. (P can be set to zero and a can be re-
stricted in [0,1] without loss of generality. ) We restrict
our discussion in this paper to the case p=O for simplici-
ty. When a is a rational number, Ix„) forms a periodic
lattice and when a is an irrational number, the sequence
of the points becomes quasiperiodic. Thus, one can pro-
duce infinitely many sequences by changing the parame-
ter cx.

In a previous Letter, we introduced hyperinflation
rules which relate sequences characterized by different
a s. Various physical properties of one-dimensional sys-
tems defined by the sequence show self-similarity due to
this symmetry. The hyperinflation rule is generally
different from the inflation (deflation) rule known in cer-
tain quasiperiodic chains, since the latter is a transforma-
tion in P with a fixed a in Eq. (1.1), while the former is a
transformation in a keeping P constant.

II. HYPERINFLATION

There are two spacings a„=1 and a, =1+p in the lat-
tice made by Eq. (1.1). A sequence of two components
can be generated by assigning these two objects to the
two different spacings. For simplicity, we set P=O and
consider the sequence of 0 and 1 given by

S (k)=—[a(k+1)]—[ak], k =1,2, 3, . . .

First, we note that

(2.1)

The purpose of this paper is to study fully the conse-
quences of the hyperinflation rules in physical properties
of one-dimensional systems. We investigate the
diffraction pattern of the sequence and the physical prop-
erties of the systems described by transfer matrices which
are unimodular 2X2 matrices [SL (2, C)]. In Sec. II, we

prove the existence of hyperinflation rules in periodic and
quasiperiodic sequences. We obtain three essentially
different rules. In Sec. III, we apply some of the rules to
diffraction patterns and explain self-similar structures in
the diffraction patterns in the ( k, a ) plane, k being the
wave vector. As is briefly summarized in the Appendix,
many physical systems can be described by SL(2, C),
which include a tightly bound electron, lattice vibration,
hopping conduction, series of lenses, and two port cir-
cuits. The behavior of the product of SL(2, C) deter-
mines physical properties such as localization, transmis-
sion coeScient, heat conductivity, staying probability,
effective focal length, and effective impedance. In Sec.
IV, we analyze numerically convergence of the product in
the plane spanned by a and parameters in SL (2, C), tak-
ing prototype matrices relevant to a tightly bound elec-
tron, lattice vibration, a sequence of lenses, and the
Kronig-Penny model. We also analyze the self-similar
structure in detail for matrices relevant to the
Schrodinger equation using the hyperinflation symmetry.
Discussion is given in Sec. V and we suggest possible ex-
periments.
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0 if 0 & 3i & k such that a& [i Ik, (i + 1)/(k + 1)),
S k)='

1 if 0 & 3i & k such that a E [i l(k + 1),i Ik), (2.2)

where the value of i is uniquely determined for each case.
Thus for a given 0 or 1, we can associate a parameter
(k, i) by this equation. Now, we consider a Mobius trans-
formation of a,

i i k+1 k i' I.
'

k+1' k 2k —i+2' 2k —i k'+1' k'

(2.7)
ra+s
uo. +v (2.3)

where r, s, u, and v are integers. We assume D = rv—su )0 so that f (a) is a monotonically increasing func-
tion and a approaches the fixed point a„(if it exists in

[0,1]) monotonically. When parameters r, s, u, and v

satisfy certain conditions, 0 and 1 in the sequence S (k)
are transformed uniquely to 0 and 1 (or 1 and 0) in the se-
quence S ~ (k), respectively, by transformation (2.3). In
fact, case (i), if

(r D)i +s(k —+1))0

and

(u —r+D)i +(v —s —D)k —r —s+u +v &0,

and

(u —r —D)i+(v —s)(k +1))0,
then S (k)=0 and 1 are transformed to S .(ui+vk
—1)=1 and 0, respectively. When a consecutive pair of
0 and 1 is transformed, a gap of either v —1 or u + v —1

units appears between transformed 0 and 1. Therefore,
we can determine uniquely the sequence of 0 and 1 for a'
if the gap is su%ciently small. This consideration leads to
a limited choice of u and v: (u, v)=( —2, 3), (

—1,2),
(
—1,3), (1,1),(1,2). It should be noted, however, that it

will be possible to devise other transformations which
produce larger gaps for pairs.

(i) Hyperinflation rule I. We take the transformation

2 o,'
(2.4)

then S (k)=0 and 1 are transformed to S (ui+vk)=0
and 1, respectively; case (ii), if

(r +D)i +(s D)k +r +s )—0

where k'—:2k —i, i'—:k. Therefore, S (k)=0 and 1 are
transformed uniquely into S .(2k —i) =0 and 1, respec-
tively.

Under the transformation (2.4), pairs of 0 and 1 are
transformed as follows.

These rules of the pairwise transformation can be unique-
ly reduced to a unit wise transformation

0~10, 1~1 . (2.8)

This is the hyperinAation rule for the elements of the se-
quence. Namely, sequence S (k) is transformed into se-
quence S (k) by this inflation for any a. For example, a
periodic sequence 010010010. . . , which corresponds to
a= —,', is transformed to 101101011010110.. . (a= —,') by
the transformation (2.8). Note that the outermost entries
of a transformed pair overlap with those of the neighbor-
ing pairs.

00. This pair is parametrized by (k, i) and (k + l, i)
and possible only for a E [0,—,

' ). These are transformed to
(2k —i, k) and (2k —i +2,k+1). Thus, there is a gap of
one unit between the transformed two 0's. However,
after at least one transformation, a is in [ —,', 1], in which
there are no more than two 0's in a row. Therefore the
gap must be filled by 1. That is, 00~010.

11. This pair is characterized by (k, i) and
(k + l, i + 1). The transformation (2.4) moves this pair to
(2k —i, k) and (2k —i +l, k+1). There is no gap be-
tween them. Thus, 11~ 11.

01. This pair is characterized by (k, i ) and
(k+ 1,i +1). There is no gap as in the pair 11, and
hence 01~01.

10. This pair is characterized by ( k, i ) and ( k + l, i ).
This is transformed to 1 and 0 with one missing unit in
between. This must be filled by a 1 for the same reason as
for the pair 00, i.e. , 10~110.

This transformation maps

(2.5)
(ii) Hyperinflation rule II. The transformation

1+1
k' k+1

k k +1 i' i'+1
2k —i ' 2k —i +1 k' ' k'+1

(2.6)

and the (left) stable fixed point is at a „=l.
Under the transformation (2.4), 0's and 1's in a se-

quence are transformed as follows:

a+1
a+2 (2.9)

is another example which has a stable fixed point at the
inverse golden ratio, a„=r ' [=(+5—1)/2], an irra-
tional number. This maps the regions [O, F, /F2]

[F, /F2, F3/F4] [F3/F4, Fs/F6] . . . , where F„
are the Fibonacci numbers (1,2, 3, 5, 8, 13, . . . , ) satisfying
F +I:F +F I ~ We restrict our attention to u
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Under the transformation (2.9), we find points

i i +1 k+i k+i +2 i' i'
k ' k+1 2k+i ' 2k+i +3 k'+1 ' k'

F(k, a)= g exp(ikx„) . (3.1)

(2.10)

k+1' k
k +i +1 k +i i" i"+1
2k+i +2 ' 2k+i ~ k' ' k'+1

(2.11)

where

k':—2k +i —1, i'=—k +i, i"—:k +i —1 . (2.12)

00~101, 11~0110,01~1010, 10~011 . (2.13)

Note that in contrast to the previous case, we have
chosen to transform 0 to 1 and 1 to 0.' Therefore a re-
gion 0 with (k, i) in the sequence (2.1) can be transformed
into a region of 1 with (k', i')=(2k+i —l, k+i) Sim. i-
larly, a region of 1 with (k, i) is transformed into a region
of 0 with (k', i"):—(2k+i —l, k+i —1). Using the fact
that (i) for a & r & —', no 111's are possible and that (ii)
after one transformation of (2.9), a) —,', where there are
no 00's, we find the following transformation for the
pairs:

We first calculated the Fourier sum (3.1) numerically.
Figure 1 shows the diffraction pattern in the (k, a) plane
when (a) p = 1 and (b) p =a, where a dot represents the
point at which the intensity I(k, a) exceeds a cutoff' A.
In this figure, the sum was evaluated for 100 lattice
points and A was set to 0.001. The diffraction intensity
becomes infinity at the reciprocal-lattice points if the sys-
tem is infinitely large and the apparent width of the lines
is due to the finiteness of the system size. The points at
a =0 and a = 1 are the reciprocal-lattice points of the
chain consisting of pure ao = 1 and a

&

——1+p, respective-
ly, and points at +=0.5 are the reciprocal-lattice points
for the chain of (a, ao)", and so forth. For 0&a & 1, we
see a self-similar structure with apparent wide gaps at
simple rational numbers. As we will show below, this
self-similarity is a consequence of the hyperinflation sym-
metry.

For a=m/(m +1) (m =0, 1,2, . . . , ), the chain is
periodic (a, ao)". Thus the Fourier transform F(k) is
given by the product of the Laue function X(k) and the
structure factor S(k), where

Furthermore, transformation (2.13) is reducible to

0~10, 1~101 . (2.14)

It is interesting to note the fact that transformation (2.9)
is obtained by applying the transformation a'= 1/(a+1)
twice, and the inflation rule (2.14) is a square transforma-
tion of 0~ 1, 1~10,which is the inflation rule for the Fi-
bonacci chain.

(iii) Hyperinflation rule III. As a next example, we
consider the transformation

(2.15)

This transforms [—,', 1]~ [—,', —,
' ]~. . . and has a fixed

point at a„=0. Under the transformation (2.15), the re-
gion 0 in Eq. (2.1) can be transformed into a region of 0
with (k', i') —= (k +i,i) and the region of 1 is transformed
into a region of 0 with (k', i')=—(k+i, i) It is easy . to
show the pairs of 00, 01, 10, 11 are transformed to 00,
001, 10, 0101, respectively. Thus, the transformation
(2.15) corresponds to hyperinflation 0~0 and 1~01 in
the sequence.

Other transformations we can easily find are
a'=1/(3 —a) which transforms 0~01 and 1~010 and
has a fixed point at 1 —r ' (this can be viewed as the
complement of the hyperinflation rule II), and repeated
transformation of rule I [a'=(2 —a)/(3 —2a);0~110,1

~1]and rule III [a'=a/(2a+ I );0~0,1~001].

00 0.5

(b)

III. DIFFRACTION PATTERN

The diffraction intensity I(k, a) from the lattice (1.1) is
determined by the absolute square of the Fourier trans-
formation F(k,a) of the density function of the lattice

FIG. 1. DiA'raction pattern from one-dimensional lattice: (a)
xk ——[ak], (h} x& ——a[ak]. Dots represent points where the
scattering intensity from 100 lattice points exceeds a cuto6
A=0.001. Namely dots are the reciprocal-lattice points. The
structure of the reciprocal-lattice points becomes very simple
for simple rational numbers.
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2 (3.4). '' Thus the loci (3.4) determine the reciprocal-
lattice points for any value of o.'. Note that we can
proceed in the same way as above for a= 1/(m +1) and
find that the loci of the reciprocal-lattice points for
a = 1/( m + 1 ) are given by Eq. (3.4).

The structure factor at K„can be calculated straight-
forwardly as

(a, —ao)nor
S(k„)~ sin

ma]+ao
a&n~

sin
ma] +ao

(3.5)

0 0.5

(b)

FKJ. 2. Loci of the reciprocal-lattice point: (a) xk = [ak], (b)
x~ =a[ak]. Agreement with Fig. 1 is excellent.

(1 —a)(p +z)+aq
pa+ 1

(3.6)

keeping q fixed. We identify the transformation of the
point under the hyperinflation a'= 1/(2 —a) by

Therefore, the structure factor vanishes when a] and ao
satisfy a certain condition. For example, when m =1,
i.e., o. =0.5, the reciprocal-lattice points are given by
K„=2n n /(a

&
+a o) and the structure factor becomes

S(K„)cc cos[na t n /(a t +ao ) ]. This structure factor van-
ishes, for example, for n =2 X (odd integer) when
a, = 3a o. Since the structure factor may vanish only
when a, and ao satisfy a certain condition, it is rather
atypical for arbitrary spacings and we do not argue this
possibility any further.

We can derive the transformation of the diffraction
pattern, noting that a=m/(m +1) obeys the
hyperinflation transformation I. First, we pick up one of
the reciprocal-lattice points at a = 1; k =2rrq /(1+ p).
Then, we associate an integer p and a real number z to
any point in the (a, k) plane by

X(k) = g exp(ik J) cc sin(k N/2)/sin(k /2)
J

(3.2) (1 —a')(p +z)+a'q
pcs'+ 1

(3.7)

with k =k(ma, +ao) and

m

S(k) = g exp(ika, j) o: U (cos(ka
&
/2)) .

J

(3.3)

k (a,p, q) =2rr (1 —a)p +aq
p(x+ 1

(3.4)

where p and q are integers. Figure 2 shows some of loci
determined by Eq. (3.4) which are identical to those in
Fig. 1. The locus k (a,p, q) approaches 2~p as a ap-
proaches zero and 2~q /( 1+p ) as a approaches unity.
These are the reciprocal-lattice points of the regular
chain of ao (=1) and a, (=1+p), respectively. There-
fore, the loci are the smooth interpolation of these
reciprocal-lattice points which pass the reciprocal-lattice
points of regular chains. Furthermore, the diffraction
pattern obtained for the quasiperiodic lattices with irra-
tional u's consists of 6 functions at points given by Eq.

Here, U (cosO)=—sin[(m +1)O]/sinO is the Tchebycheff
polynomial of the second kind and X is the number of the
unit cells in the system. When X increases, the Laue
function approaches to a set of 6 functions at reciprocal-
lattice points K„=2vrn /(ma, +ao), n being an integer.
Apparent lines in Fig. 1 are the loci of the reciprocal-
lattice points. In fact the loci of these points are given by

(Note when p is taken to be a, we have to change p in
these equations accordingly. ) Eliminating p +z from
these equations, we obtain the following transformations:

,
) k, (1+pa)k +2'(1 —a)q

p+2 cx

when p is a constant and

(2 —a)[(1+a )k+2'(1 —a)q]
n —4a+ 5

(3.8)

(3.9)

IV. PROPERTIES OF SYSTEMS DESCRIBED
BY SL (2, C)

A. General consideration

As we summarize in the Appendix, many physical sys-
tems in one dimension can be described in terms of 2 X 2

when p =a. Figure 3 shows the hyperinflation of the re-
gion aC[0.5, 1] in Fig. 1 to [0,1] by Eqs. (3.8) and (3.9)
with q =0. The apparent width of each line is again due
to the finiteness of the lattice points. It is evident from
Fig. 3 that the self-similarity holds exactly. It is easy to
show that the function (3.4) is invariant under the
hyperinAation transformation (2.4) and (3.8) [or (3.9)] in-
dependent of the choice of q.
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(a)

(4 4)

the chain, ' and a regular product of g determines the
b d for a regular chain. For any sequence of g,

there exists critical values of the parameters in g w ic
d t rmine the boundary of two different physical situa-

wed andtions such as transparent and opaque, and a owed
forbidden energy band.

We consider a chain consisting of two SL (2, C 's, go
and g, in the order of S (k) of Eq. (2.1) and examine the
convergence of their ordered N product

II gs (k) gs (N) gs ( I )

k=1

self-similar properties under the corresponding transfor-
mation o go an g, .f d g . For example, under the
hyperinAation rule II the transformation becomes

I
go g lgo N1 1gog1 (4.&)

0
0.5

(b)

FIG. 3. Similarity transformation of the diffraction pattern:
(a) transformation . or x& =f '

(3 8) for x =[ak], (b) transformation (3.9)
for ~„=a[ak]. In both figures, q is set to zero and a&[0.5, ]
in Fig. 1 is inAated to [0,1].

J ~J J

unimodular transfer matrices. Various properties of the
whole system are determined by the infinite product of
the transfer matrices SL(2, C). y,Namel, denoting
the SL (2, C) element for the jth unit by g, physical

t - ectors IU I, or compleX num I j,
are transformed by

which is taken, in general, in the six-dimensional parame-
ter space.

The asymptotic property of g can be
'

y ybe easil analyzed
=m m +1)when e is rational, in particular when a=m

and a= 1/(m +1) where the system becomes a periodic
chain of gog, or gog1. First we can show easily for any
unimodular matrix

~12
(detA =1)

Q21 02'

that A is given by

a11 Um —1
—

Um —2

a21Um—

&1Z Um —1

a2q Um —1
—

Um —P
(4.6)

= U (cosO) =sin[(m +1)8]/sin0 is the Tche-where U~ =
m cos

efined in Sec. IIIbycheff polynomial of the second kind define in ec.
and trA =2cosO. (When trA & 2, the analytic continua-

a =m / m + 1) which differentiates convergence and
divergence of the product is given by

or (4.1)
ltr(gog) )Um i(trgi/2) —trgoUm —2( g)tr /2)l =2 . (4.7)

where

& (i)z, )+g»(J-
&»(~)z -)+g22(J)

as is described in the Appendix. Physical properties
show totally different behavior as a function of the pa-
rameters in ~gJ j,*

~
according to the divergence or conver-

gence of the product. For example, a product of random
gJ is known to cause localization of wave propagating in

g»(j) g)2(j)
(4.2)'= g»(j) g22(j)

and detg = 1. The physical properties of the total system
are related to the matrix elements of

11 ~12
(4.3)

In genera, t e cri ica p
'

h 't'
1 oints are in seven-dimensional

space (a and six parameters of the two unimodular ma-
trices). To simplify the presentation and analysis, we sur-
vey three typical cases using prototype matrices and in-
vestigate them in the lower dimensional subspace. Appli-
cation to individual problems is straightforward.

B. Numerical analysis

Numerical analysis was carried ou pt for the roduct of
500 matrices. We examined the regions in the parameter
space w ere any e emh lement of the product matrix exceeds a
cutoff A at any point of the multiplication.

(i) Schrodinger equation-type matrices.

a —1 b —1
(4.8)

1 0 ' go 1 0

This type of matrix applies to a 'g yti htl bound electron
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2
I-- -=-

M0';~

4!

2-

w0

I
14'-

6

4i-

-4
4

2'

41
-4 0

Q

IIIII l C

4)I

I »

-2 2

-4
4!

2-

~0,-

2l

-4—
4 -4

I' I

-2 0
Q

(b)

(d)
2 4

0'

-2
6

4!-

&2'
l

22 2
a

(c)
4 6

-2

P

o!

22

I,

0 2
Q

(b)

(d)

4

FIG. 4. Convergent regions for the Schrodinger equation-
type matrix for various values of a in the (a, b) plane: (a)

N =500 matrices is considered to be divergent if (1,1) or (2,2)
matrix element exceeds the cutoff 4= 10 during the multiplica-
tion in Eq. (4.4).

with modulation in the site energy [a (b) =E —E, 1&1] and
to lattice vibration with modulation in the mass
[a (b) =2 —m, 1&1' ] (see Appendixes A and C). The
relevant parameter space is three dimensions (a, a, b) and
intersections in the (a, b) plane at various a's and in the
(a, b) plane at various a's are shown in Figs. 4 and 5, re-
spectively. One can see in Fig. 4 how the convergent re-
gion ! b! ~ 2 at a =0 deforms itself towards those ! a! 2 at
a=1 via 0 ab 2 at a=0.5. Note that the line a =b
between (2,2) and (

—2, —2) is fixed.
(ii) Lens-type matrices.

The parameters a and b can be considered as the inverse
of the focal length of two lenses (see Appendix E). Fig-
ures 6 and 7 show the convergent region of the product in
the (a, b) plane and in the (a, b) plane, respectively. The
line a = b between (0,0) and (4,4) is fixed.

(iii) Kronnig-Penny-type matrices.

1 —ia —iaZ -*

iaZ I + Ia

1 —ib —ibZ*
(4.10)

FIG. 6. Convergent regions for the lens-type matrix for vari-
ous values of o. in the (a, b) plane: (a) e=

9/7 (b) a=
l9$7 (c)

(x 987 (d) a =
9/7 The product of Ã = 1000 matrices is con

sidered to be divergent if (2, 1) matrix element exceeds the cutoff
A= 10 during the multiplication in Eq. (4.4).

1 —a —1

a

1 —b —1

b 1
(4.9)

ibZ J 1+ib

where Z =exp(2ikz ) and z denotes the position of the

2

0
I

21 (b) 0

flg 1/'gll [I@

+.

2 :=---.

0 ~iI I'» g $
t)~ ~

0 02
(c)

0.4 0.6 0.8
Q'

L

0 02 0.4 0.6 0.8 1

0

o.4 0.6 0.80! 1 0 0.2 0.4 0.6 0.8 1
CX

FIG. 5. Convergent regions for the Schrodinger equation-
type matrix in the (o., b) plane: (a) a =0.5, (b) a =2.0, (c)
a =3.0, (d) a =b. The criterion for the convergence is A=10
for the product of 500 matrices. Note the change in scale in (a).

FIG. 7. Convergent regions for the lens-type matrix for vari-
ous values of a in the (o., b) plane: (a) a =2, (b) a =3, (c) a =4,
(d) a =5. The convergence criterion is A = 10 for the product
of 500 matrices.
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4

2!

mp-

-2

C. Analysis for some rational a' s

Taking the Schrodinger equation-type matrices as an
example, we analyze the self-similar structure of the con-
vergent regions. Setting trg

&

=a, trgo =b, and trgog,
=ah —2, we obtain the condition for the critical points
for a=m/(m +1),

4i !bU (a/2) —2U &(a/2)! =2 . (4.1 1)

0- MHm

Therefore, the critical points for a given a at
a =m /(m + 1), b' ', are—given by

2[U, (a /2)+1]
b (+) 777 1

U (a/2)

0
Q

(t-)

2
.+~K

-4 -2 0
a

(d)
2 4

FIG. 8. Convergent regions for the Kronig-Penny —type ma-
trix for various values of a in the (a, b) plane: (a) o.=~ ' and
k =1, (b) a=w ' and k =4, (c) o. =w '/2, and k =2, (d)
a=~ '/2 and k =5. The product of N=500 matrices is con-
sidered to be divergent if {2,2) matrix element exceeds the cutoff
A=10 during the multiplication in Eq. (4.4).

jth potential placed periodically with unit spacing. The
parameters a and b are in proportion to the strength of
the 5 potential (see the Appendix). The convergent re-

gions of the product shown in Figs. 8 and 9 are the al-
lowed region, i.e., the energy band. One can see how the
energy bands for a =0 and 1 are interpolated as a moves
between these two limits.

As can be seen in these figures, the qualitative behavior
is the same for these models. Other types of matrices also
show similar structures. The apparent multilevel branch
structure is explained by the hyperinAation symmetry in
the chain.

2 cos[(m —1)8/2]/cos[(m + 1)8/2]
2 sin[(m —1)8/2]/sin[(m + 1)8/2]

b+(a)=

2a —1 0
2 cosh

1 —a 2

1 0
cosh

1 —a 2

and (4.12)

b (a)=

2e —1 0
2 sinh

1 —a 2

1 0
sinh

1 —e 2

The critical points bI '(a') at a'=1/(2 —a) and b —(a)
can be shown to satisfy the following relation:

2(b'+—+2)
g( )+2a +2

Thus we can consider the transformation

(4.13)

with a =2cos8 when a ~2. (When a &2, a =2cosh8
and cos and sin must be read as cosh and sinh. ) The loci
of these critical points for a ) 2 are written as

6
2(b +2)

—b +2a +2 (4.14)

Qi
(a)

—~~~WRL~

—, .%,Pgl

j'

0 0.2 0.4 0.6a

(c)
08 1

J.

0 0.2 0.4 0.6 0.8 1
Qf

sin[(m + 1)8/2] I a cos[(m + 1 )8/2]
—2 cos[(m —1)8/2)]] ='0 (4.15)

as an approximate similarity transformation in the (a, b)
subspace for the hyperinflation rule a'=1/(2 —a). In
fact, we can see from Fig. 2 in Ref. 5 that this transfor-
mation is an excellent approximation.

We can also calculate critical points for a= 1/(m +1)
from Eq. (4.11), noting that the convergence criteria for g
is invariant under the transformation o;~1—a and 0~ 1

and 1~0. Using the definition of the Tchebycheff poly-
nomial, we can rewrite the condition (4.11) as

FIG. 9. Convergent regions for the Kronig-Penny —type ma-

trix for various values of a, b in the (a, k) plane: (a) a =1 and

b =2, (b) a =1 and b =0, (c) a =1 and b = —1, (d) a =1 and

b = —2. The convergence criterion is the same as in Fig. 8.

and

cos[(m +1)8/2]Ia sin[(m +1)8/2]
—2 sin[(m —1 )8/2) ] I =0, (4.16)
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b = 2 cos( ja~), b =2 cos[(1—ja Hr] (4.17)

for a & 1/( j + 1) (jE JV).
Other critical points for a= 1/(m +1) are determined

by the implicit equations

tan(m 8/2) tan(8/2) =(a —2)/(a +2) (4.18)

and

where b =2 cos8. Therefore, b = 2 cos[pvr/(m + 1)]
(p = 1,2, 3, . . . , m) are the critical points independent of
the value of a. Note these points are nothing but the
Tchebycheff points of the second kind (times 2). The loci
of these points are given by

1 —a
2+a b+2

2 tanh 2+a b+2

cosh '(b /2)
(4.21}

(iii) When b & —2 and ~a~
& 2,

1/2
2+a b+2

2 tanh—a 2+a b+2
a cosh (

—b /2)
(4.22)

and 8=cos '(b/2). For a )2, 6+ and 6 must be in-

terchanged in Eq. (4.20).
(ii) When b ) 2 and ~a~ &2,

1/2

tan(m 8/2) cot(8/2) =(2+a)/(2 —a) (4.19)

(i) When ~b~ &2,

2(6++p~)/8,
2(6 +p~)/8,

1 —a
2[6+ —(p + I /2)m]/(8 —rr),

2[6+ p~] I(6—~),

(4.20)

if O~a &2, where

6+= tan '[+(2+a) /(2+ a)&(2+ b) /(2+b)]

when
~

b—:2 cos8
~

& 2. When
~

b
~

& 2, the analytic con-
tinuation must be taken with b =2 sign(b) cosh8 and a
being changed to —a, and the right-hand side of the first
equation is multiplied by —1. The loci of these boun-
daries are given as follows.

There are no boundaries when ~b~ & 2 and ~a~ & 2. Some
of the loci (4.17) and (4.20) are shown in Fig. 10 for
a =3.0 and 0&a &0.5. The agreement with Fig. 5(c) is
excellent.

We can also find an approximate similarity transforma-
tion based on the hyperinflation rule III in the (a, b}
plane. We first find a parameter j associated with a given
point in the (a, b) plane such that

C(j+1,a) &b &C(j,a),
where C(j + l, a)—=2cos(jager), that is,

(4.23)

j = [ arcc os( b /2 ) / an. ] . (4.24)

Keeping the same relative position within the neighbor-
ing loci, we take

[C(j + l, a') —C(j,a')]b +C(j + l, a)C(j,a') —C(j + l, a')C(j, a)
C(j+ l, a) —C(j,a) (4.25)

as an approximate transformation for a'=a/(a+1).
Figure 11 shows the hyperinflation by Eq. (4.25) of the re-
gion aE[0,—,'] to [0,—,'].

We can analyze other series of a in the same fashion
and derive the deeper structure of the convergent re-
gions. ' As an example, we consider the case a =2b
shown in Fig. 5(d). We find that the boundary point be-
tween convergent and divergent regions is determined by

Uz~+, (cos8) —2U2~, (cos8) =2&2

D. Isolated points

In Figs. 4—9, we see isolated points converging outside
of the boundaries determined above. (These points are
identical to energy levels due to an isolated impurity in
binary alloys. ) This kind of isolated levels can be calcu-
lated by looking at the matrix of the type g,X" or X g,
(i =0, 1), where X is a unit repeated in the sequence for
rational a' s. Let us assume that in a representation
which diagonalizes X,

for a=m/(2m +1) which converges to 0.5 from below
asm~~ andby

0
X=

0 ~, g1=
I I

g 11 g12
I 7

g22
(4.26)

2Uz +, (cos8) —U~,„,(cos8) =2&2

for a=(m +1)/(2m +1) which converges to 0.5 from
above as m ~ ~, where a =2b =2&2 cos8.

where A. + & 1. Then g]X has vanishing. trace, corre-
sponding to a convergent product of the transfer ma-
trices, only when g]1=0 This determines the isolated
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8= 1 — +O(m )
&2+1

m+1 m +1 (4.28)

On the other hand, the small critical 0, that is the upper
boundary of the continuum determined by Eqs. (4.15) and
(4.16) is given by

0=
m +2 1 — +O(m )

2 —2

m+1 (4.29)

Thus the gap between the edge of the continuum and the
isolated level is of O(m } and approaches zero quickly
as o.~O.

-2
0 0.2 0.4

FICx. 10. Loci determined by Eq. (4.17) (dashed lines) and Eq.
(4.20) (solid lines). Seven loci are shown for o.=3.0. These loci
determine the first-order complexity of the structure for
a&[0,0.5] seen in Fig. 5(c). The deeper levels are determined
by other series of rational numbers.

level. For example, when a-O, we take X =go and find
an isolated level at b =a/2+2/a [or a =b —(b —4)' ].

We have analyzed the series a= 1/(m +1) in this
manner taking X =g, go and have found that some of the
isolated levels are determined by the following equation:

[2b —a +&A(a, b)][a +&6(a,b)]= I, (4.27)

where b, :—b(2b, b)=(u —1)/u &. For m ~ oo, i.e. ,
a~O, the smallest positive solution of this equation is
given by

(al
-2'-

0 040.2

I)
tI& ~i~P~I~

(b)

0 0.2 0.4

FIG. 11. Similarity transformation of the convergent region
for the Schrodinger equation-type matrix by Eq. (4.25) for
a =2.5. aE[0, —'] is transformed to [0,0.5] in (b) via Eq. (4.25),
which can be compared with (a) before the transformation.
(N =capp, ~ 10z )

where 6(a, b) = [(au —2u, )
—4]/4u and u

= U (b/2). As an example, we consider again the case
a =2b shown in Fig. 5(d). For this case, Eq. (4.27) is
simplified to

(2b + )/b, )&A = 1,

V. DISCUSSION

In this paper, we have presented the hyperinAation
rules in periodic and quasiperiodic sequences given by
Eq. (2.1), analysis of the diffraction pattern and physical
properties determined by SL (2, C). It is considered rath-
er peculiar that physical properties show completely
different nature depending on the rationality and irra-
tionality of a parameter. ' We have demonstrated that
various physical properties show self-similarity as a func-
tion of this parameter because of the hyperinAation rule.
The diffraction pattern has been shown to obey a similari-
ty transformation determined by the loci of the
reciprocal-lattice vectors, including quasiperiodic sys-
tems. Figure 3 also implies that the Brillouin zones of
one-dimensional chains are self-similar and hence the en-
ergy band will show self-similarity.

We have also obtained transformations (4.14) and
(4.25} for the self-similar structure of the convergent re-
gion of g matrix for the Schrodinger equation-type sys-
tem. These transformations are approximations, since, as
we mentioned in Sec. IV, the hyperinAation transforma-
tion transforms parameters in the seven-dimensional
space determined by Eq. (4.5). Despite of this fact the
transformation seems very accurate as one can see in Fig.
11.

The self-similar structure was analyzed in this paper by
tracing critical points along certain series of rational
numbers. %"e can analyze the structure at deeper level by
following other series of rational a (Ref. 1) as we have
shown at the end of Sec. IV C. We can go down to
deeper and deeper level and we will see similar structure
at any level.

It is straightforward to apply present results to indivi-
dual physical systems. For example, the energy (and gap)
spectra of binary system with site energy co and c] for the
tightly bound electron can be obtained by taking the sub-
space b —c,o =a —c.

&
in the (a,a, b ) space in Fig. 4.

Namely the intersection of this line in Fig. 4 gives the en-
ergy spectra studied by many authors. ' ' Transmission
of light through optical layers, ' energy band of the
Kronig-Penny model, hopping conduction'" are among
other systems. Recently, quasiperiodic superlattices have
been fabricated and we expect to see various physical
properties self-similar as a function of a, though the pre-
cise control of thickness of layers might be very difficult.
As we explain in the Appendix, a set of lenses and a set of
two-port circuits are also described by an SL (2, C) for-



484 T. ODAGAKI AND HIDEAKI AOYAMA 39

malism which can be studied easily. We thus propose ex-
perimental observation of the present results by these
rather simple experiments. For a set of lenses, we expect
to see the self-similar structure in the effective focal
length as a function of a. The two-port circuit will also
show self-similarity in its effective impedance as a func-
tion of o:.

We have restricted our discussion in this paper to
semi-infinite sequences generated by Eq. (2.1) with posi-
tive integers k. We can construct infinite sequences by al-
lowing k ~ 0. It is straightforward to show that the
hyperinflation rules hold for the negative side of the se-
quence.

We have found three essentially different hyperinflation
transformations whose fixed points are 0, 1, and the in-
verse golden ratio. There will be other hyperinflation
rules whose fixed point is different from those studied
here. We have not yet been able to exhaust and classify
all of the possible hyperinflation rules and this is still an
open question.
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APPENDIX

g11 g12
gN g1 =

g g
(Al)

A. Tightly bound electrons

We consider the stationary Schrodinger equation

Eaj =cjaj+tj,aj, +tjaj+1, (A2)

where a is the probability amplitude of an electron at
site j, c is the site energy of site j, and t is the nearest-
neighbor transfer energy between sites j and j +1. We
assume that t is real. The Schrodinger equation can be
written in the form (4.1), for

In this appendix we summarize transfer matrix forrnal-
ism of various one-dimensional systems. The product of
N matrices is written as

j+ 1

U, =+t,
aj

1/2

E —c
(A3)

0

To find the transmission coefficient, we embed an N seg-
ment in an infinite regular chain and consider the
transmission of a wave incident from the left with unit
amplitude

zj+rz*j, j =1,0, —1, —2, . . . ,

tzj, j =N, N+1, N+2, . . . ,
(A4)

B. Potential barriers (Ref. 20)

We consider the transmission of a quantum wave
through a set of potential barriers (or wells). The poten-
tial barriers are equally spaced and have the same shape
of symmetric rectangular. The center of each barrier is
at z~ =(2j —1)a/2, j =1, N and the height and width of
each barrier are p and w . We assume w (a for all j so
that there is always a free space between neighboring po-
tential barriers.

Now write the quantum wave in the free space between
jth and (j+1)st barriers as t e'" +r e '" . Then we can
show that Eq. (4.1) holds for

with

where z =e ' ' and a is the lattice constant. The
coefficient t gives the transmission coefficient, and r the
reflection coefficient. We assumed that to and tN are the
free value, say, 1. One can easily find'

2
g11Z +g12 g21Z g22Z

g11 g12 g21 ~ i g22Z
(A5)

Z —Z'

g11Z +g12 g21 ~Z~ g22Z

The conductivity of the chain can be obtained from the
transmission coefficient using the Landauer formula. '

1

4kk

[2i(k, +k )s, +4kk, c, ) W,
*

—2i (k —k )Z's
2i (k2 —k2)Z*sj j j

[ —2i (k, + k )s, +4kk, c& ]W,
* (A6)

where k —=&2mE /A', k —=+2m (E —P )/A', W =e
2ikz.

Z =e ', and [s,c )—:[sin, cosIk w~. In the Kronig-
Penny limit, we take w =0, (t =+oo keeping P w =P
constant. Matrix g reduces to

1+( +Z,*g
(A7)+.Z*g I+/

I

where

mP
kh' (A8)

Setting to =1, ro =r, and tN =t, rN =0, we find that the
transmission coefficient t and the reflection coefficient r
are given by
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—1 —
1g22, f = g21g22 (A9) 4;—=5; (k 1+k —mao)

The transmission of sound wave through layers of ob-
jects is described in the same fashion. When the sound
velocity is c in the free space and c in the jth object, k
and k are replaced by co/c and co/c in Eq. (A6).

C. Lattice vibration and heat conduction (Ref. 21)

We consider vibration of one-dimensional N lattice
points described by

m, u = —(k, +k, )u, +k, ,u, +k, ui+, +bj,

We define

d, = . det
1

Qk,

The iteration (4.1) is satisfied for

(A14)

(A15)

(A10)

b, =(6, , +5, 1v)( —A, u +f ) . (A11)

where u0=uN+, =0 and the end points j =1, N are un-
der friction and Gaussian random forces,

k

k.
1

1/2

U = /k.
l, J —1

—m)lo +(k, +k, )

k

1

k

k

0

. (A16)

By choosing

(f, (t)f, ,(t') ) =2kT A, 5,,'Bit —t'), ((f, (t) ) =0) From the known value of d1, , d12, d2 2, and d2 3, we
find the effective "initial" values,

we find that in equilibrium, i.e. , T, = TN = T,

( —'m u )=—,'kT .

(A12)

(A13)

k,
d1 0:1 d1 1:0 d2 0:0 d2

0

The heat flux J is given as follows:

(A17)

Thus 5 represents heat baths with temperature T, and
TN

In order to survey the heat conduction through this
harmonic chain, we rewrite (A10) in the matrix notation
in the frequency domain u =e '"'a, as Na =5, where

J= (kT, —(mlu 1) )
m,

—:( T, —
Tlv )j 1co j ( cu ) .

0

One can find that j (co) is given by2'

(A18)

2A, 1A.N COj(~)=
kN

2' 010 N
2

+CO d2 N+
1 N 1 N

1

2 2
(g1 1 +~l~lvg22 +(~ lg12 ~1Vg21 )

2

(A19)

where o.1=—cok1/k0 and crN ——cokN /kN.

D. Spectral diffusion

Consider a spectral diffusion from the origin governed
by the random walk equation' '

P, =P(j,all)= I P—(j, rl 1,0)e "'dt
0

obeys

(P+ w& + wi 1)Pi wiPi +. 1 Wi 1P 1=5

(A21)

(A22)

(A20)

for j =1, . . . , N and PO=P&+1=0. P:P(j, tl1, 0) is the-
probability that one finds an excitation at site j at time t
when it created on site 1 at time t =0. w0 and uN,
denote absorption at both ends of the chain. Although
these can be set to be zero, we keep them for the sake of
simple presentation of transfer matrices.

It is convenient to write the random walk equations in
the Laplace domain. The Laplace transform of P,

P, =(D ')», P1v =(D ')lvl

where an N X N matrix D is defined by

D „=(p+w +w, )6

(A23)

m —1~m —1,n ~m ~m +1,n (A24)

Suppose now we observe the excitation at site 1 or site
N, i.e., we look at P, or PN, or their Laplace transform
P, or PN. The lat ters are given by
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We introduce a vector vj by

U =+w
i,j —1, (A25)

np ny
——+a+h, b (A33)

with

D,-;
—det

1

D,
(A26)

eff +"O "IVR21

h, = gz
gZ1

np
1/2

(A34)

Then U, satisfies Eq (4..1) with

p+w 1+w

1

gZ1 110

1/2

IN

1/2

(A27)

From the known value of d11, d12, dz 2, and dz 3
find the effective "initial" values,

(A28)

F. Optical layers

Take cV layers of thickness h1, . . . , hN with refractive
indices n I, . . . , nlv (ordered from left to right). We take
the normal incident light from left with wavelength A. .
We denote the right-going electric field in the jth layer, at
the boundary with the (j+1)th layer E,+-. Similarly, that
of the left-going field is denoted E . The variable

E,++E,—
Wp

iH,
J

in (E+ E, )— (A3S)
Using the determinant formula for the inverse matrix ele-
ments, one can easily show and z:—E /iHj are continuous across the boundary and

obeys Eq. (4. 1), where
g12

1

Wpg 11
(A29) coskJ

—n sink

n ' sink

cosk- (A36)
and

1PN +WOW1Vg I I

E. Lenses

(A30)

1+r
in()(1 r) ' ~ in~+ I

t— (A37)

We find that

(&J—:2irrij&J/&). The amplitude of the reflected light r
and that of the transmitted light t is obtained from

Imagine a series of X coaxial lenses with focal lengths
f, , . . . , f~, . Between f, and f, +, is a medium of refrac-
tive index n and thickness I . Take an object at distance
ao (on the axis) to the left of f I (ao &0). The lens f,
creates its image at distance b, to the right, which is at
distance a, to the left off2 and so forth. The relation be-
tween a's and b's are

1V+ Ig I I + Og22 ( 0 N+ Ig12 g21 )

+X+ Ig I I nog22+ (no+%+ Ig12+g21

2no

lV + lg1 I + Og22 i (+OnIV+ lgl2 g21 )

(A38)

aJ bJ IJ
n

1 nJ-+-
a, , b, f

Therefore z—:a follows Eq. (4.1), where

G. Ladder of two-port circuits

Take series of two-port networks, where each network
is characterized by the chain matrix fj . Then the vector

n-

nJ

jj
'I/2 n fJ J

(A32)

The variable az and l~ are unphysical (dummy) vari-
ables.

This system is characterized by the effective focal
length f,0 and efl'ective lengths of the system h I and h2
defined by the following relation:

FICx. 12. Two-port circuit. y, and z, are impedances. A vec-
tor of the current I, and the voltage V, is transformed by an
SL, (2, C) defined by Eq. (A40).
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(A39)
~N

=Y
0

(A41)

of the potential V and the current I satisfies Eq. (4.1).
The chain matrix for a reciprocal network satisfies
detg =1. For example, a simple circuit illustrated in Fig.
12 is characterized by

Similarly, the open-circuit impedance matrix Z is given
by

1 —z ~

—y 1+zy (A40) Z—:Y
g12

1

gZI
(A42)

where y and z are impedances. The total short-circuit
admittance matrix Yis given by

Various transfer functions to characterize the circuit are
obtained from Yand Z.

Permanent address: Physics Department, Kyoto University,
Kyoto 606, Japan.

'D. Hofstadter, Phys. Rev. B 14, 2239 (1976).
~D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys.

Rev. Lett. 53, 1951 (1984).
D. Levine and P. J. Steinhardt, Phys. Rev. Lett. 53, 2477

(1984); Phys. Rev. B 34, 596 (1986).
4The Physics of Quasicrystals, edited by P. J. Steinhardt and S.

Ostlund {World-Scientific, Singapore, 1987).
~R. Merlin, K. Bajema, R. Clarke, F.-Y. Juang, and P. K. Bhat-

tacharya, Phys. Rev. Lett. 55, 1768 (1986); T. Odagaki and L.
Friedman, Solid State Commun. 57, 915 (1986).

J. Harvey, G. Moore, and C. Vafa (unpublished) ~

7V. Elser and C. Henley, Phys. Rev. Lett. SS, 2883 (1985).
8T. Odagaki and H. Aoyama, Phys. Rev. Lett. 61, 775 (1988).
N. G. de Bruijn, Kon. Nederl. Akad. Wetensch. Proc. Ser. A

84, 27 (1981);J. E. S. Socolar and P. J. Steinhardt, Phys. Rev.
B 34, 617 (1986).

We can also transform 0 to 0 and 1 to 1 by k'=2k +i and
i ' = k +i. Pairs are transformed as 00~010, 01~0101,
10~110, and 11~ 1101. The units are, of course,
transformed as 0~10 and 1~101,the same as in Eq. (2.14).

"J.P. Lu and J. L. Birman, J. Phys. (Paris) Colloq. Suppl. 7,
C3-251 (1986); M. Duneau and K. Katz, Phys. Rev. Lett. 54,
2688 (1985); P. A. Kalugia, A. Kitaev, and L. Levitov, Pis'ma
Zh. Eksp. Theor. Fiz. 41, 119 (1985) [JETP Lett. 41, 145

(1985)];R. Zia and W. Dallas, J. Phys. A 18, L314 (1985).
' E. H. Lieb and D. C. Mattis, Mathematical Physics in One Di-

mension (Academic, New York, 1966).
' J. B. Sokoloff, Phys. Rep. 126, 189 (1985)~

' K. Ishii, Prog. Theor. Phys. Suppl. 53, 77 (1973).
J. B. Sokoloff, Phys. Rev. B 22, 5823 (1980); M. Khomoto, L.
P. Kadanoff, and C. Tang, Phys. Rev. Lett. 50, 1870 (1983);B.
Sutherland and M. Khomoto, Phys. Rev. B 36, 5877 (1987)~

' J. B. Sokoloff, Phys. Rev. B 25, 5901 (1982); M. Khomoto and
J. R. Banavar, ibid. 34, 563 (1986);T. Nagatani, ibid. 32, 2049
(1985); J. P. Lu, T. Odagaki, and J. L. Birman, ibid. 33, 4809
(1986); K. Machida and M. Fujita, ibid. 34, 7367 (1986); T.
Ninomiya, J. Phys. Soc. Jpn. 5S, 3709 (1986); T. Odagaki and
D. Nguyen, Phys. Rev. B 33, 2184 (1986); J. M. Luck and D.
Petritis, J. Stat ~ Phys. 42, 289 (1986); M. Fujita and K. Machi-
da, J. Phys. Soc. Jpn. 56, 1470 (1987).
M. Khomoto, B. Sutherland, and K. Iguchi, Phys. Rev. Lett.
58, 2436 (1987).

' M. Khanta and R. B. Stinchcombe, J. Phys. A 20, 495 (1987).
' R. Landauer, Philos. Mag. 21, 683 (1970).

N. W. Achcroft and N. D. Mermin, Solid State Physics (Holt,
Rinehart, and Winston, Philadelphia, 1976).

'A. Casher and J. L. Lebowitz, J. Math. Phys. 12, 1701 (1971).
S. Alexander, J. Bernasconi, and R. Orbach, Phys. Pev. B 17,
4311 (1978); S. Alexander, J. Bernasconi, W. R. Schneider,
and R. Orbach, Rev. Mod. Phys. 53, 175 (1981).


